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1 Introduction

The current trend in telecommunications networks is towards systems which
allow diverse traffic types like voice, video and computer data to share the
same broadband network. These traffic types differ widely in the bandwidth
and storage that they require from the network, in stark contrast to today’s
telephone networks, where user needs are homogeneous. The task of the
network will be to integrate these services in a manner that ensures an
adequate quality of service to all users, while at the same time exploiting
the benefits of statistical resource sharing. This is not possible without some
knowledge of the nature of the traffic generated by each user, a fact which
has motivated much recent research on the possibility of estimating relevant
characteristics of the traffic. The methods proposed so far typically separate
the estimation problem from the network management problem. We propose
to integrate the estimation problem with the goals of network management
using a Bayesian framework: instead of producing point estimates of traffic
characteristics, our aim is to produce a full description of our uncertainty,
hence providing more information and coherence for the purpose of network
management.

As a motivating example, consider a roulette player who repeatedly bets
on black because she believes the wheel to be biased towards black. She
starts with b pounds and bets a pound on each spin of the wheel: if it comes
up black, she wins a pound; otherwise she loses the pound. Suppose she
has observed n previous spins, k of which came up black, and would like
to assess the probability of her ultimate ruin based on this observation. If
the probability of black coming up, which we will denote by p, were known,
then this ruin probability would be given by p®, where p = (1 — p)/p. (Here
we are assuming that p > 1/2; otherwise ruin is certain.) From her past
observations, she could estimate p by p = k/n, say, and deduce an estimate
for her ruin probability by plugging this into the formula. We will denote this
estimate by p°. However, this estimate fails to account for the uncertainty in
estimation of p, and, coupled by the extreme skewness of the transformation
p — p® for large b, gives very misleading inference. A Bayesian perspective
leads to a predictive probability for her ultimate ruin, giving a complete
measure of her uncertainty. This means putting a prior distribution on p,
and computing the posterior distribution of p (given the data). It turns out
that, for large values of b, the Bayesian and frequentist approaches lead to
very different conclusions. It can be readily checked that, for any (proper)



prior for p on (1/2,1],
1 b
bl—lglo b log E[p’|data] = logr,

where r is the essential supremum of the induced prior distribution on p. The
posterior expectation of the ruin probability is indeed the proper summary
of the inference, under any cost structure that is linear in ruin probability;
this is reasonable, at least for some telecommunications applications.

On the other hand,

1 ~b N

3 log " = log p,
for all b. Note that for any sensible prior, r > 5. The Bayesian perspective
is more conservative for larger values of b - the predictive probability of ruin
is greater than the frequentist estimate — and the message is loud and clear:
with a finite amount of data we cannot confidently extrapolate probabilities
of rare events; the chance that the underlying probability of black (p) is

much lower than the observed frequency, although it may be small, becomes
very relevant when the initial capital (b) is large.

Although this example might seem trivial, it is in fact a canonical model for
loss in queueing systems with finite resources; it is also a canonical risk pro-
cess. What we have described is a qualitative phenomenon, and we expect it
to be relevant in general network management situations, for arbitrary traf-
fic types and network configurations. Such features will have implications
for decision making in networks (buffer dimensioning, resource allocation,
pricing, policing, etc.). They are also clearly relevant to the general problem
of risk management, where there are similar decision problems.

In this paper we will formulate the network management problem in a very
general context, and discuss the ‘nature of the beast’. We will also present
an asymptotic formula for studying predictive ruin probabilities. We expect
this to be useful for comparing strategies based on the Bayesian paradigm
with their frequentist counterparts.

