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1 Introduction

The main result in this paper provides a new tool for looking at large de-
viations for queueing systems in equilibrium. Equilibrium systems have
generally been treated on a case-by-case basis, with much work and/or ad-
ditional hypotheses necessary to prove large deviation principles (see, for
example, Chang and Zajic [3], Ganesh and Anantharam [11], Ramanan and
Dupuis [19]). We provide a simple sufficient condition for the usual sam-
ple path LDP (as in Mogulskii’s theorem) to be strengthened to a topology
for which the reflection mappings appearing in many queueing applications
are continuous and the contraction principle can be applied. A step in this
direction was made by Dobrushin and Pechersky [5], who introduce a finer
topology (a guage topology) which allows one to treat the single server queue
with constant service rate, and prove the LDP in this topology for a class
of Markov jump processes. However, this does not easily extend to more
complicated network configurations, or even to the single server queue with
stochastic service rate. The main result in this paper can be (and has been)
applied to some quite complicated multidimensional systems with interact-
ing traffic 16, 17].

2 Background and motivation

The context in which the need for our main result arises is a general scheme
which can be applied to an endless variety of network problems where the
goal is to establish probability approximations for aspects of a system (such
as queue lengths) under very general ergodicity and mixing assumptions
about the network inputs.

Suppose that the inputs to a network can be represented by a sequence of
random variables (X;) in IR?, and that the (sequence of) objects of interest,
(Or), can be expressed as a function of the partial sums process correspond-
ing to X. To make this more precise, for t > 0 set

1 [
Sn(t) = —T.I: ZXIH (1)
k=1



and write S, for the polygonal approximation to Sy,:

Sa(t) = Sa(t) + (t - 2—”) (Sn (M) ~ Sn ([—TTLL—t]» )

n

Denote by C(IR4) the space of continuous functions on R4. Then S, €
C?R4 ) and our supposition is that there exists a function f : CYRy4) — &,
for some space X, such that O, = f(S,), for each n.

For example, suppose d = 1 and X} is the difference between the amount of
work arriving at time —k at a single-server queue and the available service
capacity at that time. Suppose also that the limit

p:= lim ZXk/n
k=1

n—00

exists almost surely and is less than 0. Then the queue length at time zero
is given by

Qo = sup Y X, (3)
n20 k=g
or, equivalently, Qo/n = f(S,), where f : Au(R4+) — Ry is defined by
f(#) = sup (2). (4)
t>0

If the sequence X is stationary and ergodic, then Qo represents the equi-
librium queue-length distribution. In this example, O, = Qo/n.

The idea is to deduce a large deviation principle (see below) for O, from
one which can generally be assumed for S,. This can be done using the
contraction principle, which we will now describe.

Let X be a Hausdorff topological space with Borel o-algebra B, and let u,
be a sequence of probability measures on (X,B). We say that u, satisfies
the large deviation principle (LDP) with rate function I, if for all B € B,

. P | . 1 .
- xlégo I(z) < lim inf -~ log pn(B) < l1mnsup - log pn(B) < — Ilglf? I(z); (5)
if, for each n, Z, is a realisation of y,, it is sometimes convenient to say
that the sequence Z,, satisfies the LDP. A rate function is good if its level
sets are compact. The contraction principle states that if Z, satisfies the



LDP in a Hausdorff topological space X with good rate function I, and f
is a continuous mapping from X into another Hausdorff topological space
Y, then the sequence f(Z,) satisfies the LDP in ) with good rate function
given by

J(y) = nf{I(z): f(z) = y).

Now consider the partial sums process S,,. Denote by S, [0,1] the restriction
of §, to the unit interval, by C[0,1] the space of continuous functions on
[0,1], equipped with the uniform topology, and by A[0, 1] the subspace of
absolutely continuous functions on [0,1] with ¢(0) = 0. Dembo and Zajic
(1995) establish quite general conditions for which S,[0,1] satisfies the LDP
in A[0,1] with good convex rate function given by

Jo A*(@)ds ¢ € A[0,1] (6)

00 otherwise,

/(¢)={

where A* is the Fenchel-Legendre transform of the scaled cumulant gener-
ating function

A(A) = lim llogEe"’\'S"(l), (7)
n—oo n

which is assumed to exist for each A € R%*! as an extended real number.
For such an LDP to hold in the i.i.d. case, it is sufficient that the mo-
ment generating function Ee* X1 exists and is finite everywhere; this is a
classical result, due to Varadhan (1966) and Mogulskii (1976). This is usu-
ally extended to the space C(IR4) (of continuous functions on R ), via the
Dawson-Gértner theorem for projective limits. However, the projective limit
topology (the topology of uniform convergence on compact intervals) is not
strong enough for many applications; in particular, the function f defined
by (4) is not continuous in this topology on any supporting subspace, and
so the contraction principle does not apply.

