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If you read this article from your web browser the data has probably traveled
part of its journey through an optical fiber. In existing commercial optical fiber
communications links, information is encoded with square-wave pulses in the non-
return-to-zero (NRZ) format as shown in Fig. 1. These pulses propagate essentially
linearly in existing systems. Dispersion, absorption and imperfections in the fiber
cables deform them causing errors in the transmitted signal. To keep the signal
error free, it is periodically corrected and amplified. Transoceanic links typically
have the highest data rates. They now reach rates as high as 2.5Gb/s. In contrast,
data navigates your local network and enters your computer at rates many orders of
magnitude slower than this. In most cases the cables closest to you are not optical
at all.

Several years from now if you read this article from the archives of Nonlinear
Science Today many more of the components that transport and process your data
will be optical. Some of the links may run at data rates as high as 40-100Gb/s.
During part of its journey your data may be encoded in a return-to-zero (RZ) format
using solitons to represent the bits as shown in Fig. 1. At these high bit rates optical
signals will propagate nonlinearly whether encoded in the NRZ format or as solitons
in the RZ format. In Fig. 2 the linear and nonlinear evolution of pulses encoded in
RZ and NRZ formats is shown. As local-area networks speed up they will eventually
need to process optically encoded signals using all-optical devices in which signals are
typically processed by employing the dynamics and interactions of nonlinear optical
waves.

The story of modern optical communications really begins with the introduction of
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Figure 1: The (a) NRZ and (b) RZ format for encoding the eight bit sequence
(10011101).
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Figure 2: The input and output profiles for propagation of an (a) linear dispersive
and (b) nonlinear dispersive NRZ pulse are contrasted against those for propagation
of a (c) linear dispersive and (d) nonlinear dispersive RZ soliton pulse.



the laser in the early 60’s. By modulating the amplitude of the intense coherent light
emitted by a laser, information could be encoded on a light wave. What made this
particularly interesting for communications was the development of low-absorption
glass fibers. In these fibers, the absorption was low enough that information could be
transmitted over commercially significant distances. The erbium-doped fiber amplifier
gave an enormous boost to optical communications in the late 80’s by providing a
good way to combat absorption and increase the error-free transmission distance even
further. More recently nonlinear optics and the dynamics of nonlinear waves have
been playing an increasingly important role in optical communications.

While the laser represents a turning point in all branches of optics, it ushered in the
young field of nonlinear optics in the early 60’s. Nonlinear laser-matter interactions
were first observed when intense light beams were focused into transparent materials.
The now classic nonlinear wave interactions like harmonic generation, wave mixing,
parametric interactions, and self focusing were soon identified. Today these are the
basic building blocks for many nonlinear optical devices and phenomena.

When irradiated by such intense beams of light, the refractive index of many ma-
terials becomes intensity dependent. The nonlinear Schrodinger equation models the
propagation of wavepackets of light in weakly nonlinear dispersive materials. As the
peak intensity of a light beam is increased, localization induced by the cubic nonlinear-
ity begins to compete with diffraction. Chiao, Garmire and Townes[1] recognized in
1964 that the stationary ground state solution of the Nonlinear Schrodinger equation
in two spatial and one time dimension modeled the balance between these opposing
effects. In doing so they apparently introduced the first optical solitary wave.

Since then much effort has been exerted to identify and analyze self-trapped or
stable localized pulses in optical systems. The solitons associated with integrable
evolution equations in one spatial and one time dimension were introduced in the
early 1970’s for the nonlinear Schrodinger equation, the Maxwell-Bloch equations,
the three-wave equations, and the coupled nonlinear Schrédinger equations (see for
instance [2]). Through the efforts of Zakharov and Shabat[3] in 1972 the nonlinear
Schrodinger equation was solved using the newly developed inverse scattering trans-
form. Unfortunately these solutions are unstable to transverse modulations when
embedded in two spatial dimensions[4]. What is more, a little too much energy
causes solutions such as the Townes soliton to self-focus forming a singularity in the
amplitude in finite-time. A general source covering the mathematical foundations of
nonlinear optics can be found in the book by Newell and Moloney([5].