2 Effective bandwidths

The performance of communications networks is analysed using queueing
theory. Recent developments in telecommunications have stimulated signif-



icant advances in queueing theory involving, in particular, the use of large
deviations theory. See Kelly [25], de Veciana and Walrand [9] and Duffield
and O’Connell [11] for analyses of a single queue, and Chang [6], de Veciana
et al. [10], O’Connell [29, 30, 31], Ganesh and Anantharam [19], Ganesh [20],
Ganesh and O’Connell [22] and Bertsimas et al. [2] for networks. One of
the important ideas to emerge from this work is the concept of the effective
bandwidth of a source. This is a measure of its resource requirements and
is directly related to the large deviation rate function associated with the
source. In practice, we do not know the effective bandwidth of a source
a priori, but have to estimate it from observations of the source output.
One approach would be to hypothesize a source model, say an ARMA or
Markov model, and use traffic data to estimate its parameters. These can
be used to evaluate the limit in (1) below, and thus the effective bandwidth.
The main disadvantage of this approach, from a practical point of view,
is that different kinds of traffic will require different kinds of model: au-
tomating the modelling procedure appears impractical, given the diversity
of telecommunication traffic sources. Also, the theory of large deviations
tells us that for many purposes, there is more information in a complicated
model than is needed for the purpose of network management. An alterna-
tive approach, based on directly estimating the expression in (1), has been
studied by Crosby et al. [4, 5], Duffield et al. [12, 13] and Ganesh [21]. It
has the advantage that it is model-independent, and fast. Estimation of
a related quantity, using empirical queue-length distributions, had previ-
ously been studied by Courcoubetis et al. [3], where the idea of using a
non-parametric approach was first introduced.

There have been similar recent developments [8, 14, 15, 16, 32, 33, 34] in
the risk theory literature.

Consider a discrete-time queue fed by a single source and having a buffer
with the capacity to hold b cells. Let A,, denote the number of cells gen-
erated by the source in the n'® time slot, with {4y, —0co < n < 0o} being
a (stationary) random process. Given a statistical model of the source, its
effective bandwidth is defined, for each 6 > 0, by

1. 1 n
a(f) = Enlggo ;logE [expGZIA,-J, (1)
1=

assuming this limit exists. This quantity has the interpretation that if the
queue is served at constant rate a(6) (cells per time slot), then the frequency



of cell loss is approximately e~%. More precisely, if the service rate is c (cells
per unit time) and I(b) denotes the frequency of cell-loss in a buffer of size
b, then
i 1
b00 b
In the risk theory context, the risk reserve plays the role of the buffer size,
b, and the quantity J is called the risk adjustment coefficient. It is therefore
essential to estimate § in order to achieve a desired bound on the frequency
of cell loss, in the telecommunications context, or on the probability of ruin,
in the insurance context. Effective bandwidths, or equivalently, §, can be
computed from a statistical source model. More importantly from a practical
point of view, they can also be estimated non-parametrically from observed
source statistics, without reference to a particular model.

log {(b) = 6 := sup{0 : a(f) < c}. (2)

3 A Bayesian framework

The task of a telecommunication network will be to provide a guaranteed
quality of service (QoS) to users, typically expressed as a bound on the
frequency of cell loss. A cell loss rate of about 1078 is considered typi-
cal of what users may be prepared to tolerate in a real network. Around
such low levels, cell loss rates can be very sensitive to the bandwidth pro-
vided. Therefore, a small underestimate of the effective bandwidth can lead
to drastic degradation of the QoS. This is essentially a reiteration of the ob-
servation we discussed in the introduction, using the roulette example. Note
that small overestimates are relatively benign, leading only to small losses
of utilization efficiency in the network. We propose to take account of this
asymmetry by posing the problem within a Bayesian framework. Gibbens
et al. [24] is the only earlier study, to our knowledge, that considers the
problem of network management in a Bayesian framework. It concentrates
on the problem of call admission at a single buffer for specific traffic source
models. There is also a significant recent literature on the Bayesian analysis
of parametric queueing models (see, for example [1, 38, 40]), where many
useful calculations are made. In this paper we formulate the problem in a
very general framework, using large deviation theory and non-parametric
Bayesian methods.