This was observed by Dobrushin and Pechersky [5], who introduce a finer
topology (a guage topology) which allows one to treat the single server queue
with constant service rate, and prove the LDP in this topology for a class
of Markov jump processes. In this topology, the restriction of the mapping

¢ — sup[¢(t) — ¢] (8)
>0
to a subspace of non-decreasing paths ¢ with limits

tlim ()t =p<1,



is continuous. However, this does not easily extend to more complicated
network configurations, or even to the single server queue with (stochastic)
time-varying capacity.

We consider the set of paths

_ d O
y—|j|{¢€C (Ry) : tll_{go T4 exists },
and equip Y with the norm

¢ (1)

14¢

l|¢]l = sup sup
7 t

Note that Y can be identified with the Polish space C*(R%) of continuous
functions on the extended (and compactified) real line, equipped with the
supremum norm, via the bijective mapping ¢(t) — ¢(¢t)/(1 +t). In particu-
lar, Y is a Polish space.

We will show that if the LDP holds in C[0,1] and A is differentiable at the
origin with VA(0) = y, then the LDP holds in the subspace

(t
Y.o={oel: }H&%zu}.

In our one-dimensional example, the function defined by (4) on Y, is con-
tinuous provided p < 0 (see Section 4).

3 The main result

We consider the set of paths

t
() exists },
t

¢ (t)

1+t]

— d RF
y_(]]{¢ec (Ry) : tlimoo"f
and equip Y with the norm

l|#]|.. = supsup
7 t




Note that J can be identified with the Polish space C¢(IR7) of continuous
functions on the extended (and compactified) real line, equipped with the
supremum norm, via the bijective mapping ¢(t) — ¢(¢)/(1 +t). In particu-
lar, ) is a Polish space.

Although this topology is quite different from the gauge topology introduced
by Dobrushin and Pechersky [5], conceptually it is quite similar: the idea is
to get some kind of uniform control over the sample average. We have also
used some ideas from their paper in the proof of Theorem 1 below, in order
to construct compact sets that support most of the measure. We remark
also that Deuschel and Stroock [8] prove a version of Schilder’s theorem in
the space ), using essentially Gaussian techniques.

Theorem 1 Suppose that for each 6 € IR?, the limit
1 n0-5,(1)
A(0) = nhrr;o - log Ee™ =) 9)

ezists as an ectended real number, and the sequence .5~'n[0,1] satisfies the

LDP in C%0,1] with good rate function given by

Jo A*(d)ds ¢ € A0,1],

00 otherwise

Il(¢’) =

where A* is the conver dual of A. If A is differentiable at the origin, then
S, satisfies the LDP in'Y with good rate function

J° A (d)ds ¢ € AYRL)N Y,

00 otherwise

Iw(¢) =

Proof. By considering S'n(t) — tVA(0) we can, without loss of generality,
assume that VA(0) = 0. We first show that D; C Y and P(S, € ) = 1,
for all n. By the convexity of A*, and Jensen’s inequality,

tA*(¢(8)/1) < 1(¢)-



Since this holds for all ¢, we must have ¢(t)/t — 0 as t — oo (VA(0) = 0
implies that A* has a unique zero at the origin). By hypothesis we can
choose, for each j, # > 0 such that A;(6) and A;j(—8) are finite; if we let

e+(n) = ‘—::]og Een52(1) _ A]'(O)'

and
e-(n) =

then €4 (n)V e_(n) — 0, as n — oo. Thus, for each § > 0,

P{
1+1¢

< Z e SROHA@)+er (K) 4 Z ¢~ SKO+A(=0)+e— (k).

1 log Ee~m?5»(1) _ Aj(—O), ,
n

GJ
Sa(t) > §, for some t > to}

k>ntg k>ntg

letting to — oo we see that S7(¢)/(1 +1t) — 0, almost surely, as ¢t — oo.
We have thus shown that Dy C Y and P(S, € ¥) = 1. Now by (H1),
the Dawson-Gartner theorem for projective limits, and [7, Lemma 4.1.5], we
have that §, satisfies the LDP in ) when equipped with the topology of
uniform convergence on compact intervals. To strengthen this to the topol-
ogy induced by the norm || - ||, we appeal again to the inverse contraction
principle, by which it suffices to prove exponential tightness in the space

For each t, denote by C?[0,t] the projection of C%(R;) onto the interval
[0,t], equipped with the uniform topology, and by ¢[0,1], for ¢ € C¢(R4),
the restriction of ¢ to the interval [0,]. Goodness of the rate function in
(H1) implies that the sequence $,[0, 1] is exponentially tight in the uniform
topology on .A%[0, 1]. In other words, for each o > 0, there exists a compact
set Ko in A%[0,1] such that

lim sup % log P(5,[0,1] ¢ K,) < —c.

