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A reactive system, when coupled with its environment, is an example of a
dynamical system. That is, at any particular instant the system is in one of a col-
lection of possible states and this state changes over time. Mathematicians have
studied dynamical systems for nearly a century but have largely concentrated
on systems arising from physics: planetary systems, fluids, elastic solids, etc,
[11]. By constrast, much less is known about so-called discrete event dynamical
systems (or reactive systems) which arise in computer science, communications,
operations research, manufacturing, etc.

A number of models have been proposed for studying such systems, including
(timed or stochastic) Petri nets, Jackson networks, Generalised Semi-Markov
Processes and forms of process algebra. A good overview of such models appears
in a special issue of the IEEE Proceedings, [12]. For the most part, these models
are mathematically intractable in the following sense: it is hard to find any
theorem about them which engineers would wish to learn as an aid to designing
reactive systems.

In this talk I will discuss some recent ideas which take a different approach.
They have emerged through the independent work of several people coming from
different standpoints, [1, 2, 9, 13, 17]. A more detailed overview can be found in

(6, §4].
Suppose that the set of states of the system can be represented by R". For
instance, if the system has n possible events labelled 1, - - -, n, then (z;,---,z,) €

R™ might represent the times of occurrence of each event, relative to some ar-
bitrary origin of time. Suppose further that the time evolution of the system is
represented by a function F' : R® — R" so that if the system is currently in
state x then it evolves in the next time step to state F(x). These may seem like
absurdly restrictive assumptions but let us proceed with them for the moment.

What assumptions should we make about F'? The following are very natural.
Firstly, the origin of time should be irrelevant. Hence, F should be homogeneous:
for all x € R" and h € R,

Fx+h)=Fx)+h .

(We use here the convention that when a vector and a scalar appear together in
a binary operation or relation then the operation is performed, or the relation is
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required to hold, on each component of the vector. Hence, (x + h); = z; + h for
all i, while x = h means that z; = h for all i.) Secondly, if we delay the times
of occurrence of each event, then the next occurrences should not be faster than
they were before. That is, F' should be monotonic: for all x,y € R",

x<y = F(x)<F(y) ,

where x <y denotes the product ordering on R", z; < y; for all i. This axiom is
perhaps less immediately compelling than the first one but it has a clear intuition
and can be seen to hold in practice in a wide variety of systems.

Functions with both properties are called topical functions, [9]. We want to
understand the dynamics of the corresponding system, so we shall study the
trajectories x, F(x), F2(x), - - -. This emphasis will allow us, hopefully, to answer
such questions as “does the system attain an equilibrium or cycle indefinitely or
blow up?”, “how sensitive is the system to a change of its parameters?”, “how
fast does the system operate?”, etc. Questions like these are often very much in
the minds of engineers when designing reactive systems but, for the most part,
they have not had the tools to answer them.

It turns out that there are real-life systems which can be represented even by
the simple model above. For instance, the problem of clock schedule verification
in synchronous digital circuits has been solved by finding the equilibrium points
of a suitable topical function, [7, 16]. Furthermore, the model can be extended in
various ways to accommodate nondeterminism, stochasticity and more complex
states. These extensions suggest that some of the other models in current use
can be incorporated within this framework, although our understanding of this
important question is still rudimentary, [2, 4]. I will not discuss such extensions
here, for fear of putting the cart before the horse. As we shall see, the horse has
not yet been tamed and already presents us with some difficult problems.

The first remark to make about topical functions is that they are nonexpan-
sive in the £o (or supremum) norm. Let ||x|| = max;<i<n|z;|. This defines a
norm on R™, so that ||x — y|| is a metric. F is nonexpansive if

IFG) = FOII < llx =yl -

This property has an important effect on the dynamics of F' and constrains it
in ways that are still not fully understood. For instance, it limits the extent
of cyclic behaviour in the dynamics of F, [15]. Of course, if F' was contractive
then the Banach Contraction Principle would tell us that the dynamics of F
were straightforward: there is an unique equilibrium point and all trajectories
converge to it. When F' is merely nonexpansive, its dynamics are much more
subtle, [5].

The space of topical functions, Top(n,n), includes a number of important
examples studied in optimal control, game theory, mathematical economics and
operations research, [10]. In particular, nonnegative matrices can be considered
as topical functions. The dynamics of such matrices has been extensively studied
under the name of Perron-Frobenius theory, [3]. From this perspective, topical
functions lead the way towards a nonlinear generalisation of Perron-Frobenius.
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One of the interesting results to emerge from this is that any topical function
can be approximated by so-called min-max functions. These latter functions
are topical functions which are built recursively from the operations max, min
and addition. The approximation is similar to the way in which polynomials
approximate continuous functions but has the added feature that some of the
dynamics of the topical function are inherited by its approximating min-max
functions, [10]. For nonnegative matrices, these approximations are new and
they probably would not have been found if not for the introduction of topical
functions. It is a welcome development that topical functions are interesting
both through their applications to reactive systems and through their intrinsic
mathematical qualities. Perhaps this will encourage more mathematicians to
think about the problems of reactive systems.

I will concentrate in the talk on two related questions. How do we measure
the speed of the underlying system? When does the system have an equilibrium
point? For the former question, the limit

lim F*(x)/k
k—o0

turns out to be the appropriate measure. It can be thought of as the asymptotic
average slowness of each event. This limit does not exist for all topical functions—
it is an important open problem to identify those for which it does—but if it
does exist, it is independent of x. Hence it associates to F' a vector, called the
cycle time vector, X(F) € R™. We are starting to understand the properties
of X as a (partial) functional, X : Top(n,n) — R". These properties allow us
to calculate X in the case of min-max functions and hence to estimate it when
we do not know how to calculate it exactly. It turns out that the cycle time is
closely related to the existence of equilibrium points. If F' has an equilibrium
point, so that F(x) = x, then it is easy to see that X(F) = 0. Conversely, if F
is a min-max function and X(F) = 0, then F has an equilibrium point.

There are a number of unsolved conjectures and open problems in this area
which I will try and point out.

The work reported here draws upon joint research with Jean Cochet-Terrasson,
Stéphane Gaubert, Michael Keane and Colin Sparrow and upon discussions with
Geert-Jan Olsder, Francois Baccelli, Vassili Kolokoltsov, Sjoerd Verduyn Lunel,
Jean Mairesse and Roger Nussbaum. It was partially supported by the European
Commission through the TMR network ALAPEDES.
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