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This report describes simple mechanisms that allow autonomous
softwgre agents to engage in bargaining behavoirs in market-based
envirgnments. Groups of agents with such mechanisms could be used
in applications including market-based control, internet commerce,
and dconomic modelling. After an introductory discussion of the
rationale for this work, and a brief overview of key concepts from
economics, work in market-based control is reviewed to highlight the
need for bargaining agents. Following this, the early experimental
economics work of Smith (1962) and the recent results of Gode and
Sunder (1993) are described. Gode and Sunder's work, using "zero-
intelligence" (ZI) traders that act randomly within a structured
markdt, appears to imply that convergence to the theoretical
equilibrium price is determined more by market structure than by the
intelligence of the traders in that market: if this is true, developing
mechdnisms for bargaining agents is of very limited relevance.
However, it is demonstrated here that the average transaction prices
of ZI traders can vary significantly from the theoretical equilibrium
level when supply and demand are asymmetric, and that the degree of
differance from equilibrium is predictable from a priori statistical
analygis. In this sense, it is shown here that Gode and Sunder's results
are artefacts of their experimental regime. Following this, 'zero-
intelligence-plus’ (ZIP) traders are introduced: like ZI traders, these
simplg agents make stochastic bids. Unlike ZI traders, they employ an
elementary form of machine learning. Groups of ZIP traders
interarcting in experimental markets similar to those used by Smith
(1962)| and Gode and Sunder (1993) are demonstrated, and it is shown
that the performance of ZIP traders is significantly closer to the
human data than is the performance of Gode and Sunder's ZI traders.
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1 Introduction

Developments in computer science and engineering over the last decade have seen a shift of
. emphasis from centralized to decentralized (or distributed) systems. In distributed computing
systems, the problem of “von Neuman bottle-neck”, i.e. having all commands and data pass
through a single central processing unit, is avoided by employing multiple processors. The level
of complexity of the individual processors may vary from simple processors with a small amount
of local memory, as in the “Connection Machine” (Hillis, 1985), up to complex systems involving
hundreds or thousands of high-performance workstations connected on a network. In the limit,
the entire global internet could be considered as a single massively parallel distributed computer
system.

This shift has led some researchers to develop new metaphors for thinking about computing.
Bernardo Huberman, writing in the introduction to a landmark collection of papers discussing
such systems (Huberman, 1988a), states:

“A new form of computation is emerging. Propelled by advances in software
design and increasing connectivity, distributed computational systems are acquiring
characteristics reminiscent of social and biological organizations. These open sys- -
tems, self-regulating entities which in their overall behavior are quite different from
conventional computers, engage in asynchronous computation of very complex tasks,
while their agents spawn processes in other machines whose total specification is un-
known to them. These agents also make local decisions based both on imperfect
knowledge about the system and on information which at times is inconsistent and
delayed. They thus become a community of concurrent processes which, in their
interactions, strategies, and competition for resources, behave like whole ecologies.”
Huberman (1988b, p.1)

In many computational ecologies, the allocation of (or competition for) scarce resources
presents a serious issue. Scarce resources include processor time, storage (either primary, such
as RAM-space; or secondary, such as disk-space), and network bandwidth. If no limits are put
on the use of these resources, greedy or careless individuals can soon consume so much that the
overall performance of the system suffers significantly.

The allocation of scarce resources is a topic that has long been studied in economics. In brief,
if the quantity of a resource demanded by consumers in a market is greater than the quantity
supplied, the price of the resource rises, which can both reduce the quantity demanded (because
some consumers can no longer afford it) and also increase the quantity supplied (because some
suppliers may be more interested in selling at higher prices). Similarly, when the quantity
supplied is greater than the quantity demanded, the price falls, which may reduce the quantity
supplied and increase the quantity demanded. Thus, according to classical economic theories of
markets, the price approaches an equilibrium value where the quantity demanded matches the
quantity supplied.

Advocates of free-market economics claim that the actions of groups of individuals, engaging
in simple trading interactions driven by self-interest, can result in good or optimal allocation
of resources. Crucially, the market mechanism does this in a distributed fashion: there is no
central control process; rather, the allocation of resources ‘emerges’ from the interactions of the
buyers and sellers.

Thus, economics can act as a valuable source of terminology, inspiration, and metaphors for
developing solutions to problems in distributed resource-allocation and control. This theme has
been explored in detail in the growing rdsearch field known as market-based control (MBC).




In brief, the aim of MBC systems is that groups of software ‘agents’ or ‘traders’ interact within
a market-like framework. In general, the inspiration from market economics comes in the form
of division of the scarce resources into units of ‘commodity’ and the provision of a ‘currency’
that allows the agents to buy or sell the commodity. Some agents act as ‘producers’ or ‘sellers’
of the commodity (e.g., an agent may be assigned to a node or link in a network, charging for
use of that resource), while others act as ‘consumers’ or ‘buyers’ (e.g., an agent may be assigned
to a data-packet on a network, spending currency in order to route the packet from its source to
its destination). In principle, when supply is greater than demand, the price of the commodity
will fall; and when demand exceeds supply, the price rises. The aim then is that prices rise and
fall, dynamically matching the quantity demanded to the quantity supplied.

One of the powerful arguments for adopting a MBC approach is the prospect of automation
and decentralisation of control or resource-allocation. For the process to be automatic, it should
devolve power from human operators (who have a tendency to be expensive and/or error-prone).
Ideally, once the system is operational, human input should be reduced to a minimum. And for
the process to be decentralised, there should be minimal reliance on central control mechanisms,
processes, or databases (e.g., models of the entire network). Ideally, the system should not
rely on the operation of any single critical component or sub-system. The failure of any one
component should result in only a minor impairment, if any, to the overall behavior of the
system; rather than a total collapse.

Yet, to the best of my knowledge, no current MBC systems are both automatic and dis-
tributed in the senses just described. In the applications published in the literature, there is a
reliance either on centralised ‘auctioneer’ processes or on human intervention. In the case where
a centralised auctioneer process is used, in addition to the brittleness caused by failure of the
central process, there are issues of imposition of synchrony on what is fundamentally an asyn-
chronous system, and the maintenance of the central auctioneer’s database (i.e., its ‘knowledge’
of how many buyers and sellers there are, their interconnections, etc.).

For this reason at least, there is a need for computational ‘bargaining’ mechanisms that
allow a software agent to decide what price to agree on for a deal (ie., for a transaction): sellers
should not set a price so low that they make a loss, but should also beware of setting a price
so high that no buyer is interested; buyers should not spend any more than they have to, but
should not bid so low that they are unable to purchase the commodities they require. Clearly,
the price announced by an agent (either a seller’s offer-price or a buyer’s bid-price) is likely to
be influenced by the prices announced by other agents in the market.

But the potential use of such bargaining mechanisms would not be limited to MBC applica-
tions. There are at least two other significant application areas in which autonomous software
agents with bargaining abilities could be profitably employed:

e Internet Commerce:

The recent explosive increase of activity on the internet and world-wide-web, and in par-
ticular the announcement of secure transaction methods for transfer of funds, offers the
potential for exploiting internet-based commerce. Although there are many possible meth-
ods by which goods and services can be advertised and sold on the internet, one possibility
is the use of software agents that autonomously seek out and purchase items on behalf
of a human user, entering into bargaining (or “haggling”) interactions with agents repre-
senting the sellers of the desired items. The user would, presumably, indicate preferences
such as price-range, desirable features, et cetera, and the buyer-agent would then traverse
the web, seeking information from vendors’ web-sites and interacting with each vendor’s
seller-agent., trying to strike a gpod deal. While the application of such techniques to the



purchase of domestic goods such as music systems or kitchen appliances may be somewhat
fanciful, a more realistic possibility might be the use of autonomous bargaining agents to
automate auctions in financial asset markets: in particular, many international derivative
markets (where options and futures are traded) are based on open-outcry ‘trading pits’
where human traders announce offer and bid prices to the other traders present, without a
mediating centralised auctioneer. If automated, such markets could (in principle) be made
more efficient because new information could be distributed and assimilated at electronic
speeds, and there should be less susceptibility to the effects of crowd-psychology, such as
fluctuations in price caused by unfounded rumours.

¢ Positive Economic Models: \

There is a distinction within econgmics between two branches of the field: positive and nor-
mative. Normative economics deals with subjective recommendations based on personal
value judgements, while positive economics aims at providing ‘objective’ or ‘scientific’ ex-
planations of economic phenomena (Begg, Fischer, & Dornbusch, 1994, p.11). Much work
in positive economics explores theoretical models based on axiomatic assumptions con-
cerning the behavior of individual agents, such as humans or firms in a particular market.
Often, the primary behavior exhibited by each agent is a decision between two or more
possible actions. Whether the results of the action are beneficial to the agent can depend
on the actions of other agents within the system, thereby inviting game-theoretic analysis.!

The degree of rationality expected of economic agents has been a topic of considerable
debate. A large body of economic modelling research is based on the so-called rational
ezpectations hypothesis; the belief that agents base their behavior on predictions which are
free of systematic errors: “Nobody can predict the future with perfect foresight because
unforeseen, random happenings are bound to occur. However, someone with rational
expectations will construct their expectations so that on average they are correct; that is,
they will be wrong only because of random, non-systematic errors.” (Bannock, Baxter, &
Davis, 1992, p.360). Although many models based on the assumption of perfect rationality
have good predictive power, some economists have argued that real agents are unlikely to
exhibit optimal rational behavior, even if that is their intention: they may not have the
necessary information or cognitive power to do so; in which case they are said to exhibit
bounded rationality. The behavior of bounded-rationality agents is better characterised
not as optimizing some variable (i.e., attempting to achieve its maximum possible value),
but rather as satisficing (i.e., attempting to keep the variable above some minimum level)
(Bannock et al., 1992, p.380).

Bounded rationality introduces extra constraints on any modelling process, and the accu-
racy of predictions from rational-expectations models may need to be verified by empirical
means. One possible empirical method is to use historical data, but in many cases the
data may not be available in sufficient quantities or with sufficient accuracy to validate
the model. An alternative lies in so-called experimental economics, where laboratory-style
experiments are conducted with groups of human subjects interacting in controlled market
conditions, with significant variables being recorded for subsequent analysis and compari-
son. Yet such experiments can be costly and time-consuming, because of their reliance on
human subjects.

A complementary approach was described by Brian Arthur, who discussed the idea of
designing artificial agents (software automata) that behave like human economic agents.

!For introductions to game theory, see e.g. Fudenberg and Tirole (1991} and Heap and Varoufakis (1995).



Arthur (1993) explored the use of a simple machine learning algorithm to develop artificial
agents which could be calibrated against human learning data from psychology experi-
ments. The use of artificial agents in economic modelling offers two benefits. First, the
costs associated with using humans are eliminated. Second, the use of computer simula-
tions forces a degree of mechanistic rigour, and thus helps clarify what information and/or
cognitive mechanisms are necessary and sufficient to produce the behaviors of interest. In
this sense, the algorithms or programs that specify the behavior of the artificial agents can
be viewed as ‘theories’ concerning the generation of comparable behaviors in real agents.

