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Abstract: In this paper a technique is described that
permils increased receiver tolerance to uncoordinated
CClI in a wireless LAN environment. The technique uses
supervised clustering to determine the signal states due
to ISI and a form of unsupervised Fuzzy clustering for
finding the signal states due to CCI. Using a decision
Sfeedback approach, it is shown that the receiver is
capable of operating in high levels of CCI, providing
usable error rates.

I Introduction

There are particular applications where communication in
a wireless LAN is confined to relatively short distances,
such that time dispersion from the propagation channel
tends to be low, and the received signal strength is
generally high. In such applications, the system error rate
performance is generally limited by Cochannel
Interference (CCI), which arises due to uncoordinated
users occupying the same bandwidth within, or near the
local vicinity. Since conventional demodulation and signal
detection is based on the interference being Gaussian
distributed its performance in this scenario is sub-
optimum.

There are two approaches for reducing the effect of CCL
The first is based on additional processing in the Medium
Access Control (MAC) to determine the level of CCI and
select an appropriate channel based on some metric,
usually the received signal strength of the CCI, or request
that other users in the immediate vicinity stop transmitting
while information is transferred between nodes. This
technique essentially employs conventional demodulation
and relies on the MAC to perform all processing and
decision making. The second approach, is to move the
responsibility further down the protocol stack to the
physical layer, where the receiver is expected to perform
CCI rejection. The benefit of the second approach is two
fold. Firstly, there is less overhead in terms of measuring
and reporting channel quality between layers, and
secondly, since the receiver can withstand higher degrees
of CCI there is a net increase in capacity since more users
can be accommodated in a given area.

In this paper we consider the second approach and
propose a receiver architecture based around the physical
layer of the recently standardised HIPERLAN (High
PERformance Radio LAN). The receiver is similar to that

described in [1] [2] and [3], where a decision feedback
structure is used to select a subset of signal states for
performing minimum distance detection. The signal states
are obtained using a three stage clustering algorithm. The
first stage uses supervised clustering on the 450 bit
HIPERLAN training sequence to partition the modulation
IST states. The number of states is minimised by exploiting
the geometrical symmetries in the signal space. In the
second stage, each ISI state is partitioned into two clusters
using unsupervised fuzzy clustering, which assigns a
degree of membership to each of the training vectors.
Finally the third stage of clustering determines the CCI
states by first defuzzifying the fuzzy partition matrix and
then performing fuzzy clustering on each row
independently. The CCI states are then obtained from the
final set of fuzzy partition matrices.

The performance of the proposed receiver is demonstrated
by means of computer simulation. A typical environment
is described, and it is shown that the proposed receiver is
capable of operating with a high degree of robustness,
providing usable error rates when compared to a

conventional approach.
IT Background

Consider the system block diagram shown in Fig.l,
included in the diagram is the standard HIPERLAN packet
structure for transmission of one data block [4]. The
output of the data source corresponds to a block encoded
and interleaved data frame vector of 496 bits. This is
subsequently applied to the packet precoder which takes
the data frame vector and applies selective bit inversion
and differential precoding. This pre-processing is
necessary in order to ensure a linear data mapping onto the
modulated carrier. The output vector from the precoder is
applied to the packet assembler which takes the 496 bit
precoded vector and places it at the end of a 450 bit
training sequence'. The output of the packet assembler is a
vector which is converted into a serial bit stream with a
composite packet length of 450+47%x496 bits at a
transmission rate of 23.5294Mb/s.

! Note, the low bit rate (LBR) part of the HIPERLAN data burst is not
included in the system model.
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Fig.1 System Block Diagram

This data stream is prefiltered with a three tap finite
impulse response Gaussian filter with a normalised
bandwidth of 0.3. The output of the prefilter is applied to
an MSK modulator which produces a phase trellis with a
modulation index of 0.5 and an envelope of constant
magnitude. Due to the linear mapping of the data by the
precoding, the output of the MSK modulator can be
mathematically approximated by its linear baseband
equivalent, which is given by

r(t) = }l;al-g(t—iT) (1)

where o; can be either £j or £/, T is the signaling
interval, g(1) represents the impulse response of the
modulation and i takes on all possible integer values.
When there is no ISI from the modulation prefiltering, the
GMSK signal can be considered as equivalent to Offset
Quadrature Phase Shift Keying (OQPSK), having four

