
Applying Military Grade Security to the Internet Proceedings JENC8 Dalton, Griffin

711-1 (Session VII-1, 1st paper)

Applying Military Grade Security to the Internet

C. I. Dalton <cid@hplb.hpl.hp.com>

J. F. Griffin <jfg@hplb.hpl.hp.com>

Abstract

The explosive growth witnessed in the Internet
over the last few years has encouraged companies to
connect to it and to offer services to their customers
over it. Concerns about security are holding them
back from all but the most restrictive connectivity.

This paper explores the use of a military
development, the Compartmented Mode
Workstation, in a commercial setting, as a platform
that is secure enough to implement services that are
accessed over the Internet. Two applications have
been investigated in detail, a firewalled Domain
Name System and a World Wide Web service with
enhanced authentication. Finally, there is
discussion of how other Internet-based services
might benefit from the application of CMW

technology.

This work was carried out as part of the E2S
project in the European IVth Framework
Programme, IT RTD Project No. 20.563.

I. Introduction

The business community has not been slow in
recognising the potentially vast commercial
opportunities created by the remarkable growth in
the Internet. Further, many businesses view Internet
based e-commerce as critical to their long term
survival. The fundamentally insecure nature of the
Internet is, however, proving to be a limiting factor
in allowing the maximum exploitation of these new
found electronic markets.

Over the last three decades, military agencies
have spent considerable amounts of funding on
research and development of computer security,
ever anxious to find ways of guaranteeing secure
electronic communication across their own private
networks. With the current desperate commercial
need for network security, it would seem obvious to
look at ways of applying the military generated
technology in the Internet arena.

In this paper we present the results of our
investigation into the use of one particular military

development, Compartmented Mode Workstation
(CMW)[1], in a role as an application gateway
situated between internal systems and the Internet.
We describe scenarios where use of CMW

technology in this role can be advantagous, creating
a firewalled Domain Name System service and
providing enhanced authentication of World Wide
Web services. We end with a discussion of how
other Internet based services might benefit from the
application of this technology.

II. The Compartmented Mode
Workstation

The Compartmented Mode Workstation was
originally developed for military and government
use according to the CMWEC criteria[2] for
evaluating trusted systems. The CMW class is an
entirely separate but related set of criteria to the
more familiar Orange Book criteria[3]. In Orange
Book terms, CMW has all of the B1 level security
features, and includes a number of B2 and B3
features. A number of the CMW features are relevant
to Internet firewalls/application gateways, in
particular, mandatory access control (MAC);
discretionary access control (DAC); privileges;
command authorizations; audit.

The combination of these security features
makes CMW especially suitable as an application
gateway. Some features make it easier to administer
and maintain the gateway machine in a secure state
and to detect attempts at attack: the detailed
auditing, the command authorizations allowing
separation of duty and retirement of the root
account, and the trusted execution path combating
Trojan horses. Other features make it possible to
build and run applications securely: MAC and
privileges in particular. This section explains these
security features; the remainder of this paper
concentrates on the use of these features to develop
applications to run securely on CMW while providing
access from the Internet to sensitive resources and
information.

Internal Accession Date Only

Applying Military Grade Security to the Internet Proceedings JENC8 Dalton, Griffin

711-2 (Session VII-1, 1st paper)

II.A Mandatory Access Control

Mandatory access controls are enforced
consistently by the operating system - users cannot
choose which information will be regulated. On
CMW all information has associated with it a
sensitivity label. The sensitivity label comprises a
'classification' and a number of 'compartments'. The
operating system labels files, processes and network
connections. In general, to have read access to some
data, a process must have a sensitivity label which
'dominates' the label of the data. A sensitivity label
is said to dominate another when its classification is
higher or equal to the other's classification, and
when it includes all compartments included in the
other label. For write access, a process's label must
exactly equal the data's label.

In practice, classification is generally used to
indicate how secret or sensitive data is.
Compartments, however, are often used to partition
data so that access to separate sets of data is given to
different groups of users, e.g., members of different
departments in a company. The configuration
shown in figure 1 below uses compartments to
distinguish between data and resources accessible
from the Internet, and those accessible from a
company's internal LAN.