So, in summary, artificial agents capable of bargaining behavior could find uses in market-
based control, internet commerce, and economic modelling.

This paper reports on research and development work aimed at identifying minimal mecha-
nisms that endow autonomous software agents with bargaining behaviors appropriate to market-
based environments. The emphasis on minimalism comes not only from a desire for computa-
tional efficiency (important if hundreds or thousands of such agents are active on a network),
but also in a speculative attempt at sketching the minimum mechanistic complexity necessary
and sufficient for explaining human bargaining behaviors in simple market environments. The
contents of the rest of this paper are as follows. .

Section 2 presents a brief tutorial review of relevant concepts and terminology from eco-
nomics. Section 3 then reviews work in MBc, highlighting the reliance on centralised auctioneer
processes and human intervention, which initially motivated the research described here.

Following this, in Section 4, there are summaries of two bodies of work in experimental
economics: the first is early work by Vernon Smith, and the other is more recent work by
Dhananjay Gode and Shyam Sunder. Smith’s experiments were some of the first to demonstrate
that small groups of human traders could rapidly approach the theoretical equilibrium price
predicted by rational-expectations models. Meanwhile, Gode and Sunder’s results appear to
indicate that groups of so-called ‘zero-intelligence’ trading agents, that simply announce random
prices for bids and offers, can give results that are remarkably similar to the performance of
human traders. The implication drawn from their work is that the structure of the market
plays a large part in determining the abservable behavior of the agents in that market, and the
intelligence (or lack of it) of the agents in the market is secondary. If this is true, the relevance
of developing computational mechanisms for bargaining agents is highly questionable.

However, in Section 5, I present analytic arguments that Gode and Sunder’s results are
affected by experimental artefacts, and that zero-intelligence traders only approach the theoret-
ical equilibrium price when the experimental market is structured appropriately. The analytic
arguments are supported by results from simulation studies where zero-intelligence traders are
employed in market environments similar to those that Smith used with human subjects. These
results demonstrate that more than zero intelligence is required to exhibit human-like equilibra-
tion.

Then Section 6 reports on the development of ‘zero-intelligence-plus’ (zIP) traders that, in
the spirit of Gode and Sunder’s work, are stochastic traders with minimal intelligence, but
incorporate elementary machine learning techniques to alter their behavior on the basis of expe-
rience. It is demonstrated that in experimental conditions comparable to those used by Smith,
where Gode and Sunder’s zero-intelligence traders either fail to produce human-like tendency to
equilibrium or simply cannot be used, [the behavior of the zip traders is comparable to that of

human subjects.
Related work is described in Section 6.5, and possible further developments of this research

are discussed in Section 6.6, before offering conclusions in Section 7. Finally, the C-code for the




programs used in the simulations is pgesented in Appendix A, and sample input and output files
are given in Appendix B.
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i
2 Background Economic$
!
2.1 Basics |
The allocation of scarce resources is a}toplc that has long been studied in economics. Indeed,

the notion of a scarce resource has a |precise definition: it is any resource “...for which the
demand at a zero price would exceed the available supply” (Begg et al., 1994, p.4). The area
of economics known as microeconomi¢s is primarily concerned with the allocation of scarce
resources: as Gravelle and Rees (1992, p.1) state, “Microeconomics is a set of theories with one
aim: to help us gain an understanding of the process by which scarce resources are allocated
among alternative uses, and of the role of prices and markets in this process.”

More precisely, a market can be defined as “...a set of arrangements by which buyers and
sellers are in contact to exchange goods or services” (Begg et al., 1994, p.32). The quantity
of a commodity (good or service) that buyers are prepared to purchase at each possible price
is referred to as demand, and the quantity of a commodity that sellers are prepared to sell at
each possible price is referred to as stizply. In general, the greater the price of a commodity,
fewer buyers will be inclined to make aj purchase, and so the quantity demanded reduces: thus,
if we plot price as a function of quantity, the demand curve slopes downward. In contrast,
the greater the price of a commodity, the more sellers are inclined to sell, and so the quan-
tity supplied increases: on a plot of price as a function of quantity, the supply curve slopes
upwards. From these considerations, it is clear that at high prices the quantity supplied may
exceed the quantity demanded (i.e., there is a surplus, or ezcess supply), and at low prices the
reverse may be true (giving a shortage, or ezcess demand). But, at some intermediate price,
the quantity demanded is equal to tht# quantity supplied: this is the equilibrium price, which
‘clears the market’: graphically, the equilibrium price (and quantity) can be determined by the
intersection of the supply and demand ¢urves, as illustrated in Figure 1. Throughout the rest of
this document, where mathematical notation is used, the equilibrium price will be represented
by Py and the equilibrium quantity by o. The equilibrium quantity is also sometimes referred
to as the “clearing quantity”. ‘ ‘

Price

Po

-

Qo Quantity

Figure 1: Simple illustration of supply and /demand. The Supply Curve S slopes upwards and the Demand
Curve D slopes downward. The two curves ihtersect at a point indicating the Equilibrium Price Py and the
Equilibrium (Clearing) Quantity Qo.
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In theory at least, markets are self-correcting: if the supply and demand schedules remain
fixed, the transaction prices in the market will tend toward the equilibrium value. At prices below
equilibrium, there is excess demand (or a sellers’ market): the suppliers can then choose only
to sell to the highest-bidding buyers, and so the buyers have an incentive to bid higher prices,
thereby raising the market price towards the equilibrium value. At prices above equilibrium,
there is excess supply (or a buyers’ ﬁmrkel) and buyers can then choose only to buy from the
sellers with the cheapest offers, so sellers have an incentive to cut their offer prices, thus lowering
the price towards equilibrium. At the equilibrium price, neither buyers nor sellers have any
incentive to change their prices, and so the system stabilises. In this sense, the actions of a group
individuals in a market, each pursuing their own interests, can give rise to price determination,
or equilibration, where the market price is the equilibrium price and so the quantity demanded
matches the quantity supplied. Because the equilibrium is a result of price-competition between
the agents in the market, it is often referred to as a competitive equilibrium. For an example of
a formal definition of competitive equilibrium, see Roth and Oliveira Sotomayor (1990, p.209).

Such market mechanisms, it is argued, can give efficient (or perhaps optimal) allocation of
resources without centralised control or external intervention (e.g., by government regulation).
A common ideal of allocative efficiency is Pareto efficiency: an allocation of resources is Pareto-
efficient if no-one can be made better-off without someone else being made worse-off. If there is
no external intervention, the system is said to be a free market. Free markets can, according to
their proponents, give rise to ‘emergent’ behavior (competitive equilibrium) of the whole group
which is in the best interests of that group (Pareto-efficient), despite the fact that each agent
is operating only to satisfy self-interest. The group appears to be led by an ‘invisible hand’, in
the metaphor introduced by Adam Smith in his 1776 book The Wealth of Nations. There are,
however, conditions in which free-markets fail to achieve an efficient allocation: see Begg et al.
(1994, pp.264-265).

Conditions under which a market can attain equilibrium from a given set of initial conditions,
and the nature of the approach to equilibrium, has been the subject of intense research in
economics. The nineteenth century economist Marie Walras suggested a tdtonnement (groping)
process that resembles an iterated auction: in the first round, buyers and sellers announce their
prices. In subsequent rounds if there is excess supply the buyers and sellers reduce their prices,
or raise them if there is excess demand, or leave them unaltered if supply matches demand, at
which point actual transactions are permitted to take place (Bannock et al., 1992, p.417). More
sophisticated models of equilibration include the cobweb model, where there is cyclical demand
and supply with the response of suppliers to changes in price being subject to a delay, and
the system dynamics converge on either a point attractor (at equilibrium), a periodic attractor
around the equilibrium point, or diverge with increasing fluctuations in price and quantity
(Bannock et al., 1992, pp.72-73). Many models of equilibration assume perfect competition,
where homogeneous indivisible units of a commodity are traded by large numbers of buyers and
sellers, none of whom are sufficiently large or powerful to have any impact on market price, all
of whom are aiming to maximise profit, and none of whom incur any costs in entering or leaving
the market (Bannock et al., 1992, p.325). The nature or organisation of some markets makes
perfect competition unlikely or impossible. yet price determination can still occur. However,
as the number of individuals in the market falls, the likelihood of collusion and the formation
of rings or cartels increases: as the number of sellers is reduced, the market approaches an
oligopoly, where the behavior of individual sellers in the market is highly dependent on the
likely initiatives or responses of the gther sellers: the limiting cases are the monopoly market
(with only one seller), the monopsony| market (with only one buyer). and the bilateral monopoly
market {(with one buyer and one selldr). In all these cases, the actions of individual buyers or




sellers can have a significant impact on the market price, depending on the organisation of the
market.

2.2 Market Organisation

Market organisation concerns the regylations governing the information available to the agents
in the market and the agents’ opporfunity sets (i.e., the possible actions they can perform).
Together, these affect the method by| which a market price is determined. In most markets,
prices are determined via a particular|style of auction. Colloquially, the word ‘auction’ is used
to refer to arrangements where sellers|of a commodity and a group of potential buyers of that
item interact to agree a price. There afe a large number of types of auction mechanism, and the
literature on auctions indicates that different authors sometimes use the same name to refer to
differing mechanisms. In brief: in an ascending bid or English auction, buyers make increasing
bids for the sale item, withdrawing from the process as the price rises, until only one buyer
remains. In a descending offer or Duteh auction, the seller offers the item at decreasing prices,
and the first buyer to agree to take the item at the current price gets the deal. In a sealed-bid
auction, all buyers submit a single bid-price ‘sealed’ to prevent observation by the competing
buyers. Some sealed-bid auctions are iterated, where information about the bids (such as the full
list of prices, or just the highest price) is made public after each round of bidding. The alternative
is a single-round auction. In single-round sealed-bid auctions the highest-bidding buyer usually
purchases the item: in some variants at the highest bid price (first-price auctions); in others
at the price bid by the second-highest-bidding buyer (the so-called second-price sealed-bid or
Vickrey auction, for which there are game-theoretic proofs that honesty is an optimal strategy).
For discussions of different auction market organisations and a useful bibliography, see Agorics,
Inc. (1997)

One of the simplest forms of market mechanism for matching supply and demand is the call
auction: a central impartial auctioneer collects bids from all buyers and offers from all sellers;
the array of bids is used to determined the market demand curve, and the offers determine the
supply curve; the intersection of the two curves gives the market-clearing (equilibrium) price,
and all possible trades clear simultaneously at that price (Satterthwaite & Williams, 1992, p.92).
Call markets are employed in a number of international financial exchanges, especially where
there are periods or conditions of low volume or low liquidity.

