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This paper presents a new simple method for achieving
feature correspondence across a pair of images which
requires no calibration information and draws from the
method proposed by Scott and Longuet Higgins [8].
Despite the well-known combinatorial complexity of
the problem, this work shows that an acceptably good
solution can be obtained directly by singular value
decomposition of an appropriate image-based
correspondence strength matrix.  The paper includes
several experiments and discusses the method and
draws comparisons with a related relaxation-based
method by [14].  Given its tremendous performance /
complexity figure, the method is particularly suitable
for research purposes where an off the shelf but reliable
feature correspondence is needed.  For this reason, a
succinct MATLAB implementation of the method is
included and a C version will be soon available on the
WEB.
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0.1 Introduction

The problem of feature correspondence across two or more images is well known

to be of crucial importance for many images analysis tasks. Reliable inter-image

feature correspondence { and its closely related problem of image registration

{ is needed, just to cite a few, by structure-from-stereo approaches, motion

analysis and tracking, image mosaicing, object pose and self-motion estimation.

Recently, there has been a boost of interest in the correspondence estimation

problem due to the development of the Fundamental Matrix theory [3] and its

tremendous practical implications in the analysis of uncalibrated stereo pairs

and image sequences. If the fundamental matrix is known, reliable and fast

feature correspondence can be obtained in general situations. However, in order

for the fundamental matrix to be computed one needs a good initial set of

feature correspondences (either lines, points or both [11]).

There are two schools of thought for solving the feature correspondence

problem. In the �rst one, features are detected in one image and then corre-

spondences for each of them are sought for in the second image, generally via

multi-scale techniques. In the second approach, which the present work ad-

dresses, features are detected independently in both images and then matched

up usually by relaxation (see, e.g., the classic [6]). Incidentally, recent state-of-

the-art work on the fundamental matrix estimation [14, 11] follows this latter

avenue for achieving initial correspondences.

This paper proposes an new neat and simple algorithm for achieving feature

correspondence across pairs of images. Despite the well-known combinatorial

complexity of the problem, this work shows that an acceptably good solutions

can be obtained directly by singular value decomposition of an appropriate

correspondence strength matrix.

The approach is largely inspired by the clever algorithm proposed by Scott

and Longuet-Higgins for �nding corresponding features in planar point patterns

[8], which has been inexplicably overlooked in this area. This paper shows, for

the �rst time, the viability of their approach for general stereo correspondence

and propose a new mixed geometric and intensity-based correspondence strength

function. Extensive experimental evidence is presented and discussed and some

future work is proposed.

0.2 The correspondence problem

Due to its inherent combinatorial complexity and ill-posedness, feature corre-

spondence is one of the hardest low-level image analysis tasks. The problem

can be stated as �nding pairs of features in two (or more) perspective views of

a scene such that each pair correspond to the same scene point.

Early works in this �eld include illustrious works notably by Ullman [12] and

Marr and Poggio [4]. In particular, Ullman put forward his minimal mapping
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theory to implement three intuitive local criteria for establishing good global

mapping that are: the principle of similarity, principle of proximity (other things

being equal, choose the closest) and the principle of exclusion (only one-to-one

matchings are allowed). As Marr pointed out, by simple local interactions a

good global mapping e�ect can often be achieved.

These early works were inspired by psychology and neurophysiology and

indeed provided some new insight into our visual system too. Since then, a vast

amount of work has been done on the subject (for a review see [1], Ch. 6).

Most methods have a sometime complicate algorithmic formulation. For

tasks such as estimating the fundamental matrix { where only a few tens of

initial matches are needed1{ leaner methods would perhaps be more suitable.

0.3 The Scott and Longuet-Higgins algorithm

In a landmark paper [8], Scott and Longuet-Higgins proposed a neat, direct way

of associating features of two arbitrary patterns. The algorithm exploits some

properties of the singular value decomposition (SVD) to satisfy both the exclu-

sion and proximity principles set forth by Ullman. A remarkable feature of the

algorithm is its straightforward implementation founded on a well-conditioned

eigenvector solution which involves no explicit iterations2.