distinct points in space (ij,il;j=*,/—_1}. After

transmission through the channel, the signal is corrupted
by CCI and noise, such that

y(t) = a(t)r(t) + b(t)X o ;h(t —iT) + n(1) 2)
1

where the first term is the wanted, the second term is CCI,
the third term, n(1), is complex Additive White Gaussian
Noise with zero mean and variance o, and h(t) is the
impulse response of the CCI The terms a(f) and b(¢) are
complex valued with a Rayleigh distributed envelope and
uniformly distributed phase. It is assumed that the
response of the analogue receive filtering introduces no
distortion into the modulation and the noise at the input to
the receiver is uncorrelated. After synchronisation, the
sampled received signal is given by

y(k) = r(k) + z(k) + n(k) 3)

* Synchronisation is performed by channel estimation, symbol spaced
sampling, and matched filtering, where the matched filter is a single
complex tap, removing the composite channel phase offset.

where z(k) is the CCl. The inputs to the DFE are the
vector [y(k) y(k-1)] and the vector of fed-back symbols,
[x(k) x(k-1) x(k-2) x(k-3)], where x(k-2) and x(k-3) are
previous decisions, and x(k) and x(k-1) take on all possible
values. As described in [3], the purpose of the feedback
vector is to select a subset of ISI states in an attempt to
increase the minimum Euclidean distance between nearest
neighbours. The equalizer performs distance calculations
between the input vector and the selected subsets, such
that the decision on the transmitted symbol is given by

o= S@[(dmm,k i) - (d:xin,k ik )] 4
where d_, and d_. are the minimum Euclidean
distance of the negative and positive subset respectively.
When the channel is noisy it is necessary to determine the
mean of the ISI states, since the distribution of training
vectors exhibit distinct clusters in the signal space. The
training sequence length in HIPERLAN permits this
operation since a sufficient number of states are probed
due to the finite length of the modulation prefiltering.

III Supervised Training

To illustrate the method, we first consider the non-CCI
case. The received packet, y(1) is defined as

Y= [YTEYD] (5)
where Y7 is the set of received training vectors and Yp is
the set of received data vectors. Secondly, we define the
set of locally stored training vectors, P, be the same length
as Yt (p1,P2;P3s-++sPaso) and each vector is complex valued
(%j,x1) defining a complex point in one dimensional
Euclidean space.

In GMSK with BT=0.3, the number of phase states in T
spaced sampling instants corresponds to 16 where 4 states
are duplicated on the real and imaginary axis. Due to the
geometrical symmetry of the ISI we note the following
relationship [5] :

- + .t + . -
Qre =-1ere’Qim —+JXQre’ Qim _-JXQ:z (6)
+ o+ o+ o+
where Q, =( 4,1¢92,re93,re94,re } 2nd
a7 o = (£iX h(=T)+h(0) £ j X h(+T)} @)
By performing the modification
’ *
the received training vectors are sorted into four sets

which correspond to the ISI states of Q:e, where ‘*’
denotes complex conjugate, and each element of P has an
associated label defining the associated state. The state
labels are described by a three bit binary sequence and are
ordered, such that each received training vector in the set
of training vectors {Yr} has a corresponding state label



that defines an associated state. During training each
received training vector is sent to its associated state by
means of the state label. At the end of the training
sequence there are four sets each one containing the
associated ISI state perturbed by Gaussian noise. The
cluster centres are determined by performing averaging
within the four sets. Reproducing the remaining three sets
is a simple task, as defined by the relationships of eqn.6.

This is illustrated below in Fig.2, where Eb/No=20dB, the
channel is narrowband fading and the number of training
vectors is 400. In this example, the reproduced rotated
versions of the cluster means are also included.
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Fig.2 Cluster Centres Produced by Supervised Training

By mapping the training vectors into the real ISI states not
only reduces the complexity, but also permits co-location
in the signal space . This enables an increase in the size of
the training set, which is particularly important when there
is an imbalance in the distribution of CCI states. If we
assume that CCI is present and the channel is noiseless,
then the modified received training vector is given by

Y(k) = ag] yy + pra(k)si=l.. 4 k=1..450  (9)

where the CCI, z(k), increases the number of cluster
centres per ISI state, and the ISI from the wanted can be
considered as a complex valued offset in the signal space
of the CCI. The modification by the locally stored training
vector produces additional states from the CCI that are
either purely real or purely imaginary. This results in a
reduced number of clusters per ISI state of 8, giving 32
CCI states in total. In fact, since certain states are co-
located producing duplication, the actual number of
differing states corresponds to 18.