One particular style of auction has received significant attention in the literature: the con-
tinuous double auction, where a group of buyers and a group of sellers simultaneously and
asynchronously announce bids and offers: at any time, a seller is free to accept the bid of a
buyer, and a buyer is free to accept the offer of a seller. The continuous double auction (CDA)
therefore resembles a parallel integration of English and Dutch auction styles. One practical rea-
son for the interest in CDAs is that they have for many years been the basis of trading in major
international financial markets (such as the London and New York stock exchanges): originally
as open-outcry oral auctions taking place on the trading floor of the exchange, and latterly as
electronic auctions taking place in the cyberspace of city-wide networks of computerised dealing
rooms. Theoretical interest is motivated by the fact that CDAs are often very fast and efficient,
despite (or possibly because of) the volumes of information exchanged:

“...markets organized under double-auction trading rules appear to generate
competitive outcomes more quickly and reliably than markets organized under any
alternative set of trading rules. For this reason, double-auction markets have been
frequently investigated as a standard against which the performance of other insti-
tutions is evaluated.” Davis and Holt (1993, p.126).



This interest has resulted in a regearch literature discussing CDAs (see, e.g., Friedman and
Rust (1992) and Davis and Holt (1993, pp.125-172) for reviews) The motivation for such work
comes from a desire to better undersfand how the organisation of the market, and the behavior
of the traders in that market, affects the speed and efficiency of the market. This is summarised
neatly by Rust, Miller, and Palmer (1992, p.156):

“Although the textbook ‘supply equals demand’ model may provide a good pre-
diction of closing prices and quantities in [double auction] markets, it fails to explain
the dynamics by which this happens. A more sophisticated theory is required to
show how the trading process aggregates traders’ dispersed information, driving the
market towards [competitive equilibrium]. The essence of the problem was clearly
stated by Friederik Hayek nearly 50 years ago:

“The problem is in no way solved if we can show that all facts, if they were
known to a single mind, wquld uniquely determine the solution; instead we
must show how a solution|is produced by the interactions of people each
of whom possesses only partial knowledge. To assume all the knowledge
to be given to a single mipnd in the same manner in which we assume it
to be given to us as the explaining economists is to assume the problem
away and to disregard eve ything that is important and significant in the
real world.” (Hayek, Amer. Econ. Rev. 35(4):p.530, 1945).

Much of the literature deals withi auctions where there is no inherent asymmetry between
buyers and sellers: buyers can, in priqciple at least, become sellers (i.e., can buy a stock of items
and then sell them on the same market they bought from) and vice versa. This flexibility helps
equilibration. For example, when pricés are low through excess supply, sellers might cease to offer
a commodity, preferring to buy it from the market: in doing so, supply is reduced and demand
is increased; and the market moves i-lnoser to equilibrium. However, in some types of market,
this flexibility is not possible because\of inherent asymmetries: a transatlantic pilot dissatisfied
by low pay (i.e., income from selling her services) cannot become an international airline (i.e.,
a buyer of pilot services); a doctor chnnot become a hospital; and a professor cannot become
a university. In such cases, known two-sided maiching markets, special game-theoretical
analyses and algorithms have been developed: see e.g., Roth and Oliveira Sotomayor (1990).

Finally, because it will be relevant later in this document, one embellishment of the con-
tinuous double auction needs to be rentioned here: some CDAs employ an improvement rule,
introduced to speed the auction proc¢ss, that requires that each bid or offer leading to a trans-
action must be an improvement on the previous bid or offer (i.e., a higher bid or a lower offer)
until a transaction is agreed, at which point the process is reinitialised by the first bid and offer
for the next item or lot: such a ruleiis used at the New York Stock Exchange (NYSE), and is
commonly referred to as the NYSE rule (e.g., Easley and Ledyard (1992, p.84) and Cason and
Friedman (1992, p.258)).

10



3 Market-Based Control

The theme of using ideas from microeconomics in controlling computational ecologies was ex-
plored in depth by Mark Miller and Fric Drexler in three papers proposing the development of
what they refer to as Agoric Systems; distributed computer systems, possibly involving multi-
ple owners or vendors, where scarce fesources are allocated using techniques inspired directly
by the operation of free-market econdmies (Miller & Drexler, 1988a, 1988b; Drexler & Miller,
1988). Their work represents early methodological arguments for a growing field that is now
more widely known as market-based control (MBC). ‘

In a recent collection of papers describing studies in MBC edited by Clearwater (1996), while
there are some systems which are decentralised but not fully automatic, and other systems
which are automatic but centralised, there is an absence of systems which are both automatic
and decentralised. Enumerated below are brief summaries of some of the papers in Clearwater’s
collection that describe actual applications rather than theoretical models.

3.1 Network Bandwidth

Miller, Krieger, Hardy, Hibbert, and Tribble (1996) discuss a system for automated auction of
ATM (asynchronous transfer mode) network bandwidth. The intention is that bandwidth (a
scarce resource) is traded as a commodity by a community of software agents. In times of low
network usage, high-bandwidth network connections may have a low “price’: as usage increases,
so the demand for bandwidth increases and the price of the resource rises. Once demand has
increased, users of the system have to make a simple decision between maintaining the previous
level of expenditure (and consequently accepting reduced quality of service) or maintaining the
prior quality of service (at a higher price). The system is sophisticated, and its components
include mechanisms of banking and currency, bidding agents, auctioneers, delivery agents, and
application and user interfaces. However, as is implied in Miller et al. (1996) and made explicit
in a technical report published by the developers (Agorics, Inc., 1996, p.21), the system relies
on a centralised auctioneer process, known as NetAuctioneer.

“The current implementation of NetAuctioneer is unrealistic in two regards. First,
it is a single centralized entity which requires a global model of the network, rather
than a distributed network of auctioneers each of whom have local knowledge only of
parts of the net. Second, it computes both allocations and prices by combinatorial
search with exponential cost, rather than approximating ideal results in exchange
for a reasonable computational burden.” Agorics, Inc. (1996, p.21).

The need for a global model of the network in NetAuctioneer may incur high maintenance
costs in large or complex networks: presumably, any change to the network structure (including
sudden failure of nodes or links) has to be reflected in the model for the auctioneer process to
operate successfully. Moreover, there is the manifest danger that the entire bandwidth allocation
system will collapse if the machine running the NetAuctioneer process fails.

3.2 Memory Allocation

Harty and Cheriton (1996) describe the application of a market approach to memory allocation
in a computer operating system. In their system, there is no increase in the price of memory in
response to high demand. Rather, they|use a tiered pricing system that allows the requestor to
indicate the urgency or priority of a request. (Harty & Cheriton, 1996, p.152). When demand
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exceeds supply, the memory allocation scheme gives initial priority to those applications which
have sufficient money to pay for their requested memory: when there is more than one such
application, “...the allocation scheme gives priority to those applications that request an amount
" of space-time that is less than or equal to their “fair share’.” (Harty & Cheriton, 1996, p.153).
Again, this notion of ‘fair share’ requires a global view of the system: the ‘fair share’ of any
one application can only be determined by reference to the needs and expenditure of all other
applications.

3.3 Air Conditioning

Clearwater, Costanza, Dixon, and Schroeder (1996) demonstrate the use of market-based tech-
niques for control of air-conditioning ventilation and temperature. In their system, used to
manage the air conditioning of 53 offices at the Xerox Palo Alto Research Center (PARC), soft-
ware agents represent individual temperature controllers bid to buy or sell conditioned air.
Unlike conventional building energy management systems, the Xerox system can take account
of the interactions and connectivity between offices, and results indicate that the market-based
system gives better distribution of temperatures and uses fewer resources. Again, a central
computerized auctioneer process is employed: :

“A central auctioneer collects the bids and computes the supply and demand
curves and sets the [equilibrium] price for the auction. Agents whose bids were
not too high or low have their trade consummated. ... Buyers buy only if the
trade [equilibrium] price is at or below their buy offer. Sellers only sell if the trade
[equilibrium] price is at or above their sell offer. All other traders must wait for
another auction to attempt having their bid consummated.” (Clearwater et al.,
1996, pp.256-257).

3.4 Pollution Regulation

Marron and Bartels (1996) recount their experiences in developing computer-assisted auctions
for the allocation of tradable pollution permits. A pollution permit gives a firm the right to
emit some specified amount of pollution over a specified period of time. By giving firms an
initial allocation of permits and then allowing them to trade them in an active free market, each
firm acts as a participant in a decentralized decision-making process. If the cost of reducing
pollution by some amount is less than the market-price of a permit to produce that amount of
pollution, it is profitable for a firm to reduce its pollution output and sell the corresponding
permit. Firms that are unable to reduce pollution can buy extra permits from seller-firms, to
avoid punitive financial penalties imposed on firms that produce pollution without a permit. The
process is decentralized in the sense that there is a reduced emphasis on government regulations
that specify detailed standards covering equipment, operations, and so on (Marron & Bartels,
1996, p.275). However, once more, a centralized computerized auction mechanism is employed
(Marron & Bartels, 1996, p.283).

3.5 Job-Shop Scheduling

Finally. Baker (1996) reports on the development of a fully distributed computer architecture for
factory control, based on a market-driven contract net. In this system, a network connects agents
that each control one or more aspects of a manufacturing system, such as particular machines,
inventory storage, material-handling, rmd so on. Also connected to the network are ‘sales’ agents
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that allow customers to request a product. When a product request is received by a sales agent,
the agent issues a ‘request for bid’ (RFB) on the network. Any agent that receives the RFB and
is capable of delivering that product replies to the sales agent with a WILL-BID message and
simultaneously issues RFBs for all the components of the product. Agents capable of supplying
the components issue WILL-BID messages to the finished-product agent and issues RFBs for the
materials or sub-components necessary to manufacture the components. This process continues
forward through the network until RFBs are received by agents responsible for purchase or stock-
control of raw materials: those agents then issue a BID to all agents that requested materials from
them. Agents receive the BIDs, combine them with any other BIDs requested, and calculate their
own BID. This process of bid-collation |and calculation proceeds back through the network until
bids are received by the sales agent that issued the initial RFB. This agent combines the bids
and presents them to the user who made the request. Because the network will typically contain
multiple paths from the sales agent through different machines or processes to the material
supply, so the final bid is a multi-dimensiona] item of data: Baker (1996, p.190) illustrates the
bid to a customer as a 3-dimensional surface relating lot-size (number of units), delivery-time
(weeks), and cost per unit. It is the responsibility of the customer to choose a combination of
lot-size and delivery-time that gives an acceptable unit cost.

In Baker’s system, the prices attached to bids are determined by the convolution of a number
of functions relating lot-size, production-time, and cost: examples include employee pay-rate as
a function of time, time-required as a function of lot-size, cost per unit as a function of delivery
time, and current capacity status (available or unavailable) as a function of time (Baker, 1996,
p-192). Following the convolution of these functions, a ‘inventory smoothing’ operation is applied
that accounts for the possible savings incurred by producing a product before it is needed (e.g.,
at times of low demand) and then holding it in the inventory.