By guiding the waves, nonlinear optical fibers avoided the issue of diffraction and
suggested important applications in optical communications. In 1973 Hasegawa and
Tappert[6] showed that optical fibers could sustain envelope solitons in the longitu-
dinal dimension having a single mode guided in the direction perpendicular to the
propagation direction. Still it would not be until 1980 that intense short-pulse laser
sources would permit Mollenauer, Stolen and Gordon[7] to observe these guided-wave



optical solitons.

In contrast to the Towns soliton, optical solitons in fibers form as the nonlinearity
balances the dispersive spreading of a guided wavepacket. Wavetrains with different
frequencies that make up the wavepacket have different speeds. This causes a linear
pulse to spread as it propagates. Because the refractive index in optical fibers is
proportional to the local intensity of the light, the wave speeds of the component
wavetrains are slightly shifted. Slow waves speed up and fast waves slow. The mag-
nitude of this shift depends on the intensity of the wavetrain. In media with cubic
response, the intensity-dependent shift of sech-shaped pulses is just enough to balance
dispersive spreading. The nonlinear Schrodinger equation captures this balance. In
Fig. 2 we see that the soliton in 2d retains its shape while the NRZ pulse does not.
Due to the nonlinear response, the NRZ pulse also generates new frequencies as it
propagates while the soliton does not.

The Commercial use of solitons in communications began to become possible just
after 1990 when a solution to the timing-jitter problem was provided[8, 9]. While the
erbium-doped fiber amplifier was extremely successful at countering absorption, it
also introduced errors. Uncertainties in the amplification process introduce random
variations in the spectrum of each soliton pulse. In response, the solitons reshape
dynamically shedding very low amplitude, nearly linear waves and obtaining an overall
shift in their center frequencies (the frequencies associated with their spectral peaks).
These frequency shifts are randomly distributed and they produce small changes in
the group velocities of each of the solitons.

As the solitons propagate with their shifted group velocities, their relative posi-
tions change, and these shifts are randomly distributed. In this way erbium-doped
amplifiers introduce errors in the arrival times of the soliton bits. This error is called
the timing jitter[10]. The further the information is transported, the more amplifica-
tion stages are required, so the larger the jitter can become. As the jitter grows, the
probability of an error occurring in a bit sequence grows.

Filters are used to periodically strip away unwanted noise and radiation modes.
The modes with frequencies under the soliton spectrum remain and continue to be
amplified. By shifting the center frequency of each filter slightly in the same direction,
these extra modes are extinguished. Solitons adjust to the asymmetry imposed by
the shifted filters by shifting their own center frequencies. In doing so they keep up
with the shifting filters and pass through the system. Non-soliton components do not
keep up and eventually are absorbed. In Fig. 3 the evolution of a soliton in a system
with filters is shown. Here the filters do not slide and modes are seen to grow up in
the background of the averaged soliton. In Fig. 4 the filters do slide and the spurious
modes are extinguished. Accounts of the development of these techniques can be
found in articles by Haus[11] and Mollenauer[12] and in the article by Mollenauer,
Gordon and Mamyshev{13].

It can be shown that the damping and driving provided by the combination of



Soliton Propagation in Filtered System
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Figure 3: Here a sech-shaped pulse propagates along under the action of the focusing
nonlinear Schrodinger equation with absorption. To counter the absorption the pulse
undergoes 240 stages of amplification and filtering. The solution is plotted at 40
equally spaced positions along the system. Over one period the wave undergoes
large deviations from the soliton solution, but on average the dynamics is that of the
perturbed nonlinear Schrodinger equation. In this system the center frequency of the
filter remains fixed allowing other modes to grow in the background of the average
soliton.



Soliton Propagation in Sliding Filter System
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Figure 4: Here the system is exactly the same as in the previous figure, but now the
center frequency of the filter undergoes a constant shift extinguishing the modes in
the background of the average soliton.

amplification and filtering generates a soliton that is independent of the initial condi-
tions. The soliton parameters evolve towards a fixed point under this perturbation.
The analytical theory is detailed in[9, 14, 15]. Much of the detailed mathemati-
cal analysis of soliton communications systems can be found in the recent book by
Hasegawa and Kodama[16]. A more general book on analytical techniques for optical
solitons is also available[17].

With an eye toward satisfying the increasing demand for communications, much of
the current research is directed toward 40-100Gb/s systems. To achieve these high bit
rates, several signals at different frequencies, encoded either in NRZ or soliton format,
are used simultaneously. These wavelength-division-multiplexed (WDM) systems per-
mit the simultaneous use of several independent information carrying channels in a
single fiber thereby increasing the data rate.