The canonical problem we will consider is that of computing the posterior



distribution of 4, defined in (2), and, in particular, the expected frequency
of cell loss (or predicive probability of ruin in the risk context). Without loss
of generality, we can restrict ourselves to the i.i.d case: the case where the
A;’s are weakly dependent can be reduced to the i.i.d. case by aggregation.
Let p denote the distribution of A;. Then (1) becomes

= —;—log/egzu(dz), (3)

A straightforward frequentist estimate of o (and hence of the frequency
of overflow /(b)) can be constructed using the empirical distribution of the
observations {Aj,...,A,}. This has formed the basis of earlier studies [4,
5, 12, 13, 21] (in a queueing context) and [8, 14, 15, 16, 32, 33, 34] (in a risk
context). The Bayesian analogue involves putting a prior distribution on the
(infinite-dimensional) parameter u. The Dirichlet process priors introduced
by Ferguson (17, 18] are a natural first choice, being a very rich class of
conjugate priors with computable posteriors.

Let n > 0 and a = (ay,...,a,) be given. Suppose Z;, i = 1,...,n are inde-
pendent, with Z; ~ G(a;, 1), where G(a;, 1) denotes the gamma distribution
with shape parameter a; and scale parameter 1, and ~ denotes equality in
distribution (if a; = 0, we take Z; = 0). Let Z = Z; + ... + Z,. The n-
dimensional Dirichlet distribution with parameter a = (a1, ..., a,), denoted
D(a), is defined to be the joint distribution of (Z,/Z,...,Z,/Z). This is a
probability distribution on the n-simplex,

n
={xeR":z;>0,i=1,...,n, Za:,-=l},
and if all the a; are strictly positive, it can be expressed by the density

f(Z1,...,Tno1) = Z‘ 18) H “'"1(1—2 ;)en L (4)

= I( al) =

Here T'() denotes the gamma function: I'(z) = I z* e %dz, z > 0.

Denote by M (Q) (respectively M;(f2)) the space of finite non-negative
(respectively probability) measures on an arbitrary measurable space €.
The “Dirichlet process” with parameter o € M (), which we denote by
D(a), is a probability distribution on M (), and is characterized as follows.
A random probability measure, u, on  has law D(a) if, and only if, for



each finite partition Ay,..., A, of Q, the vector (u(4;),...,u(An)) has the
n-dimensional Dirichlet distribution D(a(A;),...,a(Ay)).

Suppose P is a prior distribution on the space 2 and assume P is a Dirichlet
process with parameter a. Then, conditional on observing wy, . .. ,wn, it can
be shown (see [17, 18]) that the posterior distribution is also a Dirichlet pro-
cess, but with parameter o + 3_7, d,,,, where §, denotes the Dirac measure
at z. (The Dirichlet processes D(a), o € M (Q) are a conjugate family of
priors.) This property facilitates computation of posterior distributions of
quantities of interest and is very useful for analysis.

Now consider the problem of estimating the frequency of buffer overflow
(or probability of ruin, depending on the context). Let A; be i.i.d., real-
valued, as in Section 2. We fix @ € M (IR), and let D(a) be our prior
on the distribution, u, of the A;. So, D(a) is a probability distribution on
M;(IR). Now, conditional on the observations Aj,...,A,, we obtain the
posterior distribution D(a + Y 7L, d4,) for u. We can use this to compute
the posterior distribution of the effective bandwidth by substituting in (3),
and the posterior expectated frequency of cell loss, using (2).

4 A useful asymptotic formula

One of the aims of research in this field is to develop network management
strategies (tariffing, policing, call admission, resource allocation) based on
observed traffic characteristics. It is to be expected that the Bayesian and
frequentist approaches will lead to quite different strategies. This was indi-
cated by some easy observations based on the roulette example of Section 1.
We will now take a closer look at this example, and make some more refined
observations. In particular, we will present an asymptotic formula for the
predictive probability of ruin, which we expect to be useful for comparing
strategies.