Although individual agents within the system may have varying parameters for these func-
tions, additional work is required to determine the appropriate functions and parameters, or to
alter them as a consequence of changing circumstances. In the case-study reported by Baker, it
is assumed that information regarding whether an agent can make a particular sub-component,
and the amount of set-up and processing time required to make it, are determined by a table-
lookup procedure. As Baker (1996, p.194) honestly notes, “... this is a major assumption which
may not be true”. Presumably, prior empirical or theoretical work is required to determine
the functions and parameters for each agent in order to fill the entries in the lookup tables.
Thus, although Baker’s system has a decentralized architecture, the collection of functions and
parameters, or the entries in the lookup table, for all the agents in the system is effectively a
global model (albeit one that is distributed across the system at implementation time). There
is a requirement for a priori knowledge to be incorporated and for manual intervention when
the machine an agent represents is modified or fails.

3.6 Summary

From this brief review, it is clear that although decentralization, parallel distributed processing,
and self-organisation are strong motiv#ting factors for the development of MBC systems. the
applications reviewed above are all lacking in some respect: centralized auction processes, similar
to call markets, were used by Miller et al. (1996), Harty and Cheriton (1996), Clearwater et al.
(1996), and Marron and Bartels (1996); while Baker’s (1996) work. although clearly inspired
by real markets, employs no auction mechanism because the human user is presented with all

options to choose from.
Yet real markets operate efficiently without centralised auctioneers. The continuous double
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auction is an attractive market structure: it is fundamentally asynchronous, and examples of
distributed continuous double auctions pervade real markets. In a computational ecology or
MBC system, groups of locally-conne*:ted agents could engage in continuous double auctions to
determine the price for commodities, eliminating the need for pre-compiled price tables or func-
tions based on a priori knowledge. Price changes might percolate through the entire network,
or there might be a spatially heterogeneous price distribution (just as the price of hot-dogs in
London is determined, in part, by a|double-auction haggling process that has little impact on
the price of hot-dogs in Brighton, 60 miles away: hungry tourists in London might get a discount
by arguing that cheaper hot-dogs are available two streets away, but comments that hot-dogs
are half the price in Brighton are unlikely to have much effect.)

Despite the attractions of MBc, itlis important to note that there are a number of theoretical
studies that raise difficult issues. In ‘a.rticula,r, there are indications that the dynamics of mar-
kets populated by simple traders act?ng purely to serve their own self-interest may converge to
stable but highly sub-optimal equilib*ia (e.g., Glance & Huberman, 1994), or may exhibit com-
plex chaotic and hyperchaotic dynam‘cs, (e.g., Glance & Huberman, 1992; Thomsen, Mosekilde,
& Sterman, 1992). The extent to which such theoretical models are applicable to real market
systems is a matter for current empirical research. Nevertheless, attempts at emulating the
success of human double-auction markets could be helped by a better understanding of those
human markets. There are at least tvﬁo relevant issues: what are the typical dynamics of human
double-auction markets, and to what extent are those dynamics dependent on the market struc-
ture and the level of intelligence of th(‘e traders in the market? Work in experimental economics

that addresses these issues is described in the next section.
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4 Experimental Economics

The use of ‘laboratory methods’ in economics, conducting controlled experiments to test the-
. oretical hypotheses or predictions, has been of interest since at least the 1930’s: for historical
reviews, see Davis and Holt (1993, PP-5-9) and Roth (1995, pp.4-21). In a typical simple ex-
periment, a group of human subjects are each given the means to buy one unit of an arbitrary
commodity; while another group are each given one unit of the commodity to sell. Each buyer
will be a given a maximum limit price to pay for a unit of the commodity, and each seller will be
given a minimum limit price below which the unit should not be sold. Typically, different buyers
will be given different limit prices, as will different sellers. The manner in which limit prices are
allocated determines the supply and demand for the experiment. The subjects are then allowed
to buy and sell within a particular market mechanism: in the early experiments, the markets
were experimentally controlled open-outcry trading pits, but the vast majority of recent work
has required the subjects to communicate via a computer network, which eases the control of
free parameters and the recording of data. Theoretical hypotheses concerning the effects of
market-structure on the dynamics of the market can be tested and their implications explored
by varying parameters such as supply and demand, what trader actions are permissible, or the
amount and quality of information available to each trader. Factors of interest may include the
nature of the approach of observed transaction-prices towards the theoretical equilibrium price,
the stability at equilibrium, the amount of potentially-available profit that is extracted from the
market by the sellers, etc.

Davis and Holt (1993) wrote a comprehensive text covering the major areas of experimental
economics, while Kagel and Roth (1995) edited a significant collection of critical surveys of the
field. Methods and results from two key papers in the field are summarised below. Section 4.1
summarises the first paper on experimental economics published by Smith, who helped establish
the field and has since continued to be a prominent researcher: for a brief overview of his work, see
Smith and Williams (1992), and for more complete details see his collection of papers spanning
30 years of research (Smith, 1992). Section 4.2 summarises work done by Gode and Sunder on
‘zero-intelligence’ (z1) traders. This work has been cited approvingly in texts on experimental
economics (e.g., Friedman and Rust (1992, p.zziii), Friedman (1992, p.19), Rust et al. (1992,
pp-160-161, 175), Bollerslev and Domowitz (1992, pp.230-231), Cason and Friedman (1992,
Pp-253, 258), Kagel and Vogt (1992, pp.292, 294), Davis and Holt (1993, p.132), Roth (1995,
pp.52-55, 80-81), Holt (1995, p.370), Sunder (1995, p.475), Kagel (1995, pp.570, 580), and
Camerer (1995, p.674)), and has even been discussed in a recent book on the philosophy of
cognitive science (Clark, 1997, pp.183-184).

However, it is argued in Section 5 that Gode and Sunder’s results are artefactual, and this
provides a strong motivation for the development of artificial trading agents with (slightly) more
than zero intelligence, as described in Section 6. Smith’s work is reviewed here both as a means
of introducing terminology and typical methods of experiment and analysis, and also to establish
a more varied set of experimental scenarios than were used by Gode and Sunder: the arguments
in Section 5 are supported by considering the performance of Gode and Sunder’s zI traders in
experimental settings similar to those used by Smith.

4.1 Smith’s Experimental Study of Market Behavior

Smith (1962) reports on experiments performed over a six-year period starting in 1955. All of the
experimental regimes are similar to that described ahove: a group of human subjects are divided
into a sub-group of sellers (each with an entitlement to sell one or more units of a commodity at



a price no lower than their specified limit price) and a group of buyers (each with an entitlement
to buy one or more units of the commodity at a price no greater than their specified limit price),
and the two groups then trade within some specified market mechanism. Each trader’s individual
limit price is private (i.e., is not known by any other trader). Each buyer is encouraged to trade
in the market by being instructed to consider the difference between the given limit price and
the actual contract price paid for the commodity as pure profit. Furthermore, buyers are told it
is better to make no profit and own the commodity than to go without (i.e., they are encouraged
to “trade at the margin’). Similarly, each seller is instructed to consider the difference between
the contract price and the given Hmif price as profit, and to trade at the margin.

Each experiment is run as a sequence of distinct trading periods or ‘days’. At the start of
each day, all the traders are allowed to make verbal ‘shouts’ (i.e., quotes) of a price: sellers
shout offers (e.g., “sell at $2.50) al d buyers shout bids (e.g., “buy at $1.20”). The shouts
continue, typically with both groups 'of traders altering their shout-values (increasing bids and
decreasing offers) in an attempt at securing a deal. At any time, a buyer is free to accept a
seller’s offer or a seller is free to accept a buyer’s bid. When this happens, the buyer and seller
are considered to have entered into a binding contract to make the deal: for both traders, the
number of units they are entitled to trade in is reduced by one, and when a trader’s entitlement
reaches zero that trader drops out of the market for the remainder of that trading day. This
process continues until the shouts of the traders no longer lead to contracts being made, or when
some predetermined time-limit (typically five or ten minutes) is reached, at which point the day
ends. If there are more days to run, the entitlements of all traders are then restored to their
start-of-day values and the market reopens for another day of business.

The distribution of limit prices determines the supply and demand curves for the experiment,
and their intersection indicates the theoretical equilibrium price and quantity. In a typical
experiment, trading in the first day is characterised by early transactions taking place at prices
that differ significantly from the equilibrium value: as the day progresses, the transaction prices
approach the equilibrium value. On subsequent days, the transaction prices are initially nearer
equilibrium, and approach equilibrium faster. In most of the experiments described by Smith
(1962), only the prices of agreed transactions were recorded. However, it can be informative
to record all the prices shouted by the traders, including offers and bids that are not accepted
(e.g., Smith, 1962, Chart 10). Qualitative illustration of such data for an idealised experiment
is shown in Figure 2.

To better characterize the convergence of transaction prices, (referred to as ‘exchange prices’
in Smith’s paper), Smith introduced a “coefficient of convergence”, a, that is computed at the
end of each day’s trading in the market. This metric is defined as a = 10000/ Py, where “...0q
is the standard deviation of exchange prices around the equilibrium price rather than the mean
exchange price.” (Smith, 1992, p.13).2 In most of Smith’s experiments, a tends to decline from
one trading day to the next. Smith also monitored the allocative efficiency of the market. This
is defined as the total profit earned by all the traders divided by the maximum possible total
profit that could have been earned by all the traders, expressed as a percentage. Typically, after
one or two trading periods. human traders achieve allocative efficiency very close to 100%.

In the first eight experiments reported by Smith (1962), each trader is allowed to buy or
sell only one unit, although in later experiments this constraint was relaxed. Smith also experi-
mented with changing the supply and demand during the experiment (i.e., after a few trading
days, before the start of the next day’s trading, a new set of limit prices were given to the
subjects), and with having the buyers remain silent while only the sellers were allowed to shout

*Formally, for a set of n transaction prices denoted by P: 1 € {1,...,n); 00 = Vi Yo (P = P2,
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Figure 2: Time series of shout prices for bids and offers, both accepted and rejected. This synthetic data shows
an idealization of the market process in one 5-day experiment. Shout prices for bids are shown as triangles, while
offers are shown as squares. Open symbols are shouts that were ignored, while filled symbols are shouts that were
accepted. The horizontal dashed line indicates the theoretical equilibrium price Py, and the vertical dashed lines
indicate the end of trading periods or ‘days’. For clarity, a line joins the sequence of accepted bids and offers:
as the experiment progresses, the transaction prices approach equilibrium, and on successive days there is less
variance from, and faster approach to, the value of Py.

offers: an experiment discussed in more detail in Section 6.4. Smith’s results qualitatively indi-
cated that the relationship of the supply and demand curves had an impact on the way in which
transaction prices approached equilibrium: whether equilibrium was approached from above or
below the predicted value, and whether the value was actually reached or the traders stabilised
at an off-equilibrium value. Discussing these results in a subsequent publication, Smith states:

“What have I shown? I have shown that with remarkably little learning, strict
privacy, and a modest number [of subjects], inexperienced traders converge rapidly to
a competitive equilibrium under the double auction mechanism. The market works
under much weaker conditions than had traditionally been thought to be necessary.
You didn’t have to have large numbers. Economic agents do not have to have perfect
knowledge of supply and demand. You do not need price-taking behavior — everyone
in the double oral auction is as much a price maker as a price taker.” (Smith, 1992,

p.157).