In the following, a brief description of the algorithm is given along with a

simple experiment that illustrate its intrinsic usefulness. The reader is redirected

to the original paper [8] for further theoretical and philosophical insights.

Let I and J be two images, containing m features Ii (i = 1 : : :m) and

n features Jj (j = 1 : : : n), respectively, which we want to put in one-to-one

correspondence. The algorithms consists of three stages.

1. Build a proximity matrix G of the two sets of features where each element

Gij is Gaussian-weighted distance between two features Ii and Jj :

Gij = e�r
2

ij=2�
2

i = 1 : : :m; j = 1 : : : n (1)

where rij = kIi � Jjk is their Euclidean distance if we regard them as

lying on the same plane. G is positive de�nite and a Gij decreases mono-

tonically from 1 to 0 with distance. The parameter � controls the degree

of interaction between the two sets of features: a small value of � enforces

local interactions, while a larger value permits more global interactions.

2. Perform the singular value decomposition (SVD) of G 2Mm;n:

G = TDU
T :

1Accurate, dense correspondence can be more e�ciently determined later by exploiting the

epipolar constraint.
2Of course, numerical implementations of the SVD do actually require inner iterations.
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where T 2 Mm and U 2 Mn are orthogonal matrices and the diagonal

matrixD 2Mm;n contains the (positive) singular values along its diagonal

elements Dii in descending numerical order. If m < n, only the �rst m

columns of U have any signi�cance [8].

3. ConvertD to a new matrix E obtained by replacing every diagonal element

Dii with 1 and then compute the product

P = TEU
T :

This new matrix P 2 Mm;n has the same shape as the proximity matrix

G and has the interesting property of sort of \amplifying" good pairings

and \attenuating" bad ones: \if Pij is both the greatest element in its row

and the greatest element in its column, then we regard those two di�erent

features Ii and Jj as being in 1:1 correspondence with one another; if this

is not the case, it means that features Ii competes unsuccessfully with other

features for partnership with Jj" [8].

It is not di�cult now to �gure out that this apparently simple method em-

beds both the proximity and the exclusion principle: the former one is a con-

sequence of the nature of the proximity matrix and the latter arises from the

orthogonality of the matrix P. In fact \the fact that the squares of the elements

in each row of P must add up to 1 implies that a given feature Ii cannot be

strongly associated with more than one feature Jj . The mutual orthogonality of

the rows tends to keep di�erent features in the �rst image from becoming closely

associated with the same feature in the second image"[8]. Moreover, P is a ma-

trix which e�ectively produces a minimum squared distance mapping, since by

applying the algorithm the trace of PT
G is maximized [8].

Although not mentioned in the original paper, the algorithm is rooted into

the solution of the subspace rotation problem known as orthogonal Procrustes

problem. Foundations and proofs can be readily found in, for instance, [2].

As an example, the �gures above show the mapping found by this algorithm

for two hand-input patterns representing two letters \A" (circles and crosses)

scaled and translated; the overall mapping is extremely good and, as claimed,

the proximity principle is de�ed in favor of a more globally consistent mapping.
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Only interdistance considered!! Only correlation considered!!

Figure 1: LEFT: The SVD method applied with G as in Eqn. (1) leaves out

many points due to ambiguities cause by rogue points. RIGHT: The SVD

method applied with just point correlation yield non-sense results.

Scott an Longuet-Higgins show that the algorithm copes nicely with translation,

shearing and scaling deformations and with moderate rotations (as in our visual

system) and suggest criteria for the choice of the distance �.

To my best knowledge, thus far only two (similar) works appears to have used

the startling properties of this algorithm, namely [7] and [9], where the method

was applied to matching modes of variation of �nite element shapes, and in [5],

where applications were suggested in eigen-shape �tting. The following section

explains why the method as is does not fare as it could in real image matching

situations and proposes a simple but key improvement on the nature of the G

matrix.