One important limitation for these systems is cross-talk among channels. Colli-
sions between solitons of the nonlinear Schrodinger equation at different frequencies
induce shifts in phase and position. What is more, amplification, filtering and ab-
sorption permit four-wave mixing components generated during the collision of pulses
to grow and to fill in the gaps in the spectrum between channels. Both of these ef-
fects tend to introduce errors. If on average the four-wave mixing components are
phase matched they have enhanced growth rates. This poses a significant problem at



high bit rates. The quasi-phase matching effect is essentially eliminated by varying
the amount of dispersion along each section of fiber so that the four-wave mixing
components are detuned even on average[18, 19].

While the analysis of solitons in optical fiber devices has relied heavily on the
mathematics of nonlinear waves, the impact of these ideas and techniques has become
much more general with recent advances in the analysis of NRZ systems. In the
high-bit-rate regime, NRZ signals carry a large number of nonlinear modes whose
evolution is governed by the defocusing nonlinear Schrodinger equation. This group
of nonlinear modes evolves in a rather complex way compared to its single nonlinear-
mode counterpart in soliton systems. This contrast is clear in Fig. 2. Using the
semi-classical modulation theory of the defocusing nonlinear Schrodinger equation,
Kodama and Wabnitz have introduced the nonlinear theory of NRZ pulse trains[20]
based partly on the work in[21].

They introduce the theory by showing that the average dynamics is governed by
the defocusing nonlinear Schriodinger equation in the weak dispersion limit. Using
a WKB analysis, they show that the evolution of an NRZ pulse before the first
caustic is related to the classic dam breaking problem from fluid dynamics, which
is solved using the method of characteristics. They then show that these pulses can
be controlled by using phase shifts, which are the equivalent of velocity gradients
in the dam problem[22]. The detailed analysis uses higher genus solutions along
with the semi-classical modulation theory. Recently the theory was extended to
the coupled nonlinear Schrodinger equation to provide predictions for the limits on
channel spacing in wavelength-division-multiplexed NRZ systems|23].

The mathematical techniques and ideas upon which the NRZ theory rests were
developed over many years. Even those with casual acquaintance with the theory
of nonlinear waves may recall the Whitham theory for modulated waves. During
the 1970’s this theory was beginning to be applied to integrable systems and in the
80’s it encompassed near-integrable systems and the semi-classical limit of integrable
systems (see [24] and [25] for references to the extensive mathematical literature on
these topics).

With the increase in demand for communications services, optical systems have
begun to be implemented in local networks. This means that the mathematics of
nonlinear waves and nonlinear dynamics will continue to play an important role in the
development of optical communications technologies for some time. New techniques
will be needed as well as new ways of using old ones. Both soliton and NRZ systems
seem to have a role to play in the market for communications. This is shown in
Fig. 5, where the two formats are contrasted. This data shows that the RZ or
soliton format tends to work better for high bit rates over long distances. At shorter
distances and lower bit rates the two technologies tend to become comparable and
other considerations become more important.

Interesting and challenging problems continue to come up in the analysis of both
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Figure 5: The (top) graph shows a comparison between the error-free propagation
distance of sliding-frequency-soliton systems and NRZ systems for a single channel.
The (bottom) graph shows a comparison between the error-free propagation dis-
tance of the two types of encoding for wavelength-division-multiplexed systems. The
trans-pacific distance is about 10Mm. These graphs were provided courtesy of L. F.
Mollenauer, G. P. Gordon and P. V. Mamyshev and originally appear in “Solitons
in High-Rate, Long-Distance Transmission” which appears in Optical Fiber Telecom-
munications, Vol. IIIA, Academic Press, 1997.



soliton and NRZ systems. Much of the emphasis of present work is on new techniques
for manipulating and controlling nonlinear waves with existing materials constraints.
This work is really the beginning of a nonlinear systems theory for optics. Some of
the recent advances are represented in [26]-[37].