CMW supports MAXSIX trusted networking[4].
When communicating with hosts that are not trusted
or do not support labelling, the system automatically
attaches sensitivity labels to all packets arriving
from or sent to the remote host. The label can be
applied according to which interface card the
packets arrived on or the Internet Protocol address
of the remote host. This combines with the MAC

features, so the operating system prevents the
remote host communicating with processes at other
sensitivity levels and accessing inappropriate
information.

II.B Discretionary Access Control

CMW has discretionary access controls on similar
lines to most Unix systems, including read-write-
execute protection based on user and group id's and
access control lists. The work described here
concentrates on the use of mandatory controls;
discretionary controls are less relevant. In
particular, the DAC features seem less suitable
precisely because they are under the control of the
user.

II.C Privileges

On CMW, the root account's special powers are
replaced by a large set of individual privileges. The
relevant privilege is checked by the kernel whenever

a process tries to make a system call which could in
some way compromise security. There is a total of
approximately 50 different privileges, ranging from
fairly harmless to very dangerous.

Some of the most dangerous privileges are those
which allow a process to override the MAC, and
these must be carefully granted to allow selected
traffic to cross the firewall. For safety, we grant
privileges only to small relay programs which are
specially designed and carefully reviewed. These
'trusted' programs allow information to cross
compartment boundaries, so that large pre-existing
applications can be safely accessed from sensitivity
levels other than their own. The trusted programs
must follow the 'least privilege' principle: they raise
a privilege only while it is needed for a particular
operation and lower it again immediately afterwards.

II.D Command Authorizations

Command authorizations are the sisters to
privileges. They are given to users, whereas
privileges are granted to programs. Authorizations
allow control over which users are allowed to
invoke which trusted programs. By allocating
different sets of authorizations to different users, we
can achieve separation of duties. No single user has
absolute control of the system; rather there are a
number of administrative roles with complementary
powers.

II.E Audit

The trusted kernel audits system calls, and
trusted applications can audit their own actions
using a standard auditing subsystem interface. This
auditing cannot be overridden without special
privilege. It will normally be configured to log any
access denial or insufficient privilege for an
attempted operation. Trusted programs can log their
actions directly in an easily understood form, so an
administrator can track any suspicious behaviour
involving overriding MAC without having to
decipher long sequences of system calls.

II.F An Example Configuration

SYSTEM

Internet

Local Area Network

CMW HOST

SYSTEM INSIDE OUTSIDE

SYSTEM
OUTSIDE

SYSTEM
INSIDE

Figure 1: Simple CMW configuration

Figure 1 shows the permitted flows of
information in a simple configuration. In this

Applying Military Grade Security to the Internet Proceedings JENC8 Dalton, Griffin

711-3 (Session VII-1, 1st paper)

example, there is a single classification level,
SYSTEM, and two compartments, INSIDE and
OUTSIDE. On such a system, a process labeled
SYSTEM OUTSIDE would have read-write access to
information labeled SYSTEM OUTSIDE, read-only
access to information labeled SYSTEM and would
have no access to any other information on the
system. A process at SYSTEM INSIDE would have
read-write access to an entirely separate set of
information labeled SYSTEM INSIDE and read-only
access to the information labeled SYSTEM.

As shown in the figure, this configuration can be
used for a firewall host with two network interface
cards, one connected to the external Internet and the
other connected to an internal local area network
(LAN). The MAXSIX networking is configured such
that packets from the Internet are labeled SYSTEM

OUTSIDE and packets from the internal LAN are
labeled SYSTEM INSIDE. In this configuration, a
connection from the Internet can communicate only
with processes labeled SYSTEM OUTSIDE. Even if an
attacker from the Internet were to gain access to a
shell on the CMW machine, he could not modify files
labeled SYSTEM, and could not access files or
services labeled SYSTEM INSIDE.

III. The Domain Name System

One of the most fundamental components of the
Internet infrastructure is the Domain Name System
(DNS)[5,6]. DNS provides a mapping between host
names and numerical Internet Protocol addresses.
Although essentially only a user level service,
without it much of what is carried out on the Internet
would be impossible.