0.4 Stereo matching by SVD

Let us now consider the case of real images pairs, and the problem of matching

across points of interest (e.g. corners). Actual point feature detectors are un-

stable and it is reasonable to expect that some points that appear in one image

do not show up in the other (rogue points).

Rogue points cause lots of ambiguous, equally good matching possibilities

in the space of pairings, and the sole proximity used to build G in Equation

(1) does not have enough \character" to discriminate amongst them. As a

consequence, only a handful of features are safely in one-to-one correspondence

with others (also pointed out in [8]).

Only a few experiments are needed to validate this claim. Figure 1-left shows

how only few corners (cf. with Figure 2) are found in 1:1 correspondence; a large

number of highly-correlated corners are left out because rogue points cannot be

told apart from good ones just from their spatial location. This behavior can be

summarized by saying that the Scott and Longuet-Higgins algorithm does not
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embed the feature similarity principle, so dear to most stereo correspondence

approaches.

Obviously, this behavior calls for the use of some local measurements to

quantify feature similarity, such as the normalized (cross) correlation between

gray level patches about the features.

If we represent twoW�W areas centered on features Ii and Ji as twoW�W
arrays of pixel intensities A and B, respectively, the normalized correlation is

de�ned as Cij =

P
W

u=1

P
W

v=1
(Auv�A)�(Buv�B)

W2
��(A)��(B)

where A (B) is the average and

�(A) (�(B)) the standard deviation of all the elements of A (B). Cij varies

from -1 for completely uncorrelated patches to 1 for identical patches.

One way of including this correlation information into the proximity matrix

is to transform the elements of G as follows:

Gij = [e�(Cij�1)
2=2
2 ] � e�r

2

ij=2�
2

(2)

where term is bracket is a gaussian-weighted function of the correlation Cij

in which 
 determines how quickly its values decreases with a diminishing Cij

(� = 0:4 throughout the paper).

This new correspondence strength can be seen as a correlation-weighted prox-

imity. It is easy to see that the elements of G still range from 0 to 1 and, as in

Equation (1), the closer and the more correlated two features Ii and Ji are, the

higher Gij is going to be.

This new correspondence strength now embodies similarity between features

and is therefore much more selective than just proximity as in Equation (1). In

some ways, by applying the algorithm with the said correlation-weighted G, we

obtain a minimum overall distance mapping still complying to the proximity

and uniqueness principles but under the constraint of similarity3.

Figure 2-left shows the matches obtained by this method for the same image

as of Figure 1-left. It can be seen that a considerably higher number of 1:1

matches has been found. In other examples (not shown here) many bad pairings

were also replaced by correct ones.

Next section discusses this experiment and others in further detail to show

the e�ectiveness of the method.

0.5 Some experimental results

Several experiments have been performed on image pairs of various size and

quality; some of the results are reported and discussed here.

The features were detected via the SUSAN corner detector [10]. In order for

the correlation not to be too a�ected by noise, images were Gaussian smoothed.

3If only the correlation information was used (i.e. Gij = e
�(Cij�1)2=2
2 the results would

be extremely poor, as shown in Figure 1-right, producing a curious \maximal sum of correla-

tion" mapping, which makes clearly no physical sense.
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Figure 2: SVD matching with correspondence strength as in Eqn. (2). Dispar-

ities are overlaid onto the left image and matching corners onto the right one.

Notice how the method managed to �nd the correct correspondences in di�cult

areas such as in the back of the stapler. (Images courtesy of INRIA)

The key parameter � in Equation (2) was set to 1/8 of the image width; more

about this later in the section.

It is extremely important to point out that in order to illustrate the per-

formance of the algorithm by itself, no further processing for �ltering out bad

matches has been applied. Most of the bad pairings that will be seen in the

examples could have been simply eliminated by any commonly used technique,

such as coherence of disparity.