Though the original motivation to create solitons in optical fibers was for commu-
nications, the nonlinear phenomena that occur in optical fibers have been employed
to produce new laser sources, measurements, sensors, and switches. Many of these
applications turn out to be fascinating dynamical systems. The impact of nonlinear
science in optical communications is a dramatic demonstration of the importance of
the field in the lives of even the most unsuspecting web browsers. More generally,
nonlinear optics exhibits a wonderful world of nonlinear phenomena that touches on
many if not all of the basic questions dealt with in nonlinear science today. In the
Appendix we point out a few recent contributions to the nonlinear dynamics of optical
systems. Certainly this is not a comprehensive list of topics or important contrib-
utors, but in most cases original references and key contributions can be found by
checking the references provided. We hope you find it useful.

For further information you might also wish to consult the proceedings of “Nonlin-
ear Dynamics in Optical Systems,” which is held every two years by the Optical Soci-
ety of America. This meeting is a good source of information on current research in the
field. The American Optical Society also runs “Nonlinear Guided Waves and Their
Applications” (see Vol. 15, 1996 OSA Technical Digest Series (Optical Society of
America, Washington DC, 1996) ) which deals directly with applications of nonlinear
waves in optical systems (see aslo http://w3.o0sa.org/MTG_CONF/INDCAL/FTPINDEX .htm).
Recent meetings held at the University of Notre Dame[38]
(http://www.science.nd.edu/math/symposium.html and
http://www.nd.edu/ "malber/optics.html), the Center for Nonlinear Studies at
Los Alamos National Laboratories and BRIMS, Hewlett-Packard Labs[39]
(http://www-uk.hpl.hp.com:80/brims/events96.html#optics) brought together
researchers from mathematics, physics and engineering to discuss the analysis of non-
linear optical systems and phenomena. Applications of nonlinear dynamics in optics
also appear through the SIAM activity group in dynamical systems. At “The Fourth
SIAM Conference on Applications of Dynamical Systems” held in May of 1997, math-
ematical problems that arise in nonlinear optics and its applications were also well
represented (http://www.siam.org/meetings/ds97/ds97home.htm).
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Appendix

eNonlinear Optical Switching: In x®) materials, which respond quadratically in the
presence of light, three-wave mixing and second harmonic generation take place.
These materials hold great promise for switching in nonlinear guided wave optics.
Inspired by recent experimental successes, this field has seen a resurgence of theo-
retical activity. New predictions about the existence and stability of solitary waves
including self-trapped parametricly interacting pulses in higher dimensional systems
have been made. Technologies for generating short wavelength light sources and for
all optical switching rely heavily on the advancement of our understanding of the in-
teraction of light with x(® materials. One important theoretical result is the extension
of the Vakhitov-Kolokolov stability criterion for Hamiltonian wave systems.
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D.J. Mitchell and A.W. Snyder, J. Opt. Soc. Am. B 10, 1572 (1993).
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A.V. Buryak, Y.S. Kivshar, and V.S. Steblina, “Self-trapping of light beams and
parametric solitons in diffractive quadratic media,” Phys. Rev. A 52, 1670-
1674 (1995).

Y.S. Kivshar, Phys. Rev. E 51, 1613 (1995).

W.E. Torruellas, Z. Wang, D.J. Hagan, E.W. Van Stryland, G.I. Stegeman, L.
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D.E. Pelinovsky, A.V. Buryak, and Y.S. Kivshar, “Instability of solitons governed
by quadratic nonlinearities,” Phys. Rev. Lett. 75, 591 (1995).

eSelf Focusing: With the development of laser sources producing intense pulses of
light with sub-picosecond time scales, the theory of the self-focusing singularity was
re-examined. Over nearly thirty years the evolution of the self focusing singularity of
the nonlinear Schrodinger equation with two spatial dimensions had been carefully
studied. In the late eighties, the loglog scaling for the evolution of the amplitude near
the singularity was proved for critical self focusing. With this background and the
advent of intense short pulse lasers the question it was unclear what a small amount
of normal dispersion would do to a focusing pulse. After a series of numerical studies
showing that pulses seemed not to self-focus but to break up, several theoretical
results followed yielding modulation equations describing the focusing process. It
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was clear that continuum generation was part of the process. Surprisingly, this work
has also lead to the theoretical generalization of a heuristic numerically determined
equation for the focusing of Gaussian pulses obtained in the mid seventies.
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eCoupled Nonlinear Schrédinger Equation: The coupled nonlinear Schrodinger equa-
tions describe the propagation of two nonlinear dispersive wave-packets coupled through
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