Whilst DNS is a vital service, the security
problems posed by using DNS are numerous[7,8].
The main risk surrounds the amount of local
information that the DNS can make public. Allowing
access to a site's hostnames opens up the potential
for attacks where name-based authentication, such
as .rhosts files, is in use. It also provides a lucrative
source of inside information for the social
engineering type of attack. Finally, if local
machines and domains are named after company
projects, which is common, then the availability of
this information to competitors via the DNS is
something that an organization may want to
block[9].

In light of these risks, many sites choose to
operate a firewalled split DNS environment. A
server in front of the firewall provides a minimal
subset of the DNS records for the zone. Generally,
only records essential to achieving successful
communication with external systems are published.

Example records would be MX records for mail
routing and address records for local services that
can be accessed externally, such as World Wide
Web servers. Queries from the Internet only have
access to this small set of data. Behind the firewall,
another DNS server is run. This server contains all
the data for the zone, thus allowing internal clients
access to all the local host information.

Whilst a firewalled solution such as this succeeds
in providing the required level of information
hiding, it poses a further problem of how to allow
internal clients the ability to resolve external
addresses. A typical solution to this revolves around
the use of two hosts and an internal packet filter
between them[10]. By using CMW technology,
however, the same protection from DNS attacks can
be achieved with only a single host and without the
need for complicated internal packet filtering. The
use of a CMW host as a platform for a DNS service
also protects against a name service configuration
attack[11].

III.A A CMW-based DNS firewall solution

The following discussion surrounds the simple
network architecture and CMW configuration of
figure 11. The aim of the CMW-based DNS service is
to provide different DNS information to querying
clients depending upon whether the query originated
from the external network or the internal network.
External clients should have access only to DNS

records stored at SYSTEM OUTSIDE. Internal clients
should have access to records stored at SYSTEM

INSIDE. Additionally, the internal querying clients
should be allowed to access to DNS information from
name servers on the external network. External
clients should not be able to access internal DNS

information.

To provide this service a separate non-privileged
name service daemon is run for each sensitivity
level packets may be received at. In our simple
example there are two name service daemons
running, one at level SYSTEM OUTSIDE and the other
at level SYSTEM INSIDE (figure 2). The two name
service daemons are each authoritative for the same
zone. However, since they are separate processes,
they can contain different zone data. The name
service daemon running at the level SYSTEM

OUTSIDE has the minimal subset of DNS records,
consisting of only those necessary for external
systems to locate locally provided public services
such as World Wide Web servers and mail
gateways. Conversely, the name service daemon

1
 The ideas presented have been extended to more

complicated configurations.

Applying Military Grade Security to the Internet Proceedings JENC8 Dalton, Griffin

711-4 (Session VII-1, 1st paper)

running at the SYSTEM INSIDE level holds a full set of
DNS data for that zone. Internal querying clients
therefore have access to all the DNS records for their
zone but external clients have a much more limited
view.

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

Daemon

Internet

DNS queries

SYSTEM INSIDE OUTSIDE

CMW HOST

 OUTSIDE INSIDE

SYSTEM

Local Area Network

Untrusted Untrusted
Name service Name service

Daemon

Figure 2: CMW multilevel DNS configuration

On CMW, network daemons without privilege
can only listen for connections at one particular
sensitivity level. There is also a restriction that only
one process can listen on a particular port even if
several processes at different sensitivity levels wish
to. The approach taken here to provide a DNS

service on the CMW to both the external and internal
networks on the same standard DNS port(53)
involves a small trusted front end wrapper daemon.
This daemon has the privilege to allow it to listen
for network connections at more than one sensitivity
level, specifically SYSTEM OUTSIDE and SYSTEM

INSIDE. The alternative would require DNS client
software on either the external or internal networks
to contact the DNS service at a port other than the
standard one or to make the whole of the name
server code trusted. Whilst adoption of the principle
of least privilege under CMW helps, it was thought
wise to still keep trusted programs as small as
possible to help guard against exploitation of
program bugs by an attacker.

When a DNS packet is received, it is simply
forwarded by the front end daemon to the particular
non-privileged name service daemon running at the
sensitivity level of the incoming packet. The trusted
front end daemon has the privilege to change its
sensitivity level so that it can talk to processes
running at a different level to itself. The non-
privileged name service daemon is responsible for
doing the actual resolving of the query. It is
authoritative for the DNS zone formed by the local
area network. Any communication it wishes to
carry out on the network, such as contacting other
name servers, must be proxied through the trusted
front end wrapper daemon.