Back to the �rst experiment, Figure 2-left shows the disparities overlaid

onto the �rst image and the corresponding corners on the second image (right);

this method for presenting results will be used throughout. Being related by

translation and rotation, this case involves non-uniform disparities but, as it can

be seen, the results are extremely good and numerous 1:1 pairings have been

found. It is encouraging to see how the method managed well to disentangle

itself in areas where there is a large number of close-by features. Notably, a

few good matches (about 10) have been missed out for some reasons such as

low-correlation or simply because there were two or more equally competing

alternatives.

Figure 3-left presents the case of a poor quality road scene, with a remark-

able expansion. It can be seen that although there are six mismatches, an

overall good mapping was obtained. Note that near the focus of expansion the

disparities cannot be very accurate working at pixel resolution.

Figure 3-middle shows an image pair related mainly by translation. This case

has some potential problems because of the clusters of features concentrated in

the right-hand side of the image (e.g. the car wheel). The method has however

performed exceedingly well, leaving just one grossly misjudged pairing.

Finally, Figure 3-right presents another case that has prevalent translation.

Here too there could be some di�culties due to the high displacement and
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Figure 3: Some more test images pairs. Disparities are overlaid onto the top

images and matching corners onto the bottom ones. Comments in Section 0.5.

the highly repetitive and seamless features of the window and the tree leaves,

respectively. Although 7 pairings are grossly wrong, the overwhelming majority

is correct and would easily allow a robust next stage to operate.

The choice of the parameter �, thanks to the better discriminating corre-

spondence strength function, is fairly easy. The table in Figure 4-right gives

the number of mismatches (found by visual inspection) for the pairs in Figure

3-middle and left with respect to changes in � expressed as fraction of the image

width.

It is clear that � can vary within a relative large range without a�ecting

performance too much. Having said this, in [8] it is suggested that the value of �

should re
ect the average displacement of points; supportingly, our experiments

also show that the best results are obtained when � roughly matches the actual

image displacement.

0.6 Comparison with a recent relaxation method

Recently a features matching method has been presented by Zhang's et al. in

[14] which is based on maximizing the sum of a measure of support over the

possible feature pairings. The method (as it can be tried out on their on-line

demo) manages to disentangle itself in quite di�cult situations and produces

matches good enough to allow an easy recovery of the epipolar geometry.

We have adventured in re-implementing Zhang's et al. method and have
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performed some qualitative comparisons. Amazingly the performances of the

methods is remarkably similar both in the good and in the bad.

The explanation is simple. Their method relies upon a pairwise correspon-

dence strength that uses a local measure of support weighing the straight cor-

relation between candidate matches with a measure of \distortion" of distances

to neighboring matches; the underlying principle is that the relative distance

between neighboring sets of features should not change under a local a�ne

approximation of the transformation. The relaxation stage does nothing but

selecting matches with mutual maximal strength and that also show little ambi-

guity with other competing matches.

As explained in Section 0.4, these criteria are implicitly implemented in the

method proposed here, albeit in a decisively global fashion. The globality of the

proposed algorithm as opposed to the relative local-ness of Zhang's gives it a

relative speed disadvantage. However, although not mentioned in their papers,

a close look at the algorithm reveals that its complexity is O(nMK2), where n

is the number of features in one image, M is the average number of candidates

in the other image and K is the average number of neighbors (within a given

radius) of a features. As a matter of fact, M and (to some extent) K both grow

linearly with the number of overall features and so one should watch out before

declaring it O(n) (as it can be seen experimentally)!

One last thing to be said is that Zhang's method performs well when there

are many features sprinkled uniformly in the images in order to give support to

candidate matches. The method proposed here performs extremely well also in

sparse situations, which might be a clear advantage in multistage approaches

where just a few good features can be matched well in order to compute the

epipolar geometry, rather than using hordes of them.

0.7 Discussion

This paper has proposed a new e�ective method for performing features-based

stereo correspondence. We have seen that its quality lies not in its accuracy

but in a tremendous performance/complexity ratio, that makes it particularly

suitable as bootstrap for other more accurate methods.