Smith’s (1962) results were some of the first to demonstrate that markets consisting of
small numbers of traders could still exhibit equilibration to values predictable from classical
microeconomic theory. To appreciate why this is significant, it is necessary to consider the
underlying supply and demand curves in more detail.

Consider a simple example where there are five sellers, denoted by the letters A to E, and
five buyers, F' to J, each with an entitlement to trade one unit. If the limit prices for the
sellers are, say, A=$1.50, B=$2.00, '=$2.50, D=$3.00, and E=$3.50 then there is an upward-
sloping demand curve: at prices less than $1.50, no sellers are able to sell; at prices between
$1.50 and $2.00, only A is able to s¢ll; between $2.00 and $2.50, both A and B are prepared
to sell, so the quantity supplied is to; the increase in quantity supplied continues at higher
prices, until a quantity of five is reached at prices above $3.50, where all the suppliers are able
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to sell. Similarly, assigning buyer limit prices of F'=$1.50, G=$2.00, H=$2.50, [=$3.00, and
J=$3.50, gives a downward-sloping|/demand curve: at prices less than $1.50, all five buyers are
able to trade, and as higher prices ate considered so the quantity demanded falls, until the value
of $3.50 is reached, above which n buyers are able to trade. The corresponding supply and
demand curves are illustrated in Figure 3. From the figure, it is clear that the equilibrium price
is $2.50, and the clearing quantity jis three. If traders were not actively encouraged to enter
into marginal deals, the equilibrium| price would still be $2.50 but the clearing quantity would
be either two or three: the horizontal overlap of supply and demand creates what Davis and
Holt (1993, p.131) refer to as a ‘volume tunnel’. Entitlements to buy or sell that determines the
supply and demand curves to the left of the equilibrium quantity Qg are referred to as intra-
marginal (or infra-marginal) units, while those determining the shape of the curves to the right
of Qo are eztra-marginal. Thus the entitlements of traders A, B,J, and I are intra-marginal,
while D, E, F, and G are extra—maréinal; C and H are simply marginal.

Price ($)
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Figure 3: Supply and demand curves foﬁ ten traders. The supply curve is shown as a dashed line for extra
clarity. There are five sellers (A to E), each with one unit to sell, and five buyers (F to J), each with the right
to buy one unit. The step-changes in the qj&mtities supplied and demanded are dependent on the limit prices of
the individual traders, as indicated by the lg‘bels A to J. The intersection gives equilibrinm values Po=$2.50 and

Qo=3. :

As is evident in Figure 3, the sipply and demand curves are stepped. This is because
the commodity is dealt in indivisible }discrete units, and there are only a small number of units
available in the market. Thus, supply|and demand in this simple market differs appreciably from
the smoothly sloping curves of an idealised market, as was illustrated in F igure 1. The idealised
market is based on conditions where the step-changes involved can be treated as infinitesimally
small. Most classical theories of price determination and equilibration assume or require a large
number of traders: if an individual :l;ra,der drops out of the market, the supply and demand
curves remain essentially the same. But in markets with few participants, this is not the case.
Consider the simple market illustrateéd in Figure 3: if the first trade in the market is between
seller C' and buyer I (at a price, say, of $2.65: giving profits of $0.15 for C and $0.35 for I)
then these two traders drop out of the market, but the resultant supply and demand curves,
illustrated in Figure 4, are significantly different. Now the equilibrium quantity is reduced to
two. and the equilibrium price is indidated at $2.25, although technically it is no longer a scalar
value: rather there is now a bounded |range of possible equilibrium prices, from $2.00 to $2.50:
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what Davis and Holt (1993, p.131) refer to as a ‘price tunnel’; any price within this range would
be an equilibrium value.
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Figure 4: Supply and demand curves for eight traders. This is the market illustrated in Figure 3, after traders
C and I have agreed a deal and left the mafket The equilibrium price and quantity have altered.

Matters are further complicated when the difference between the underlying and apparent
supply and demand curves is con31d¢red Each active trader in the market will be trying to
make a profit, so buyers will be shoptmg prices lower than their individual limit prices, and
sellers will be shouting prices higher| than their limit prices. Because the limit price of each
trader is private (i.e., known only to t#hat trader), the prices shouted by the traders give only an
indication of the underlymg supply and demand determined by the limit prices: the apparent
supply and demand, based on the ach;ual prices shouted, may be significantly different. Thus,
Figures 3 and 4 show underlying supﬁly and demand before and after the trade between C and
I, but an observer of (or participant m) the market does not have access to this information:
these underlying schedules can only be guessed at by the traders, and the only information they
have available is the shout-prices obsérved (i.e., “heard”) in the market.

Smith (1992, pp.809-810) refers to the underlying supply and demand as the market supply
and demand, and to the apparent supply and demand as the seller’s offer array and buyer’s bid
array: referred to collectively as the lﬁd-and-offer arrays (Davis & Holt, 1993, p.300).

To illustrate the difference, assume that each trader has a ‘profit level’ that he or she aims
to achieve in selling or buying, and express this as a percentage of the trader’s limit price. So
a seller with a limit price of $2.00 a.nﬂ a profit level of 10% will shout a price of $2.20, while a
buyer with the same limit price and profit level will shout a price of $1.80. Now take the market
of Figure 3 and assign each trader a randomly chosen profit level in the range 0% to 50%. For
example: A=35%, B=5%, C=15%, 1)=35%, E=10%, F=20%, G=30%, H=5%, I=25%, and
J=10%. From these percentages, we can calculate the prices each trader would shout: A=$2.03,

=$2.10, C=$2.88, D=$4.05, £E=$3.85, F=$1.20, G=%1.40, H=82.38, 1=%2.25, and J=$3.15.
Now if we assume that, at the start jof the day, all traders shout their prices simultaneously
(unlikely, but equivalent to a single-round sealed-bid auction), then the prices heard in the
market give the apparent supply and|demand curves illustrated in Figure 5. As can be seen,
the apparent supply and demand differ significantly from the underlying curves illustrated in
Figure 3. The equilibrium price and q¢ant1ty are different, and the ranking of the trader’s prices
has altered.
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Figure 5: Bid-offer array for the ten-trader market illustrated in Figure 3, given random profit levels between
zero and fifty percent. Each buyer’s limit and shout prices are illustrated as dark inverted triangles, while each
seller’s limit and shout prices are illustrated by light upright triangles: the base of each triangle indicates the
trader’s limit price, while the apex indicates the trader’s shout-price. The array of bid-prices gives an apparent
demand curve D, and the array of offer-prices gives an apparent supply curve S. The apparent supply and demand
curves differ significantly from the underlying supply and demand shown in Figure 3: see text for discussion.

Finally, it should be noted that the apparent supply and demand schedules are dynamic, and
can alter rapidly. Because no trader has full knowledge of the underlying supply and demand,
traders might base their profit levels on an initial guess that is then refined on the basis of hearing
the prices shouted by the competition (other members of the trader’s group) and opposition
(traders in the other group, or ‘contraside’ (Bollerslev & Domowitz, 1992, p.226)), and on
the basis of which shouts lead to deals and which are ignored. In an open-outcry continuous
double auction, such information arrives in a continuous asynchronous stream. Moreover, the
underlying supply and demand dynamically shift as traders make deals and leave the market
(discussed further in Section 6.4).

Despite this, the humans in Smith’s experiments rapidly approach the competitive equilib-
rium predicted from classical rational-expectations theory. Figures 6 to 9 show some of Smith’s
(1962) results. In all four figures, the supply and demand curves are shown on the left, and the
time series of transaction prices over a number of trading days is shown on the right. In Fig-
ure 6, there are 11 buyers and 11 sellers, each with the right to buy or sell one unit: Py = $2.00;
Qo = 6. The shaded area in Figure 6 indicates the available ‘surplus’ or ‘rent’ in the market:
this is divided into two regions by tﬁe horizontal line at Py, and Smith hypothesised that the
ratio of the areas of these two regions affected the nature of the approach of transaction prices to
the theoretical equilibrium price. As is clear on the right of Figure 6, transaction prices converge
toward equilibrium over the five trading days, and the number of transactions per day varies

from five to seven. |

In Figure 7, the supply curve is ‘perfectly elastic’ (i.e., flat). As can be seen, the transaction
prices approach equilibrium from abowe, but level out at prices approximately $0.20 above equi-
librium. In the original experiment, Smith attempted to ‘shock the market down to equilibrium’
by decreasing demand at the end off Day 4 and continuing the experiment for another three
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days, but this had no discernible effedt on transaction prices.

In Figure 8, there is excess demand (12 sellers but 17 buyers): transaction prices converge
to equilibrium very slowly, and from below: when equilibrium is reached, there is evidence of
some ‘overshoot’. In the original expetiment, Smith reduced demand after Day 4 and continued
the experiment for two further days:| the market quickly converged (from above) on the new
equilibrium, and did not overshoot it.| .

In Figure 9, supply and demand jare similar to Figure 6 but only sellers were allowed to
shout offer-prices: buyers played a pdssive role, making no bids, and staying silent until they
accept an offer. This was intended to model a retail market (rather than a continuous double
auction): transactions start in Day 1 at above-equilibrium values, but over the course of the
first day they fall below the equilibrium price, and remain low for the next three days. In the
original experiment, Smith allowed the buyers to announce bids after Day 4, continuing for two
more days: the change in market org;nisation was reflected by transaction prices moving back
to values at and above the equilibrium price. This particular experiment is discussed in more
depth in Section 6.4.

4

B T

Day 5

il
'
'
'
'
'
'

Day lE Day 25 Day 3, Day4

12 5 5 S 7 6

Figure 6: Redrawn from [Smith’s (1962) Chart 1: see text for discussion.

Human beings are notoriously smai:rt creatures: the question of just how much intelligence
is required of an agent to achieve human-level performance is an intriguing one. This question
was addressed by Gode and Sunder, whose work is summarised in the next section. Gode and
Sunder’s results indicate that no intelligence is required, but this claim is called into doubt in
Section 5. Following that, Section 6 demonstrates that, although zero intelligence is not enough,
simple mechanisms similar to those just described (i.e., each trader shouting a price determined
by a combination of that trader’s limit Erice and profit level, with the profit level being adjusted
on the basis of other shouts in the market) can give performance very similar to that of groups
of human traders. 3
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Figure 7: Adapted from from Smith’s (1962) Chart 4. See text for discussion.
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Figure 8: Adapted from Smith’s (1962) Chart 6. See text for discussion.

4.2 Gode and Sunder’s Zero Intelligence Traders

Gode and Sunder (1993) describe a set of experiments similar in style to Smith’s, but which use
“zero intelligence” (z1) programs that submit random bids and offers to replace human traders
in electronic double-auction markets. They explore the performance of both ‘unconstrained’ and
‘constrained’ zero-intelligence traders; which they refer to using the abbreviations z1-v and zi-c,
and compare the results of these traders to results from human traders operating in (almost)
identical experimental conditions.