The front end wrapper daemon has also been
trusted with the ability to selectively change its
sensitivity level when forwarding queries on behalf
of the untrusted name server daemons. This
effectively allows the non-priviliged name servers to
query other name servers on different networks to

their own but always under the arbitration of the
front end daemon.

In our simple example, the front end daemon
would be configured to proxy packets for the
SYSTEM OUTSIDE name service daemon over the
SYSTEM OUTSIDE network only and to proxy packets
at the request of the SYSTEM INSIDE name service
daemon over either the SYSTEM INSIDE or SYSTEM

OUTSIDE networks. This allows the internal name
server to query other non-local name servers out on
the Internet in order to resolve an external address
for an internal client but blocks external clients from
accessing the internal name servers.

III.B Implementation Details

III.B.1 The trusted front end wrapper
daemon

The main body of the front end daemon
(MLNAMED) is implemented as a continuous loop. It
sits and waits for incoming DNS queries (both TCP

and UDP) and for answers sent back from the
untrusted name service daemons that require
forwarding over the network to the original querying
clients.

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

DNS client(Internet)

tcp &udp
queries

DNS server (Internet)
external
proxy
agent

DNS server(lan)external
proxy
agent
(privileged)

udp queries
& answers/
tcp socket
descriptors

direct tcp
connectiom

NAMED

zone data
&direct

tcp
connection

SYSTEM INSIDESYSTEM OUTSIDE

SYSTEM

MLNAMED

SYSTEM INSIDE OUTSIDE

unix
domain
socket

unix

socket
domain

NAMED
&

zone data

DNS client(lan)

Figure 3: Detailed MLNAMED / NAMED architecture

For UDP queries, MLNAMED adds the hostname
and port number of the querying client to the DNS

query packet and passes it via a Unix domain socket
to the name service daemon running at the incoming
query level. Answers to the query found by the
name service daemon are sent back down the same
Unix domain socket to MLNAMED which then sends
them on to the originating client.

In the case of TCP queries, after accepting the
connection, MLNAMED passes the socket descriptor
to the name service daemon at the incoming query
level, again over a Unix domain socket. The name
service daemon, because communication is required
at only at one level, talks directly with the query TCP

Applying Military Grade Security to the Internet Proceedings JENC8 Dalton, Griffin

711-5 (Session VII-1, 1st paper)

client from then on. MLNAMED takes no further part
in the process.

Figure 3 illustrates the structure of the CMW-
based DNS in detail. The selective cross-
compartment forwarding by MLNAMED is
implemented via so called external proxy agents. At
start up, MLNAMED spawns an external proxy agent
for each of the network levels on the machine. The
external proxy agent for a particular sensitivity level
is marked as privileged or non-priviliged depending
upon the configuration options provided to
MLNAMED . These children handle the
communication between the untrusted name service
daemons and other, non-local, name service
daemons. When an untrusted name service daemon
needs to query a non-local name server in order to
resolve a client query, it sends a query packet via
another Unix domain socket to the external proxy
agent at its own level. The external proxy agent
checks which network level the packet would need
to go out at to reach the non-local name server. If
the level is the same as its own then it simply sends
the packet out over the network, and passes any
replies it receives back to the untrusted name service
daemon. If, however, the level is different and the
external proxy agent was marked privileged when it
was spawned, the external proxy agent changes to
the required level and sends out the query packet.
Otherwise the name server query fails.

III.B.2 The non-privileged name service
daemons

The non-privileged name service daemons are
slightly modified versions of the standard Unix
based BIND

2 NAMED servers[7]. They have been
changed to listen and communicate over Unix
domain sockets only, instead of directly on a
network port. One Unix domain socket is used for
receiving queries proxied via from MLNAMED and
sending answers back, another socket is used for
communication with other non-local name servers
via the external proxy agent.

III.C Future

The deployment of IPv6 over the coming few
years, and the application of digital signing to DNS

records, will help make the use of DNS less of a
security threat. However, the need for information
hiding in the use of DNS is likely to remain.