It follows that for each ¢ > 0,

Ka(t):= {$ € CU[0,1] : {5+ ¢(s1)} € Ko}



is compact in C%[0,1], and for each 0 < € < a,

lim sup %logP U{5a0,1] ¢ Ka(t)} < 1imnsup;1;10gp U{5ne[0,1] ¢ Ka(1)}

t>1 t>1
1 _
< limsup — log Z e~ (amek
n n k>n
< —a+e

Since € is arbitrary we have, for each a > 0,

lim sup llogP U{S‘n[O,t] ¢ Ko(t)} < —a. (10)
no t>1

For a,t > 0, set
2 2
«a t<a
da(t) = { t-—1/2 t > a2
and consider the sets

D(,:ﬂ{qsw: &)

ot < du(t), for all t, ¢[0,t] € K,(t) for all t > 1}.
j

The exponential tightness of S, in (,]| - |l.) will be established by the
following two lemmas.

Lemma 1 For each o > 0, Dy is compact in (Y, || - ||..)-

Proof. Let ¢, be a sequence in D,. By Tychonoff’s theorem, the set
Ni>1K4(t) is compact in Y when equipped with the topology of uniform
convergence on compact intervals, so there exists a subsequence n(k) such
that ¢ converges to some ¢ € Ny51K,(t) in this topology. It follows that,
for each T' > 0, and for each j,

S )
14t 1+t

= 0.

lim sup
k—oo ¢<T

Note that this implies, for each ¢t and 7,

2O < au(o),




and so ¢ € D,. Now for each ¢ > 0 (sufficiently small), we have for k
sufficiently large,

A  #()

S® (0
lén) — dllu < sup - A BETEEEY,

tsl/fz 1+t 1+t
€+ 2d,(1/€%) = 3e.

t>1/e2

IN

The set D, is therefore sequentially compact, and hence compact, in (Y, || -
[lw)- 0

Lemma 2 If (H1) is satisfied, then

1 N
lim limsup —log P(S, ¢ Dy) = —oc.
n M

a— 00

Proof. First we have, by the contraction principle,
limsup P | J {15.(1)] > @?(1 + 1)} < — . inf TRj(®/T) < —a®R;(1).
n <7<

t<a?
(11)
Here we have used that fact that TA*(a?/7) and TA*(—a?/7) are both non-
increasing functions of 7, which can be checked using Jensen’s inequality.
We also have, for each 7 and some 6 > 0,

n—1 oo
PJ U {Sik+i/n)] > (14 k)da(k)}

P US> (14 0)da(2)} <
t>a? 1=0 k=[a?]
< n Z C(a)e—ﬁnkda(k)
k=[a?]
< nC(B)DenVer-1/2,

Here we have used (H1), Chebyshev’s inequality, and the inequality
Z e-p\/E < De—PVko—1/2
k> ko

It follows that

lim sup %logP U {1S2@)] > (1 4 t)da()} < -V a2 - 1/2. (12)

t>a?



The statement can now be obtained from (10), (11) and (12), via the prin-
ciple of the largest term. a

This concludes the proof of the theorem. a

4 How to apply the main result

Theorem 1 provides a new tool for looking at large deviations for queueing
systems in equilibrium. We will now illustrate how it is used by working
through the single-server queue example: suppose d = 1 and consider the
function f defined by (4). Recall that f(gn) is equal in distribution to the
normalised queue length at a single-server queue. If A’(0) = u, say, then a
corollary of Theorem 1 is that the LDP holds in the subspace
y“:{¢€y: lim jﬂ:u}.
t—o0

If 4 < 1, then the restriction of f to Y* is finite and continuous. To see this,
observe that if ||¢ — ¢'|l. < €, then there exists a o, independent of ¢, such
that | f(¢) — f(¢')| < 2toe. We can therefore apply the contraction principle
and Jensen’s inequality to get that the sequence Q/n = f(S,) satisfies the
LDP in R4 with rate function given by

1@ = int{ ["A(@)s: supla(®) - et] = o}

= g{)inf {/OT A*(d)ds : @(1) —er = q}
= iI;I:) TA™(c+ q/T).

This fact has previously been demonstrated by several authors [2, 9, 10,
12], under similar conditions. The i.i.d. case is due to Cramér [4] and
Borovkov [1]. The advantage of the above approach is that the existence
of an LDP is established by continuity which, using the above topology, is
quite accessible, and the rate function is easier to compute.

The main result in this paper, combined with the general approach we have
discussed, is quite widely applicable. It is ideally suited to problems where
reflection mappings exist. It has been used, for example, to obtain compre-
hensive equilibrium large deviations results for a multiclass FIFO queue [16]

10



and can also be applied to systems with dedicated buffers [15, 17] (the latter
corresponds to the random walk in a quadrant, and is the subject of many
recent papers).
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