As with Smith’s work, each tradeT is given an entitlement to buy or sell a number of units,
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Figure 9: Adapted from Smith’s (1962) Chart 8. See text for discussion.

each with a particular limit price. Hids and offers were limited to the range 1 to 200 units
of arbitrary currency (which I'll write as $0.01 to $2.00, for consistency with the previous
discussions). For z1-U traders, the shout-price for a unit of commodity is unconstrained across
this range: there is a 1/200 probabilitj" that the value of a random shout is v. This means that
that the z1-u traders can enter into loss-making deals: a seller of a unit of commodity could
shout a price less than the given limit price, or a buyer could shout a price greater than the
limit; in either case, if the shout is chcepted by another trader, the agent makes a loss. In
contrast, zI-C traders are subject to a|‘budget constraint’ that prevents them from engaging in
loss-making deals: a zi-c seller can oxﬂy make offers in the range between the limit price and
the $2.00 maximum; and zI-C buyers qa,n only make bids in the range from the $0.01 minimum
up to their limit price. The shout pr1¢es are generated from a uniform distribution across the
range for each zI-c trader.

The experiments with both types bf Z1 traders were conducted using minor simplifications
of the NYSE continuous double auction, with a transaction cancelling any unaccepted bids and
offers. The traders dealt in lot-sizes of 1a single unit of commodity. To accommodate the lack of
intelligence of the traders, a deal was made whenever a bid and offer crossed: whenever a buyer
made a bid higher than the current loWest offer, or whenever a seller made an offer lower than
the current highest bid. In both cases,i the transaction price is the earlier of the two shouts.

Gode and Sunder (1993) report o¢ I traders with the right to buy or sell multiple units
of commodity during the course of the experiment, with the lot-size for each offer, bid, and
deal fixed at one unit. They state (1993, p.122) that experiments with a single unit per trader
(reported in (Gode & Sunder, 1992)) jgave similar results, although the single-unit-per-trader
studies were not concerned with the behavior of prices (Gode & Sunder, 1992, p.202). The units
given to an individual seller may have different limit prices, as may the purchase rights given to
an individual buyer. In one experiment, several traders were given limit prices for all their units
that were extra-marginal (beyond the jequilibrium point and therefore difficult to trade) while
the other traders’ assignments were at] intra-marginal units. In the other experiments, each
trader had a spread of limit prices across the range of supply or demand. To avoid requiring the
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traders to make a decision about which of their stock of units they should sell next, or which
of their rights to buy they should exercise next, the rights to buy or sell were assigned to each
agent in a pre-specified order of execution.

Differences in performance between the zI-u and zi-c traders, and between the zi-c and
human traders, could indicate the different extents to which overall market behavior is dependent
on human intelligence or market struicture:

|

“The difference between thé performance of the human markets and that of the
zI-C markets is attributable toisystematic characteristics of human traders. If z1-c
traders are considered to have zero rationality, this difference in performance would
be a measure of the contribution of human rationality to market performance. On
the other hand, the difference between the performance of markets that do impose
a budget constraint on zI traders and the performance of those that do not is at-
tributable to the market discipline. Traders have no intelligence in either the zi-u
or zI-C market: the zZI1-C market prevents the traders from engaging in transactions
that they cannot settle. Consequently, we can attribute the differences in market out-
comes to the discipline imposed by the double auction on traders” (Gode & Sunder,
1993, p.123). '

Results from five experiments are reported in the 1993 paper. Each experiment is repeated
three times: once with z1-u traders (six buyers and six sellers), once with zI-c traders (six buyers
and six sellers), and once with human subjects (six or seven buyers and six or seven sellers, all
of whom were business graduate students, given an incentive to do well by having their profits
included in the grading scheme for their course). Like the z1-c traders, the humans were subject
to the budget constraint: they could (or should) not enter into loss-making deals. Although the
supply and demand schedules varied between experiments, in any one experiment the zi-U and
z1-C traders had identical supply and demand schedules, and the humans schedules differed only
slightly, when there was an extra trader or buyer. Nevertheless the human schedules were very
similar to those of the zI traders, and had the same equilibrium price and quantity.

Figure 10 gives an indication of the qualitative differences between the price histories of the
three types of trader: in all five experiments, the same qualitative differences emerged. Prices
in the zI-U markets exhibited “...little systematic pattern and no tendency to converge toward
any specific level” (Gode & Sunder, 1993, p.126). Price histories in the human markets were
similar to those in Smith’s early experiments: the transaction prices soon settle to stable values
close to the theoretical equilibrium price, after some initial learning and adjustment. As Gode
and Sunder (1993, pp.127-128) note, such price series are “...the result of subjecting profit-
motivated, intelligent human traders to market discipline”, and the main question addressed in
their article is to what degree the difference between the market activity of the human and zI-u
traders is due to the intelligence of the traders, and to what degree the difference is due to the
imposition of the budget constraint. It is this issue that the data from z1-C traders helps resolve:
they have the same budget constraint as the humans, but none of the intelligence or ability to
learn from experience.

Gode and Sunder (1993, p.129) point out three notable features of the zi-C transaction-
price time-series. First, as would be expected from traders that have no memory or adaptation
mechanisms, there is no evidence of learning from day to day. Second, the volatility of the
21-C prices is intermediate between thie highly volatile zi-v prices and the stable human prices:
the presence of a budget constraint ik sufficient to shift the z1 market behavior towards that
of humans. Third, despite being mdre volatile than the human price series, the zI-C prices
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Figure 10: Typical results from one of Gode and Sunder’s experiments (redrawn from Gode and Sunder (1993,
Fig.4, p.127)). Top: results from zI-U traders. Middle: results from zI-C traders. Bottom: results from human
traders. The figure to the left shows the supplb' and demand schedules for the experiment, the figure to the right
shows the time series of transaction prices.

converge slowly to equilibrium during each day’s trading (this is clear in the middle transaction-
price time-series in Figure 10). Gode abd Sunder confirm that this convergence is consistent by
regression analysis of Smith’s a convergence measure, averaged across the six days of a market,
versus transaction sequence number.

Gode and Sunder explain this conVergence to equilibrium by reference to the progressive
narrowing of the feasible range of transaction prices as more units are traded:

The left end of the market demand function represent units with higher redemp-
tion values [i.e., limit prices]. Expected values of the bids generated for these units
by z1-c traders are also higher. Therefore, these units are likely to be traded earlier
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than units further down the market demand function. As the higher-value units
are traded, the upper end of the support of zI-C bids shifts down. Similarly, as the
lower-cost units are sold earlier in a period, the lower end of the support of zI-C
offers moves up. (Gode & Sunder, 1993, p.129).

In addition to showing human-likeé tendency to equilibrium, zI-C traders also exhibit surpris-
ingly high levels for Smith’s measurg of allocative efficiency. In all five experiments, the mean
efficiency of human traders was over 90%, and in four of them it was over 99%. In contrast,
the zI-U traders recorded mean efficiencies of 90% in two experiments, and 77%, 49%, and 86%
in the others. But the zI-C traders spored over 99% in three experiments, and over 97% in the
other two: the average efficiency for|the humans was 97.9%, while for the zI-C’s it was 98.7%.
Gode and Sunder (1993, pp.131-133) did not perform any statistical tests, but the difference of
0.8% between the human and zI-C traders appears unlikely to be significant. Thus, the main
message of Gode and Sunder’s paper|is that allocative efficiency appears to be almost entirely a
product of market structure: prior tc# these experiments, it seemed fair to assume that the high
efficiency of human markets is a consequence of human cognitive prowess; in light of Gode and
Sunder’s results, such assumptions ake clearly highly doubtful.

Gode and Sunder close their paper with brief discussion of measurements of profit dispersion.
This is defined (1993, p.133) as the| cross-sectional root mean squared difference between the
actual profits and the equilibrium préﬁts of individual traders. The equilibrium profit of a trader
is the profit the trader would realise if all units are traded at the equilibrium price. Formally,
if a; is the actual profit earned by tﬁjader i, and p; is the theoretical equilibrium profit for that

trader, then for a group of n traders} the profit dispersion is given by \/ L (e — pi)2

Measures of profit dispersion were highest for the zi-u traders, and lowest for the human
traders. The values for zI-C traders were closer to those of the humans than the zI-U traders,
but were generally greater in ma.gnit{hde (again, no statistical significance tests were performed).
In two of the five experiments, the human data showed a definite decline in dispersion over a
number of trading days: “Without xhemory or learning, the ZI markets exhibit no such trend.
These results suggest that, in contrast to aggregate efficiency, distributional aspects of market
performance may be sensitive to human motivation and learning.” (Gode & Sunder, 1993,
p.134). ‘

While Gode and Sunder’s work is elegant and yields impressive results, there are some
questionable aspects. For instance, the maximum and minimum values for shout-prices have to
be specified in advance, which impliés that a priori information is employed. Furthermore, it is
not obvious how zI-C traders could He used in situations such as Smith’s experiment where only
sellers shout (at the very least, some extension of Gode and Sunder’s methods would have to be
specified). However, these are relatively minor superficial criticisms. A much more fundamental
critique of Gode and Sunder’s work is presented in the next section.
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5 Critique: Zero is not enough

i
Gode and Sunder’s central argument, [that the structure of a double auction market is largely
responsible for achieving high levels of allocative efficiency, regardless of the intelligence, moti-
vation, or learning of the agents in the market, is not in doubt. However, in this section, the
equilibrating tendencies of the zI-C traders is questioned. Gode and Sunder state (1993, p.131):

“...the convergence of transacti#n price [to the theoretical equilibrium price] in zi-C
markets is a consequence of the market discipline; trader’s attempts to maximize
their profits, or even their ability to remember or learn about events of the market,
are not necessary for such convetgence.”

This statement is proven below td) be incorrect. In Section 5.1 the statistics of the zi-C
markets are discussed qualitatively, néting that the average transaction prices observed in the
market are determined by the interse¢tion of the probability density functions for the buyers’
and sellers’ random bids and offers. The mean or expected value of the transaction-price distri-
bution is shown qualitatively to be close to the equilibrium price only in situations where the
magnitude of the gradient of linear supply and demand curves is roughly equal. Then, in.Sec-
tion 5.2, analytic results are presented that demonstrate that the expected value is equal to the
equilibrium price only in certain speciaﬂ cases, and that the expected value differs significantly in
other situations. To reinforce this resutt, empirical results from simulation studies are presented
in Section 5.3, which are discussed further in Section 5.4.

5.1 Qualitative Discussion

Parameters relevant to the discussion that follows are shown in Figure 11.

Price

Pmax
Dmax

Smax
Po

Dmin 1

Smin A
Pmin A

Qo
Quantity

Figure 11: Parameters for qualitative discupsion. Offers and bids are both subject to a maximum possible price
Prax and a minimum possible price Pmin. The Supply Curve S slopes upwards {rom Smin t0 Smax and the Demand
Curve D slopes downward from Dmax to Dain. The Supply and demand curves intersect at a point indicating
the Equilibrium Price P and the Equilibriufn Quantity (o. In this graph Dmin > Smin and Dmax > Smax but
these conditions are not mandatory.