2 BIND4.9.3-beta24

IV. Secure User Sessions for WWW
Applications

IV.A Background

The Authorization Facility described here was
designed originally for a demonstrator being built by
Hewlett-Packard's Customer Support Organization.
Their system was to provide confidential support
information to a group of partner firms over the
Web. They wanted to authenticate their users and to
initiate a secure session which could be tracked by
their application. A user who was idle for more than
10 minutes would have to enter name and password
again before continuing.

The application was implemented on the HP
Virtual Vault platform[12]. Virtual Vault runs on
CMW configured with two compartments, OUTSIDE

and INSIDE, as described in the previous section.
The web server runs at level SYSTEM OUTSIDE, so it
can accept connections from the Internet. HTML

documents are labelled at SYSTEM, so they can be
read but not modified by the web server. Sensitive
applications run at level SYSTEM INSIDE, so they and
the data they manipulate cannot be accessed directly
by the web server or by an attacker connecting
over the Internet. The applications are invoked
through the CGI interface, by means of the Trusted
Gateway Agent (TGA), a privileged program which
invokes the applications on behalf of the
unprivileged web server.

The Authorization Facility uses HTTP

cookies[13] to provide secure sessions. The user is
authenticated at the start of a session and sent an
unforgeable ticket, the session ID, in a cookie which
is attached to all subsequent requests from the user.
The user is forced to reauthenticate himself at
regular intervals or after a certain amount of idle
time, at the choice of the application server. SSL[14]
is used to provide condifentiality and integrity over
the communications link. This has been designed as
a general-purpose facility which can be applied to
any web application.

IV.B Design for CMW

On the Virtual Vault, the HTTP basic
authentication feature is turned off. It would require
password information to be accessible to the web
server, running at SYSTEM OUTSIDE. If an attacker
were to break in, he might be able to read this and
analyse it at his leisure. So all password information
must be stored at SYSTEM INSIDE, where he couldn't
access it. Neither can the web server, so there must
be a trusted daemon which has enough privileges to
do so.

Applying Military Grade Security to the Internet Proceedings JENC8 Dalton, Griffin

711-6 (Session VII-1, 1st paper)

Similarly, we do not trust software running at
SYSTEM OUTSIDE to make or enforce authorization
decisions regarding CGI applications running at
SYSTEM INSIDE. Authorization must be carried out
by software running at SYSTEM INSIDE, so it cannot
be side-stepped by an attacker. Originally the
Authorization Facility was implemented using
functions integrated with the web server, and these
are still used to control access to HTML documents
stored at SYSTEM. Access to CGI programs is
controlled by software invoked by the TGA, and
running at SYSTEM INSIDE.

.html

CGI call

html access

SYSTEM OUTSIDE

SYSTEM INSIDE OUTSIDE

SYSTEM INSIDE

httpd

plugin

TGA CGI

CGI
wrap

user:
passwd

SYSTEM

sessiond

Figure 4: Configuration of Auth. Facility

Figure 4 shows the components involved in
servicing an authenticated request and their
sensitivity levels. Requests which invoke a CGI

program are dealt with as normal by HTTPD; it
invokes the TGA to have them executed. The TGA is
configured to call a CGI "wrapper" rather than the
original application CGI program. The wrapper
checks for a session cookie and asks SESSIOND to
validate the session ID. If the session is valid the
wrapper executes the original CGI program; if not, it
directs the client browser to authenticate the user.

Other URLs are checked using functions
integrated with HTTPD. On each non-CGI request,
HTTPD looks for a session cookie, makes a call to
SESSIOND and either continues with the request or
forces the user to be authenticated.

SESSIOND checks usernames and passwords,
generates session identifiers, answers queries on
sessions and applies the reauthentication policy. It
is the only piece of trusted software that had to be
added to the system. It has been given privileges to
change its sensitivity level so that it can accept
requests from the web server running at SYSTEM

OUTSIDE and read the password file stored at
SYSTEM INSIDE. It also has a privilege which allows
it to turn off logging of system calls. Instead it can
put its own entries in the system log files, which will
be more comprehensible to the security
administrator. SESSIOND needs to be privileged only
if it is being called directly by the web server. If it
is only being used to protect CGI programs, then it
can run entirely at SYSTEM INSIDE, and there is no
need to grant it any privileges at all, so there is one
less piece of trusted software on the system.