The roulette example is a special case of the general problem described in
the last section, with @ = {Red,Black}. The D(«) in this case corresponds
to a beta distribution on p, the probability of black, with parameters a; =
a(Black) and az = a(Red), which we assume to be strictly positive. This



distribution, denoted B(a;,as3), has density:

folz) = { My (1 - 2)=71, 2 €[0,1], 5)

0, else.

The posterior distribution of p, given that k of the last n spins have stopped
at black, is B(a; +k,az +n—k). Recall that the probability of eventual ruin
is ((1 — p)/p)® A1 if p is the probability of black and b denotes the initial
capital of the gambler. Hence, the posterior probability of ruin is

P(ruin|data) =

1 ['(a; +az +n) a1+k—-1 1 —z\b
- a2+"~’°~1[— /\l}d. 6

o T(a1 +k)(az +n—k)" (1-2) ( z ) z (6)
For comparison, the frequentist approach uses the estimate p = k/n for the
probability of black turning up; the implied ruin probability is

P(ruin|data) = (1——;;2 A 1)b. (7

The Bayesian estimates clearly depend on the choice of prior, as determined
by a; and az. Roughly speaking, if a; and a9 are small compared to n, then
the prior is swamped by the data and the conclusion is not sensitive to the
exact value of a; and a2. For convenience, we shall simply substitute a; = 0
and ag = 0.

In Figure 1, we have plotted the logarithm of P(ruin|data) for k/n = 0.6
and a range of values of the initial capital, b. From top to bottom, the
curves correspond to numbers of observations, n, equal to 100, 200, 500
and 1000. The straight line at the bottom corresponds to the frequentist
estimate. As expected, the Bayesian estimates of the ruin probability are
more conservative, and the effect is more pronounced for larger b. Also,
as n increases, so does the range of b for which there is close agreement.
These observations suggest that (a suitably scaled version of) the plot of log
ruin probability versus b may have an asymptotic shape as b and n both go
to infinity, with their ratio fixed. This is indeed true, as can be seen from
Figure 2, where we have plotted (1/n)log P(ruin|data) against b/n. From
bottom to top, the plots correspond to n = 50, 100, 500 and 1000. The
following asymptotic statement makes this precise; a proof is given in the
appendix.



Proposition 1 Fiz ¢ > 0 and let Py,(ruin|p,) denote the posterior ruin
probability, when the gambler’s initial capital is qn, conditional on p, being
the observed frequency of black in n spins of the roulette wheel. If pp, — p
as n — 0o, then
0, ifp<1/2,
Tim % log Pyn(ruin | pn) = { h(p) —log2,  ifp—q<1/2<5,
h(p) —h(p—q), fp—q21/2,

where h(z) = —zlogz — (1 — z) log(1 — z).

Denote the above limit by s;(q). It is easily seen from the above that,
for fixed p > 1/2, s; is a convex, non-increasing function of ¢, and sg(O) =
log(1—p)—logp. Recall that the logarithm of the ruin probability estimated
by the frequentist approach is gn[log(1 — p) — log p] and p > 1/2. Hence, in
this asymptotic regime, the Bayesian and frequentist estimates are close to
each other for small values of ¢, but the Bayesian method grows progressively
more conservative as ¢ increases.

As one might expect, a similar result holds quite generally. In the setting
of Section 3, it is possible to derive an almost sure large deviation principle
(LDP) for the posterior distribution of x (the law of the arrivals, { 4;}) under
reasonable conditions on the prior distribution. Using this, we can deduce a
general asymptotic formula for the predictive probability of ruin. Full details
are given in [23]; what follows is a summary of the main observations.