Although the additional cost of the algorithm is only that of computing

the SVD of G 4, the computation time should not be overlooked. The SVD

is one of the stablest numerical matrix operations and its basic complexity is

O(m2n). This is not too bad for a stereo matching algorithm but for large

number of features can become impractical. In numbers, by the SVD routine

provided by the MATLAB package, on a HP9000/720 workstation it takes about

6s for n = m= 200 but just 0.2s for n = m= 50. A straightforward remedy

would be to zero out very small Gij that have no chances of becoming 1:1

4The overhead of feature detection and correlation computation are common to most

feature-based matching approaches.
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# mismatches

( �
img width) Fig.3 mid Fig.3 left

1/6 2 5

1/7 1 4

1/8 1 6

1/9 0 6

1/10 1 7

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Singular Value Decomposition Stereo Matching

%

% C=svdmatch(point_corr,point_dist,sigma,corr_th);

% point_corr: m x n matrix of feature correlations

% point_dist: m x n matrix of feature interdistance

% sigma: adjust point interaction (expected displacem.)

% corr_th: min acceptable correlation for a match

% C: Feature mapping matrix; C(i,j)=1 when 1:1 corresp.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function C=svdmatch(point_corr,point_dist,sigma,corr_th);

% Get number of features in both images

[m, n] = size(point_corr);

% Build correspondence strength matrix

G = exp(-((point_corr-1).^2)/(2*0.4^2)) .*

exp(-(point_dist).^2/(2*sigma^2));

% Perform SVD and extract orthogonal matrix P

[T,D,U] = svd(G);

D = diag(ones(min(n,m),1)); D(m,n)=0; % D is m x n

P = T*D*U';

% Find dominant of each line and column

[V, I] = max(P'); [V, J] = max(P);

% Initialize correspondence matrix C

C = zeros(m, n);

% Set a one-to-one correspondence between Ii and Jj

% only if P(i,j) is MAX of both row i and column j

% AND their correlation is above corr_th

for i=1:length(J)

if I(J(i))==i

if (point_corr(i,J(i))>corr_th)

C(i,J(i)) = 1;

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Figure 4: LEFT: Sensitivity of results to variations of �. RIGHT: MATLAB

code of the SVD stereo correspondence method proposed in this paper.

pairings in order to make the matrixG sparse and allow for optimized numerical

solutions. Intriguingly, due to its extreme neatness and regularity, the algorithm

could lends itself to real-time hardware implementations, thanks to some general

purpose, scalable SVD hardware engines such as those proposed for trajectory

control of robots [13]. Other more complex algorithms can hope for real-time

performance only by implementations on expensive parallel architectures.

Another interesting property of this algorithm is that it does not explicitly

require a speci�c correlation threshold for a feature pair to be accepted as what

matters is its relationship with others competing matches. In all the examples

shown in the previous section the correlation threshold was set to as low as 0.4,

whereas normally it is set to 0.7/0.8 (see e.g. [14]).

Arguably, the black-box nature of the algorithm may be seen as a limitation.

For instance, it is not possible to embed any non-pairwise constraint, such as

the disparity gradient or the geometric ordering constraint[6] . Some of these

problems could be bypassed, though. If, for instance, in a two-stage approach

a few de�nitely good matches are known beforehand, one could recover a very

coarse epipolar geometry and embed the deviation from epipolar lines in the

correspondence strength function in Equation (2) and then apply the algorithm

to all the other features.

Although some standard pruning method could be easily applied to cut down

rogue matches, other pair-wise similarity measures could be more interestingly
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tried out in place of (or in conjunction with) correlation in Equation (2). In
particular, multi-band correlation and measures of neighboring matches support
{ such as the strength of the match used in [14] { seem the most promising ones.

Lines are more stable features than corners and recently a tensor-based
method has been found for uniformly use line and points to estimate the epipo-
lar geometry (e.g., see [11]). A natural extension of the algorithm that should
be easy to implement, is to apply it to properly parameterized lines.

Finally, since it is possible that the algorithm will be used by other re-
searchers due to its simple implementation and reasonably good performance,
the commented MATLAB code is given in Figure 4.
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