Since the CCI is uncoordinated, the location of its
associated training sequence is unavailable to the receiver.
Consequently, it is necessary to consider alternative
clustering algorithms which do not rely on labeled data.

IV Unsupervised Fuzzy Clustering

The usual approach adopted for unsupervised clustering of
complex valued data is to use the c-means clustering
algorithm, which arbitrarily partitions the signal space into
¢ clusters and then attempts to find the optimum
partitioning. This is achieved by initially calculating the
mean of each cluster and then determining the Euclidean
distance of each data sample from each cluster mean. The
clusters centres are then updated by assigning the data
element to the cluster that produced the minimum distance
[6]. A problem with this technique however, is its
dependency on the finite cardinality of the partition due to
the crisp membership of classes. That is, a training vector
can only be a member of one class, and consequently, an
accurate partitioning of the signal space is initially
required for optimal convergence [7]. This is extremely
difficult due to the uncertainty associated with the choice
of cluster centres in the signal space. However, the fuzzy-
c-means algorithm overcomes this problem by assigning a
degree of membership to a training vector for each cluster.
Consequently, the algorithm tends to be forgiving if the
initial partition is a bad choice [7].

The fuzzy clustering algorithm partitions each data set into
clusters with a degree of object data similarity,
{A;,i=1,2,...c}, where the number of clusters is related to
the amount of channel ISI in the CCI. The membership
value that the kth training vector has in the ith cluster is
indicated with the following notation

By = uAi (}’T,k) € [0,1] (10)

where the sum of all membership values for a single
vector in all the ¢ clusters has to be unity, such that

C
2 by =1V (11
1=

where there can be no empty clusters and no clusters that
contain all of the training vectors, as shown by the

following condition

n
O<k¥'__1“ik <n (12)

where n is equal to the number of training vectors.
Defining a set of fuzzy partition matrices, M, , for the
clustering involving ¢ clusters and n vectors, yields the
following set of matrix partitions

U p'ik e [0,1]:

M, =3 . (13)
fp 5



where U is a [c,n] matrix, and satisfies the conditions
defined by eqn.10 through to eqn.12. Since there exists an
infinite number of membership values, there is also an
infinite number of partitions. The choice of optimum
partition is resolved by defining an objective function

n C m’ 2
J(U,s)= X Z (u,-k) (dik) (14)
k=1 i=1
where the Euclidean distance is given by

(15)

dig = ny Tk ~Si

The cluster centre is given by s, and m’ is a weighting
parameter which defines the degree of fuzziness. The
optimum fuzzy partition is the one that minimises eqn.14,
yielding

J°wW?,s%)=minJ(U,s) (16)
My

In order to arrive at the minimum value of eqn.16, the
fuzzy clustering occurs in two stages. The first stage
partitions the CCI into two fuzzy classes, the positive and
negative class. This improves the convergence to an
optimal partition by exploiting the property that any ISI
state in the positive class of the CCI cannot belong to an
ISI state in the negative class. The second stage takes each
cluster of training vectors defined by the fuzzy partition
and partitions them again in an attempt to determine the
IST states in the positive and negative fuzzy classes. This
is achieved by first defuzzifying the fuzzy partition matrix
by using the maximum membership approach, and then
performing fuzzy-c-means clustering on the -clusters
resulting from the defuzzification process. Once the
clustering algorithm has converged to a suitable value, the
cluster centres are given by

n ’
m
Z Mik YTk
s =kl 2 a7
z m
iz Hik

where L are the membership values of the final fuzzy
partition matrix. The performance of the fuzzy clustering
algorithm described above is illustrated in Fig.3, where
C/1=10dB, Eb/No=20dB, m’ =2, and the number of
training vectors, n=400. In this example, the gaussian
clusters correspond to the real set of training vectors and
the ‘o’ and ‘+’ correspond to the cluster centres for the
negative and positive classes respectively.
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Fig.3 Cluster Centres from Fuzzy clustering
({+} Positive Class, {0} Negative Class)