Suppose the {4;} have true distribution 4. Under mild conditions on p,
.1 .
Jim Eloqun(ruxn) = 0,4,

where Py, (ruin) denotes the true ruin probability when the initial capital
is gn and §, is some constant. Consider an asymptotic regime where the
number of observations, n, and the initial capital, gn, go to infinity with
q fixed. Then, almost surely, the logarithm of the predictive probability of
ruin, divided by n, converges to a constant which we denote s,(¢g). The
function s, is qualitatively similar to its gambler’s ruin analogue, s;. In
particular, it is convex and non-increasing, and s),(0) is equal to d,. Thus,



as expected, the Bayesian estimate of the ruin probability is asymptotically
guaranteed to be conservative, to a degree which becomes more pronounced
as q increases.

5 Directions for future research

We have discussed the problem of managing networks in a manner that
exploits the benefits of statistical resource sharing while at the same time
guaranteeing a certain quality of service to users. Addressing this prob-
lem requires estimating user characteristics on the basis of observed traffic
data; in particular, it requires inferences about probabilities of extremely
rare events. We argue that the reliability of such inference based on a fi-
nite amount of a data is questionable and that therefore we need to be
conservative in our estimates. This is particularly true because the con-
sequences of network management decisions based on optimistic estimates
lead to serious performance degradation, whereas the consequences of pes-
simistic estimates are not so serious. This asymmetry leads us to suggest
that a Bayesian framework is a natural one to study the related decision
problems. Implementing a Bayesian methodology requires a suitable choice
of prior; we have argued that the Dirichlet processes provide a rich family
of conjugate priors that are well suited to analytical work. We have derived
simple asymptotic formulae that can be used to guide network management
decisions.

A considerable amount of work remains to be done to establish whether
the Bayesian approach offers real advantages in practice. This has to be
done on the basis of economic criteria associated with network management
strategies (tariffing, policing, call admission, resource allocation). As in the
gambler’s ruin example we expect the frequentist and Bayesian approaches
to lead to very different strategies. An important aspect of future research
will be to compare the performance of these strategies, and also of strategies
(setting of premiums, etc) which arise naturally in the risk theory setting.

Practical implementation of the Bayesian approach will require fast compu-
tation of quantities like the posterior probability of cell loss. In principle,
and for exploratory purposes, this can be done by numerical integration.
However, we believe that Monte Carlo methods, coupled with importance
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sampling, will be quicker. There is a very well developed literature on com-
putation of posterior quantities within these frameworks, mostly based on
Markov chain Monte Carlo (MCMC) and bootstrap ideas (see, for exam-
ple, [7, 27, 36, 37, 39]). For the finite mixture models, with weights, pa-
rameters and number of components unknown, we can adapt the MCMC
approach in Richardson and Green [35]. (This methodology is generic, and
is capable of being extended to the other classes of priors mentioned above;
in particular, the Dirichlet process version has already been implemented.)
The standard computational techniques will all need to be modified, us-
ing change of measure ideas from large deviation theory, to take account
of the fact that we are interested in rare events. Computational issues will
be important both for practical implementation of this approach and for
simulation studies.

We have assumed so far that source characteristics are pre-determined. In
fact, sources may be able to modify their behaviour in response to network
congestion. For example, it may be possible to reduce the rate of a video
source at the cost of a degradation in picture quality that is tolerable to
the receiver. One way for the network to inform sources about congestion,
while at the same time providing them with the incentive to modify their
characteristics, is by the use of a pricing scheme. Pricing would also help
to address another important issue, which is that, when network resources
are shared, the misbehaviour of any user adversely affects the quality of
service received by other users. One response to this problem has been the
suggestion that sources be policed to ensure that they conform to certain
agreed constraints on their output. A more efficient approach might be
to charge users for violating these constraints, the penalty depending on
the extent of violation. Low and Varaiya [28] suggest pricing buffer space
and bandwidth separately and allowing users to choose the combination
that best suits them. This has the disadvantage that it partitions resources
between users, and therefore gives up the benefits of statistical multiplexing.
Kelly [26] suggests pricing on the basis of effective bandwidths and illustrates
this for sources with a known peak rate. A Bayesian framework is a very
natural setting for studying decision problems like pricing and policing.