SESSIOND can be run at SYSTEM INSIDE or it can

have a compartment of its own. Running at SYSTEM

INSIDE is simple and involves no changes to the
sensitivity labels configured on the system. Giving
SESSIOND a compartment of its own is potentially
more secure and allows it to be accessed from
multiple compartments in a more general CMW

configuration. It could also run on an entirely
separate machine, which would be normal for an
authentication server in a non-CMW environment,
but in this case it would require the addition of
secure communication between the application
server and the authentication server.

IV.C Attack Scenarios

Here are some types of attack and what
protection the Authorization Facility running on
CMW gives against them. In each case it is assumed
that the attacker is connecting from the Internet, and
so is at sensitivity level SYSTEM OUTSIDE. Should
any one of these attacks occur, here is what would
happen.

1. Attacker breaks into server and has access to
a shell.

Without special privileges to override the
mandatory access controls, the attacker can read
HTML documents and general system files, but
cannot modify them. Similarly, the MAC ensures he
has no access to CGI programs or the sensitive data
they manipulate.

2. Attacker finds a bug in HTTPD and can make
it execute arbitrary code.

The attacker can access any HTML document and
run any functions integrated in the web server, but
without a valid session ID, any attempt to execute a
CGI program will be rejected.

3. Attacker breaks HTTPD, intercepts a valid
request and modifies it for his own purposes.

This is a more difficult attack than the previous
one. It involves installing code in the web server
process which does not stop it functioning, listens to
requests going by, and modifies them. Such an
attack could succeed.

The problem here is that HTTPD knows
everything the client browser knows, so the CGI

wrapper calling SESSIOND cannot distinguish
between them. To avoid this attack, a secure
channel must be established all the way from the
client browser to the INSIDE compartment. There
must be a secret known only to the client, or shared
between the client and software running at SYSTEM

INSIDE. Also all requests must be signed to make
sure they have not been modified by HTTPD. So
even if the OUTSIDE compartment or software

Applying Military Grade Security to the Internet Proceedings JENC8 Dalton, Griffin

711-7 (Session VII-1, 1st paper)

running within it were interfered with, no
modification or forgery of requests could be
accomplished. This is not possible with a vanilla
Web browser and HTML. To achieve this we would
have to build a client plug-in or investigate use of
Java.

V. Future work

V.A Accessing internal systems, multiple
independent applications

The principles described above can be applied to
build more complex configurations, where the CMW

platform is used to run multiple independent
applications, and applications which directly access
an organization's internal legacy systems.

FOO.COM

back
end 1

back
end 2

back
end 3

INSIDE MIDDLE 1

processingrelay

MIDDLE 2

MIDDLE 3

OUTSIDE

client 1

BAR.EDU

client 2,3

VISIBLE.ACME.COM

server
facing

external-

relay

relay processing

processing

Figure 5: Accessing internal systems

Figure 5 shows this type of configuration. By
running each application in a separate compartment,
it is possible to ensure that even if one application is
compromised, it cannot be used to attack or interfere
with the other applications running on the same
machine. Where an application has to access
systems on the internal LAN, it is not given direct
access, but has to talk to them through a trusted
relay. The relay can limit which internal machines
the application communicates with, and can contain
monitoring and logging facilities that ensure only
appropriate requests are made, and that check for
suspicious activity. This might be particularly
attractive to an organization's security audit
department, who would gain concrete assurance of
behaviour to complement the detailed reviews
needed for such applications.

V.B Management tools

On configurations running multiple applications,
there will be a need for tools which allow one
person to administer specific applications only, and
another to manage the underlying system. Practical
administration tools must include privileged
software that overrides mandatory access controls,
without turning into sources of vulnerability. They

must not be too big and unwieldy, and must adhere
to principle of least privilege. This can be
accomplished by defining new roles as necessary
and associating appropriate command authorizations
with them. In comparison with traditional firewall
solutions, the organization will have a smaller
number of machines to administer, and will have
access to them from the internal network, and will
gain the security advantages of having fewer
different configurations to maintain in a secure state.