In order to incorporate the additional cluster centres from
the CCI, the decision feedback is modified, such that the
fed back vector selects a subset of ISI states that includes
the associated CCI states. Note, in order to arrive at the
correct state, the fed-back vector has to be remodulated
and modified by conjugating all values with the central
value of the ISI span producing a vector which is {Im Re
Im...Re Im Re}. The set of values and associated states
for y(k) and y(k-1) are shown in Table I.

k) | xtkl) | xk2) | vk
xe-D) | oxk2) | xk-3) | yk-1)
1 +1 -1 I,

-1 +1 +1 IZ
1 1 1 I
+1 +1 +1 Iy

Table I Modified Decision Feedback Labels

The labels I;, I, Is and I correspond to the four associated
states or clusters. The detection process in the DFE is
performed in the same manner as before except the data
samples from the data set {Yp} are rotated in the signal
space rather than the set of cluster centres. This can be
considered as a reciprocal process, but in terms of
implementation rotating a single complex data sample is
much simpler than rotating the entire set (or alternatively,
creating three additional subsets).

V Simulation Results

The simulation is based on the system model described in
Section.2. The oversampling rate used in the simulation is
equal to one and the HIPERLAN channel is modeled as a
narrowband Rayleigh fading channel, where the wanted
and CCI are statistically independent. In addition, we
assume that the channel is static during the transmission of
a packet. The distance calculations used in the detector
process are based on & in for reasons of reduced
complexity. The number of packets transmitted during the
simulation was set at 10000, and the size of the training



set is 400. Uncoded error rates below 107 are considered
acceptable, since in HIPERLAN the BCH(31,26) SEC
code is capable of correcting sufficient errors to produce
the required packet failure rate of 0.01 [8].

The error rate performance of the DFE with Fuzzy
Clustering is shown in Fig.4, where for comparison, a
coherent GMSK receiver is included for the situation
when Eb/No=40dB. The three labeled curves correspond
to a Eb/No of (i) 20dB, (ii) 30dB and (iii) 40dB. Firstly,
we compare the coherent GMSK receiver with curve (iii).
It is apparent, that the DFE with Fuzzy Clustering
significantly  outperforms the coherent receiver,
particularly, when the CCI is significantly greater than the
wanted. This is understandable, since increasing the level
of interference effectively raises the wanted signal from
the noise floor. This can be considered as a corresponding
increase in d,;, between nearest neighbours of opposing
classes. The result, being an improvement in the error rate
performance.
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Fig.4 Performance of DFE with Fuzzy Clustering
(i) Coherent, (ii) 20dB, (iii) 30dB, (iv)40dB

For cases (i) and (ii), the effect of increasing the noise
variance (which corresponds to a decrease in the received
signal strength) is to increase the error floor of the
receiver. However, the improvement at higher levels of
CClI is still clearly evident, again, due to the mechansim
described previously. If we consider the system model
described in Section.Il, the anticipated range is expected
to be <10m. Consider a simple free space path loss model
and a standard HIPERLAN RF receive architecture, the
expected signal-to-noise ratio at a range of <10m will be
>40dB. Clearly, the DFE with Fuzzy Clustering would
comfortably achieve this figure with significant margin
across a broad variation in CCL.

Next we consider the effect of shortening the HIPERLAN
training sequence for the situation when the signal to noise
ratio is maintained at 40dB. The error rate performance is
shown in Fig.5. It is apparent that a reduction from 400 to
200 has negligible impact when C/I>5dB. However, when
the interferer is greater then the wanted there is a marked

difference. For a training sequence length of 100
acceptable error rates are possible for C/I>7dB, beyond
this value the degradation in performance is significant.
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Fig.5 Effect of Shortening Training Sequence

VI Conclusion

In this paper a technique has been presented for improving
the performance of a receiver in a controlled ISI channel
when the receiver is limited by CCI. The technique uses
both supervised and unsupervised clustering for finding
the cluster centres, and decision feedback for maximising
the Eulcidean distance. Using the HIPERLAN physical
layer as an example, simulation results have demonstrated
the high robustness of the technique, and its capability of
providing usable error rates particularly at high levels of
CCL
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