11



Figure 1: Plots of log P(ruin|data) against the initial capital, b, for n = 100,
200, 500 and 1000 (from top to bottom) with k/n = 0.6. The straight line

at the bottom corresponds to the frequentist estimate.
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Figure 2: Plots of (1/n)log P(ruin|data) against b/n, for n = 50, 100, 500
and 1000 (from bottom to top).
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A Proof of Proposition 1

We assume in the following that the prior probability of black turning up
in a spin of the roulette wheel has the beta distribution, B(a1, a2), for some
constants a; > 0 and a3 > 0. Observe from (6) that the posterior probability
of ruin when the initial capital is ¢gn, conditional on observing black turn up
npy times in n spins of the roulette wheel, is given by

/ _ n
Py (ruin|p,) = ' 2f,;n (z)dz + ' [ () 1-z)* dz, (8)
0 1/2

z

where f;. is the density on [0,1] given by

I'(a1 + a2 +n)
[(a1 + npn)l(az + n(1 - pn))

$a1+nﬁﬂ—l(1,_z)ag-i-n(l—ﬁn)—l. (9)

fou(z) =

It is straightforward to approximate the above integrals using Laplace’s
method. For completeness, we state and prove a version of this method
that is adequate for our purposes.

Lemma 1 Let p be a finite positive measure on a compact interval [a,b] C
IR such that u(A) > 0 for all Borel measurable A C [a,b] whose Lebesgue
measure is positive. Let ¢, : [a,b] > IR, n =1,2,..., be a sequence of contin-

uous functions converging uniformly to a (continuous) limit ¢ : [a,b] — IR.
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Tﬁen,

1 b
lim —log/ (@) y(dz) = sup P(z).
n—oon a ( ) :ce[a,b]

Proof : Since ¢ is continuous on [a,b], its maximum is achieved at some
point z* € [a, b]. Since ¢, converge uniformly to ¢, given € > 0, there exists
an N such that ¢,(z) < ¢(z*)+e€ for all n > N and all z € [a,b]. There also
exists > 0 such that, if z € [a,b] and |z — z*| < §, then ¢p(z) > P(z*) — €
for all n > N. Therefore,

1 b b .
lim sup - log/ e""’"(z)u(d:v) < limsup % log/ ™)) |y (dr)
a a

n—00 n—oo

= ¢(") +¢ (10)

where the equality holds because 0 < u([a,b]) < oco. Likewise,
iminf L log [ enn(@
hggigf;log/a e u(dz)

> liminf 1 log (=)= (da)

n—oo n -/(x'—d,z*+6)r‘1[a,b]

= ¢(z%) —¢ (11)

where the equality is because 0 < u((z* — §,z* + 8) N [a,b]) < oo by as-
sumption. The claim of the lemma follows from (11) and (10) since € > 0 is
arbitrary.

We can rewrite (8) as
1
Py (ruinfpn) = c(n) / F(@)e" @ dg (12)
0

where

_ (a1 + a2 + n)(a1)T(az)
m = TaT )T (az + n(1 — pn)) a1 + az)’ (13)
_ F(al + a2) a;—1 az—1
flx) = T(a)T(a)” (1-z)7%, z€]0,1], (14)
_ [bnlogz+ (1 —pp)log(l —z), 0<z<1/2
$ale) = {(ﬁn_Q) logz + (1 _%n+qa):log(1 —z), 1/2<z<1. (19)
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For any aj, ag > 0, we have by Stirling’s formula that

lim ~loge(n) = —plogp — (1 - p)log(1 — ) = h(F),  (16)

n—oo n,

For any 6 > 0, ¢, are continuous functions on [4, 1 —d], converging uniformly
on this interval to the limit ¢, defined on (0,1) by

#(z) = {ﬁlog:z-}-(l—ﬁ)log(l——w), 0<z<1/2, (17)
T l@-qlogz+(1—p+q)log(l—2z2), 1/2<z<1.

Also, f is the density of a probability measure x on [0, 1] which satisfies the

assumptions of the lemma (hence, so does its restriction to [6,1 — §]).