VI. Conclusion

Our investigations have shown that CMW

technology is a suitably secure platform for hosting
applications which a company wants to be
accessible from the external Internet yet which also
communicate with the company's internal machines.
The mandatory access controls provide boundaries
enforced by the kernel to protect systems and
services from attack and sensitive information from
disclosure; the principle of least privilege allows us
to concentrate the functionality which crosses our
firewall in a small number of trusted programs.

We have found it relatively straightforward to
get new and existing applications to run under the
CMW operating system. It appears, in general, that
in situations where previously two machines were
needed to create an effective security barrier, we can
use CMW technology to reduce the need to that of a
single machine. The advantages of this are twofold.
Firstly, where network performance is an issue, a
single CMW machine forms less of a bottleneck.
Secondly, the burden of system administration is
reduced by having only a single machine.

The services described above have been
implemented in an experimental form at Hewlett-
Packard Laboratories, Bristol as part of the E2S

European collaborative. They have been released to
the CMW product division of Hewlett-Packard for
consideration as included features of a future version
of their products.

Our work on investigating the use of CMW

technology continues. Areas of current interest
include running multiple applications on a single
CMW machine, controlled access to internal legacy
software, and, especially, management tools for the
CMW platform.

VII. References

[1] Millen, J.K. and Bodeau, D.J., “A Dual-Label
Model for the Compartmented Mode
Workstation”, MITRE Paper M90-51, The
MITRE Corporation, 1990.

Applying Military Grade Security to the Internet Proceedings JENC8 Dalton, Griffin

711-8 (Session VII-1, 1st paper)

[2] National Computer Security Center,
“Department of Defense Trusted Computer
System Evaluation Criteria”, DOD Standard
5200.28-STD, 1985.

[3] Defense Intelligence Agency,
“Compartmented Mode Workstation
Evaluation Criteria”, Report DDS-2600-6243-
91, 1991.

[4] Hewlett-Packard Co., “HP-UX CMW MaxSix
Administrator's Guide”, 1995.

[5] Mockapetris, P.V., “Domain Names: Concepts
and Facilities”, RFC 1034, 1987.

[6] Mockapetris, P.V., “Domain Names:
Implementation and Specification”, RFC 1035,
1987.

[7] Vixie, P., “DNS and BIND Security Issues”,
5th Usenix Security Symposium, 1995.

[8] Schuba, C.L. and Spafford, E.H., “Addressing
Weaknesses in the Domain Name System
Protocol”, submitted to the twenty-second
Telecomunications Policy Research
Conference, 1994.

[9] Chapman, D.B. and Zwicky, E.D., “Building
Internet Firewalls” pp. 278-296, O'Reilly and
Associates, Inc., 1995.

[10] Cheswick, W.R. and Bellovin, S.M.,
“Firewalls and Internet Security”, pp. 137-208,
Addison Wesley, 1994.

[11] Garfinkel, S. and Spafford G., “Practical Unix
and Internet Security”, 2nd Edition, pp. 505-
506, O'Reilly and Associates, Inc., 1996

[12] Hewlett-Packard Co., “Virtual Vault
Transaction Server Concepts Guide”, 1996.

 [13] Netscape Communications Corporation,
Persistent Client State - HTTP Cookies,
http://home.netscape.com/newsref/std/cookie_s
pec.html, 1997.

[14] Freier, A.O., Karlton, P. and Kocher, P.C.,
“The SSL Protocol, Version 3.0”,
http://home.netscape.com/eng/ssl3/ssl-
toc.html, 1996.

Author Information

Jonathan Griffin joined Hewlett-Packard Labs.
in 1985 after receiving a Master's degree in
Electrical Engineering. Since 1994 he has been
working in the area of secure electronic commerce
and the World Wide Web. Previously he did
research in network management and distributed
systems security.

After graduating in Electronic Engineering at
Imperial College, London, Christopher Dalton
worked as programmer for Alfred McAlpine Plc and
Lucas Aerospace Engine Systems before joining the
University of Wales, Bangor in 1993 as a system
programmer and manager of the central Unix
systems. In 1996 he joined Hewlett-Packard Labs.
and is currently working in the area of secure
electronic commerce.