Because the zI traders randomly generate bid and offer prices within given upper and lower
limits, and assuming (without loss of generality) that the prices vary continuously between those

27



limits, it is possible to construct prolbablhty density functions (PDFs) for the prices of bids and
offers shouted in the market. g

In the case of zI-U traders, the ¢onstruction of the PDF is trivial: as noted by Gode and
Sunder (1993, p.121), for prices in the range 1 to 200, the probability that a randomly generated
bid or offer is nearest some integer value i is 1/200 (= 0.005) for all : = 1,2,...,200. Thus a
graph of the z1-u PDF shows a uniforn distribution of probabilities, as illustrated in Figure 12.

Probability (P=p)

0.005

Price p

Figure 12: Probability density function (PDF) for prices ‘shouted’ by zI-U traders: this PDF applies both to the
sellers’s offer-prices and the buyers’ bid-pricks.

However, the zI-c traders have shghtly more complex PDFs. Consider the case for a ZzI-C
seller: it can only generate an offer price between its allocated limit price, and the predeter-
mined system-wide maximum price Ppay for bids or offers (Ppax = 200 in Gode and Sunder’s
experiments), and the seller’s individual PDF is uniform over that range. Thus, for the market
as a whole, the sellers’ supply curve ﬁcts as a lower bound on the offer prices generated at any
given quantity (shown in Figure 13), a}nd so the PDF for offer prices in the market rises from zero
to some threshold value, at which it kmght plateau, before falling back sharply to zero at Ppax
(Figure 14). This qualitative description can be justified as follows: there is no probability of an
offer price below the lowest seller’s ccist (Smin); as prices higher than Smin are considered, more
offers are likely because there are mork sellers able to bid; once prices greater than the maximum
seller’s cost (Smax) are considered, inicreasing prices are not increasingly likely as all sellers are
able to make offers in that price ranée (hence the potential for plateau); and the probability of
an offer above the system maximum [Ppay is zero.

Similarly, the range of possible pkices for bids from zI-c buyers is bounded from above by
the demand curve (formed by the Huyers’ limit prices) and from below by the system-wide
minimum price Ppin for bids or offefs (i.e. Pmin = 1 in Gode and Sunder’s experiments): see
Figure 15. Thus the PDF for bid prices in the market is zero at prices below Ppin, constant for
prices between P, and the minimum buyer limit price Dp;n, then falls gradually to reach zero
at the highest buyer limit price Dpay: see Figure 16.

Having established qualitative PDFs for the offers generated by the sellers and the bids
generated by the buyers, we can now consider the pDF for transaction prices: recall that a
transaction is made when a buyer’s bid is accepted because it is higher than the current best
(lowest) offer, or when a seller’s offer is accepted because it is lower than the current best
(highest) bid. But the current best |bid and offer must be valid, i.e. must come from one of
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Pmin  Smin Smax  Pmax
Price p
Figure 13: The supply curve provides a lower
bound on the range of possible offer prices from
21-C sellers at any given quantity; the system max- Figure 14: Qualitative probability density func-
imum Prax provides an upper bound. tion (PDF) for ZI-C sellers: see text for discussion.

Price

Probability(P=p)

Quantity .
Pmin  Dmin Dmax  Pmax
' Price p
Figure 15: The demand curve provides an up-
per bound on the range of possible bid prices from
2I-C buyers at any given quantity; the system min- Figure 16: Qualitative probability density func-
imum Ppj, provides a lower bound. tion (PDF) for zI-C buyers: see text for discussion.

the PDFs in Figures 14 and 16. Thus, the PDF for transaction prices will be determined by the
intersection of the PDFs of the offer prices and bid prices: transactions require a valid bid and
a valid offer; despite the fact that many bids may be made at prices lower than Sinin, No seller
can accept one; and although many offers may be made at prices higher than D,,,,, no buyer
can accept one. Figure 17 shows the intersection of the PDFs for offer and bid prices; and the
corresponding PnF for transaction prices.

Finally. note that in Figure 17 the peak of the PDF, indicating the most probable transaction
price(s), is very close to the Equilibrium Price Py (cf. Figure 11). Thus. qualitatively at least, it
would appear that near-equilibrium transaction prices are expected because of the shape of the
'PDF for valid deals: this zI-C system is structured a priori to generate mean transaction prices
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area shows the intersection of the PDFs for offer and bid prices; this
, but requires normalisation so that the area of the triangle is unity.
Ansaction prices. ’

Figure 17: Left: darkest-shaded triangulas
area indicates the PDF for transaction priceg
Right: corresponding normalised PDF for tr4

close to the theoretical equilibrium price.

If this is true, it is only because the transaction price PDF has a shape closely approximating
an isosceles triangle, which is a consequence of the supply curve S and the demand curve D
being symmetric (i.e., having gradients of opposite sign but approximately equal magnitude).
As is proven in the next section, when the linear S and D curves have gradients opposite in sign
and identical in magnitude, the mean transaction price is identical to the equilibrium price: the
equilibrating tendency of the z1-C traders is thus a consequence of the underlying statistics of
the system. Furthermore, it is demonstrated below that, in general, the mean transaction price
of zI-c traders differs significantly from the theoretical equilibrium price.

5.2 Analytic Arguments

Let f(p) denote the PDF for transaétion prices. If f(p) is known, then the mean or expected

value E(P) of the transaction prices| can be calculated from the standard formula:

»;F(P) = /oo p-f(p)dp (1)

—00

Consider the case where the supply and demand curves are symmetric (i.e., have opposite
sign and equal magnitude), as illus rated in Figure 18. The corresponding PDF is shown in

Figure 19. Such a market is similar
The transaction-price PDF can b

filp)

Let k = Dpax — Po: note that, as
Also, from Figure 19. my = hy/k =

gives:

to Smith’s (1962) ‘Chart 1’ (see Figure 6).
e written as:

(0 if p< Smin
mip + ¢s Smin <P < Py (2)
—-mip+ca Po < p < Dmax

L 0 P > Dmax

the PDF is an isosceles triangle. k = Po— Smin and bk = 1.
1/k?. Therefore, substituting Equation 2 into Equation 1
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Figure 19: Transaction-price PDF for supply and
demand curves of Figure 18: see Equation 2.
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(3)

Thus, Equation 3 demonstrates th#t when the supply and demand curves are linear, having
opposite sign and equal magnitude, th¢ mean transaction price F(P) is equal to the equilibrium

price FPj.

Now consider the case for a PDF w
(see e.g. ‘Chart 4’ in Smith (1962), sk
Figure 20, with the corresponding tran

The PDF f5(p) is given by:

J2(p) =

For my = —h,/j where j = D,
iIs a PDF and a right-triangle, hyj/2 o
Equation 4 into Equation 1 gives:

E(P)

here the supply curve is flat, so that Spin = Smax = Po
own in Figure 7). Such a supply curve is illustrated in

saction-price PDF shown in Figure 21.

0 if p< Py
map+c2 Py <p< Dhyax (4)
0 P > Dpax

— Py, and ¢; = 2P, /j%. Note also that because f,(p)
1, so hy = 2/j and hence my; = —2/52. Substituting

Dmax
/P pfa(p) dp

110
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Figure 20: Flat supply curve. Figure 21: PpF for flat supply.
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o+3 ]2] t53 ]
= Po+l'
3
1
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So Equation 5 indicates that, when all the sellers have the same limit price, the expected
transaction price of zI-C traders will} differ from the equilibrium price Py by an amount equal to
one third of the difference between Po and the maximum buyer price, Dmax-

Finally, consider the case of “box design” schedules (Davis & Holt, 1993, p.141), where both
the supply curve and the demand chrve are flat, so that Smin = Smax and Dpin = Dmax. Such
markets are similar to Smith’s (196?) ‘Chart 6’ (see Figure 8). If demand equals supply, then
there is an indeterminate ‘price tunnel’ and the equilibrium price cannot be accurately predicted.
However, if demand exceeds supply Qa.s illustrated in Figure 22), the equilibrium price Py is equal
10 Dmax: the excess demand encourages price competition that will lead to price increases until
the maximum buyer limit price is re#ched. This gives a rectangular PDF, illustrated in Figure 23
and stated formally as f3(p) in Equation 6.

fS(F) = h3 Smin S p S PO (6)
0 p> Po

Let i = Py — Smin and note that|/hsi = 1. Substituting Equation 6 into Equation 1 gives:

Po
E) = [ phip)dp
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Hence Equation 7 demonstrates tHat, in situations where both supply and demand are flat,
and there is excess demand, then so ld}ng as Smin # Po the expected value E(P) of transaction
prices will differ from FP,. 3
By the same reasoning, mutatis mutandis, if supply and demand are flat but supply exceeds
demand, then the excess supply encourages price cuts and so Py = Smin; the expected value
E(P) differs from Py so long as Dmax # Po, and is given by Equation 8:

E[P) = %(PO + Drmax) (8)

These four examples show that while E(P) = P, in special circumstances, in general E(P) #
Py. Similar arguments could be made|for systems with discrete rather than continuous prices.
The following section presents empiricaLl evidence that supports the analytic argument developed
here. ‘

5.3 Simulation Studies

A computer simulation was written tostudy the behavior of zi-c traders under different supply
and demand schedules. The simulator Was written in the C programming language: full details of
the code are given in Appendix A, witﬂ sample input and output in Appendix B. The simulator
allows for a number of zi-c traders to be allocated roles as buyers or sellers, and to be given limit
prices for their bids and offers. Resul#s from four experiments are shown here, corresponding

33



to the four types of supply-demand schedules examined analytically in the previous section. All
experiments were run for ten trading sessions (or “days”), which continued until either eleven
transactions had occurred, or no buyers or sellers were able to shout (because of the NYSE rule).
In each experiment, the theoretical equilibrium values are Py = 200 and Qo = 6.

Figure 24 shows a symmetric schedule where the supply and demand curves have opposite
signs but equal magnitudes: there are eleven buyers each with the right to buy one unit, and
eleven sellers each with a single unit to sell, The intersection of the curves indicates Py = 200.
Figure 25 shows the average transaction price of each of the ten days, over 50 experiments,
with lines above and below indicating the standard deviation. As is clear, the observed average
transaction price is close to 200, which is the value predicted by Equation 3. '

3.00
400 ‘
S
350 | | 250 |
0 L1 I )
2'.00 - N 4
sl L. I T T
200 150 [
150
) . ]
100 10, 2 4 6 8 10
50
Quantity .
Figure 25: Mean daily transaction price, aver-
; aged over 50 ZI-C experiments, for the supply and
Figure 24: Symmetric supply and demand demand shown in Figure 24: the middle line is
curves (gradients opposite in sign and equal in the mean value, upper and lower lines indicates
magnitude): 11 buyers and 11 sellers. Theoreti- the mean plus and minus one standard devia-
cal equilibrium price P, = 200; expected value of tion. Horizontal axis is day-number, vertical axis
transaction prices E(P) = 200 from Equation 3. is price (divided by 100). See text for discussion.