Suppose 0 < p < 1. Then it is straightforward to verify that the maximum
of ¢ on (0,1) is achieved at z*, where

p ifp<1/2
z* = { 1/2, ifp-q<1/2<p, (18)
p—gqg, ifp—g>1/2.

Therefore, if § > 0 is small enough that p € (4,1 — §), then Lemma 1, (17)
and (18) imply that

L s —h(p),  ifp<1/2
Jim ~log [ f@)e@dz={ —log2,  ifp-q<1/2<p, (19
° ~h(p—gq), ifp—q>1/2

where h(z) = —zlogz — (1 — z) log(1 — z).

Since p lies in the interval (4,1 — §), hence so does p,,, for all n sufficiently
large. For all such n, we see from (15) that ¢/ (z) > 0 for z € (0,4) and
¢,(z) < 0 for z € (1 —6,1). Therefore, the maximum of ¢,, over [0, 4] is
achieved at ¢ and is equal to py, log § + (1 —py,) log(1 — §), while its maximum
over [1 —§,1] is achieved at 1 — § and is equal to (p, — q) log(1 — &) + (1 —
Pn + q) log é. Therefore,

1 4
lim sup — log/ f(@)e™"@dz < plogs + (1 — p) log(1 — 8), (20)
n—oo T 0

1 1
limsup;l—log/ 6f(z)e"¢"(’”)dz < (P—q)log(l1—-06)+(1—p+q)logé. (21)
n—oo 1-

We shall make use of the following fact, whose proof is easy and is left to
the reader.
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Fact: Let a, and b, be non-negative sequences, with

1
lim 1 loga, = A, limsup—logb, < B.

n—oo n n—oo M

If A> B, then
.1
nlggo - log(an + b,) = A.

As § decreases to zero, the right hand sides of (20) and (21) decrease to —oo.
Therefore, by choosing § > 0 sufficiently small, they can be made smaller
than the right hand side of (19). It then follows from the above fact that
(19) holds with the limits of integration, § and 1 — 4, replaced with 0 and
1. The proof of Proposition 1 when 0 < < 1 is now immediate from (16)
and (19).

Suppose next that p = 0. Then, for any § > 0, there exists N such that
Pn <dforalln > N. Let § < 1/2. Then, by (15), we have for all z € (6/2,6)
and all n > N that
) é
¢n(z) > dlogz + (1 — §)log(1 — z) 2610g§+(1 —6)log(1— 5)

Therefore, for all n > N,
1 s 5
/ f(z)e"?@dz > / f(z)exp {n[J logg +(1—4)log (1 - —)]} .
0 §/2 2 2
Since f is strictly positive on (0,1) by assumption,
liminf—l—log/1 f(z)e™@)dz > §lo g +(1—4)log (1 - é)
n—od n 0 = 07085 2)°

But § > 0 is arbitrary; as § decreases to zero, so does the right hand side
above. Also note that ¢,(z) < 0 for all z € (0,1), and so,

1 1
lim sup — log/ f(z)e@dz < 0.
n—oo N 0

It follows from these two inequalities that

n—oo n,

1
lim 1 log/ f(z)er@dg = 0 = h(p).
0
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Together with (16), this establishes Proposition 1 when p = 0. The case
p =1 can be treated similarly. This concludes the proof of Proposition 1.

Remarks : Intuitively, if 5 < 1/2, then we infer that ruin is certain, however
large the initial capital of the gambler. For fixed p > 1/2, the limit in the
proposition is a decreasing function of ¢, as we would expect. However, it
flattens out at ¢ = p — 1/2. The explanation for this is that, for larger q,
the probability of ruin when the gambler’s initial capital is gn is essentially
the same as the predictive probability that eventual ruin is certain. This
latter probability clearly does not depend on q. Finally, it can be verified
by differentiation that the limit in the theorem is a decreasing function of p
for fixed g, as expected.
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