Figure 26 shows a schedule where there is a flat supply curve. Again there are 22 zi-c traders
divided equally into buyers and sellers, each with the right to trade one unit. The intersection
of the curves indicates Py = 200, but Equation 5 predicts that the observed mean value of
transactions will be closer to 240. Now recall that Equation 5 is for a continuous linear demand
curve, while the nonlinearities in the demand curve of Figure 26 (a consequence of having only
eleven buyers) imply that the actual lk'alue of E(P) may differ. By inspection, it is clear that:

/ 325 325
EP)=| 3 pam /| > 9
\p=200 p=200

for
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if p < 200
200 < p < 225
225 < p < 250
250 < p < 275
275 < p < 300
300 < p < 325
p> 325

9(p) = <

O~ NWR O

\

And hence the true value for the discrete nonlinear curve shown in the F igureis E(P) = 233%.
Figure 27 then shows the average tranisaction price of each of the ten days, over 50 experiments,
with lines above and below indicating the standard deviation. As is clear, the observed average
transaction price is close to the predicted value of 233, and significantly different from the
theoretical equilibrium price of 200.
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Figure 26: Flat supply: 11 buyers and 11 sell-

ers. Theoretical equilibrium price P, = 200; jex-

pected value of transaction prices E(P) =~ 241 :

from Equation 5, which is for a continuous lin?ar Figure 27: Mean daily transaction price, aver-
demand curve: taking into account the discrete aged over 50 ZI-C experiments, for the supply and
and nonlinear nature of the curve shown here gives demand shown in Figure 26: format as for Fig-

E(P) = 233%' ure 25. See text for discussion.

Figure 28 shows a schedule where the supply and demand curves are both flat, and there
is an excess of demand (eleven buyers and six sellers). The intersection of the curves indicates
Fo = 200, but Equation 7 predicts E(P) = 125. Figure 29 then shows the average transaction
price of zI-C traders for each of the ten days, again over 50 experiments, with lines above and
below indicating the standard deviation. As is clear, the observed average transaction price is
close to the predicted value of 125, and| significantly different from the theoretical P.

Finally, Figure 30 shows flat supply and demand with excess supply (six buyers and eleven
sellers). Again, Po = 200 but Equation 8 predicts E(P) = 260. The results from zI-C traders
are shown in Figure 31. Again, the observed mean transaction price is significantly closer to the
predicted value of E(P) than F,.

These four experiments lend strong empirical support to the analytic arguments of the pre-
vious section: the empirical average transaction prices of zI-c traders are close to the predicted
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Figure 28: Flat supply and demand curves, with
excess demand: 11 buyers and 6 sellers. Theoret-
ical equilibrium price Po = 200; expected value of
transaction prices E(P) = 125 from Equation 7.
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Figure 30: Flat supply and demand, with ex-
cess supply: 6 buyers and 11 sellers. Theoreti-
cal equilibrium price Pp = 200; expected v#lue of
transaction prices E(P) = 260 from Equation 8.
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Figure 29: Mean daily transaction price, aver-
aged over 50 ZI-C experiments, for the supply and
demand shown in Figure 28: format as for Fig-
ure 25. See text for discussion. )
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F igure 31: Mean daily transaction price, aver-
aged over 50 ZI-C experiments, for the supply and
demand shown in Figure 30: format as for Fig-
ure 25. See text for discussion.

value of E(P), and in the simulations shown here the average transaction prices are only close
to the theoretical equilibrium price Pp in situations where Fo and E(P) are similar in value.

5.4 Discussion

The mathematics of Section 5.2 could be criticised for ignoring the fact that the market supply
and demand curves shift after each: transaction: in principle, the analysis applied only to the
first transaction in each trading day. Nevertheless, there is such a good agreement between the
theoretical predictions of the zi-C traders’ failure and the results from the simulations that, in

practice, this criticism can be ignored.



A more subtle point is that Gode and Sunder’s main claim concerned the convergence of

transaction prices to equilibrium with‘in a trading day: whether this happens cannot be deter-
mined from Figures 25, 27, 29, or 31, which show average transaction prices for each trading
day.
To determine whether the zi-c tr%zders implemented here exhibit the same convergence to
equilibrium as Gode and Sunder’s, Figures 32 to 35 illustrate the root mean square deviation
of transaction price from the equilibiium price (Smith’s o) calculated for each transaction
sequence number. That is, for each ten-day experiment, a value og[1] is calculated from the
prices of the first transaction in each of the ten days, another value 0¢[2] is calculated from the
prices of the second transaction in each day, and so on: because each day’s trading with zI-C
agents is independent and identically distributed (IID), the day number is not relevant. For one
experiment, this gives a vector of values op[i] where ¢ runs from 1 to the maximum number of
trades recorded in a day. Fifty experiments give fifty such vectors, and the mean and standard
deviation of the values for each element of the vector are shown in Figures 32 to 35.

As can be seen, in the symmetric market of Figure 24 and the flat-supply market of Figure 26,
there is a clear reduction in deviation from equilibrium as the day progresses, indicating that
the transaction prices are indeed converging on equilibrium- within each trading day, as observed
by Gode and Sunder. : | )

1.00 1.00
0.80 | 4 0.80
0.60 0.60

0.40

020 A . + 020

Figure 32: Horizontal axis: transaction se- Figure 33: Horizontal axis: transaction se-

quence number. Vertical axis: root mean square
deviation of transaction price from equilibtium
price, for the symmetric market of Figure 24.
Averaged over 50 experiments, each of 10 days

quence number. Vertical axis: root mean square
deviation of transaction price from equilibrium
price, for the flat-supply market of Figure 26. For-
mat as for Figure 32.

(i.e., n=500). Solid line is mean; upper and lower
dashed lines are at plus and minus one standard
deviation respectively.

However, the data in Figure 34 and 35 show that the convergence to equilibrium does not
occur during trading days in the ‘box| design’ markets of Figure 28 and 30 respectively. There
is no apparent convergence to equilibrium, and this is to be expected from consideration of the
market supply and demand schedules: |in these two markets, all buyers have the same limit price,
and all sellers have the same limit price. Therefore each transaction is I1ID, and so there can
be no correlation between transaction sequence number and transaction price. Thus, in these
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deviation of transaction price from' equilibrium deviation of transaction price from equilibrium
price, for the excess-demand market of Figure 28. price, for the excess-supply market of Figure 30.
Format as for Figure 32. Format as for Figure 32.

markets at least, there is not even aiwithin-day convergence toward the equilibrium price.?

5.5 Summary

The qualitative discussion of Section 5.1 led to the analytic demonstration that while there are
conditions under which E(P) = Py, in general the expected value of ZI-C transaction prices will
differ from the equilibrium price. ﬁe empirical results presented in the Section 5.3 supported
these theoretical predictions: in all the simulation studies, the theoretical equilibrium price
Py = 200 and quantity Q¢ = 6, yet the mean daily trading price of z1-C traders was only close
to the theoretical P, when the suppﬁy and demand curves were symmetric: in the other cases,
the mean zI-C transaction prices deviated from the theoretical Py value by amounts predictable
from the equations for E(P). As the zi-c traders are nothing more than stochastic systems
generating random bids and offers, it would appear that the following hypothesis holds:

The mean transaction price in zI-C markets can be predicted from the expected
value E(P) of the probability density function (PDF) given by the intersection of
the sellers’ offer-price PDF and the buyers’ bid-price PDF. Only in conditions where
E(P) is close to the theoretic:al equilibrium price Py, will mean transaction prices
appear to be close to Py. In general, E(P) and Py will differ, and mean transaction
prices will then be at values clpse to E(P) rather than Fp.

Furthermore, as was demonstrated in Section 5.4, although Gode and Sunder’s observation of
‘within-day convergence of transaction prices toward the equilibrium value was replicated here in

*It is tempting to conjecture that the speed of convergence is determined by the supply and demand schedules:
Figure 33 clearly shows faster convergence than figure 32, and the lack of convergence in Figures 34 and 35 could
be characterised as convergence at zero speed. Possibly this is a consequence of the differences in the supply and
demand schedules of the different markets: further work would be required to determine whether there is a causal
link.

38



two markets (Figures 24 and 26), such tonvergence was not observed (and indeed is theoretically
impossible) in the ‘box design’ marketp (Figures 28 and 30).

From this it is clear that more than zero intelligence is necessary to account for convergence
to equilibrium. In the next section, trading agents with slightly more than zero intelligence are
introduced, and it is demonstrated that more human-like market performance is possible with
remarkably little extra brain-power.
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6 Zero-Intelligence-Plus (ZIP) Traders

In Section 4.1, the difference between the underlying and apparent supply and demand curves
was illustrated by considering the case where each trader is aiming for a particular level of
profit: the profit margin determines the difference between the trader’s limit price and shout-
price. Intuitively at least, this has some appeal: initially, the only information known to a
trader is the limit price(s) for the unit(s) the trader is entitled to sell or buy. In the absence
of any other information, a profit-oriented buyer might shout a very low bid price, say $0.05,
even if the buyer’s limit price is $10.00: there could be a seller willing to accept the low bid,
and the buyer would make a handsome profit. Similarly, a seller with a $1.00 limit price might,
if no other shouts have been made, quote a price of $10.00 just to test the market. But, in
a competitive market, with other traders holding roughly the same limit prices, these extreme
shouts are unlikely to result in transactions. As soon as one shout has been made, every other
trader in the market can use this to help determine a competitive price. As long as a trader
can undercut a competitor and still make a profit, there is an incentive to do so. Thus, however
extreme the initial shouts of greedy traders, there is a pressure on buyers to raise their bids,
and on sellers to lower their offers: if the traders have set their profit margins too high, they
will have to reduce them in order to remain competitive. |

But it is also possible that a rational trader’s profit margin will rise during a trading period.
For instance, at the start of trading, a seller in possession of a unit with a $1.00 limit price might
assume that 20% profit is a reasonable level, and so intend to shout an offer of $1.20. But, if the
first few offers from competing sellers are at prices near $10.00, and there are willing buyers at
these prices, the seller would be foolish to offer at $1.20: the seller’s intended profit level could
be increased forty-fold, and the resulting offer price of around $9.00 is still likely to be accepted
by a buyer.

Thus, a plausible story can be told whereby the agents in the market adjust their profit
margins up or down, on the basis of the prices of bids and offers made by the other traders, and
whether those shouts are accepted, leading to deals, or ignored. Whether such a story applies
to the market behavior of humans is a matter for empirical enquiry. The notes in this section
report on the development of simple mechanisms where individual traders adjust their profit
margins using market price information. It is demonstrated that remarkably simple adaptive
mechanisms can give performance that does not suffer from the problems affecting Gode and
Sunder’s zi-C traders, discussed in the previous section. Thus, these trading agents are referred
to as “zero-intelligence-plus” (zIP) traders.

Section 6.1 discusses at a qualitative level the conditions for raising or lowering a trader’s
profit margin. Section 6.2 then describes adaptive mechanisms that allow a trader’s profit margin
to alter over time. Results from simulation studies of zIP traders operating in the markets used
to illustrate the failure of zI-C traders are then presented in Section 6.3: the code and sample
input and output files for the simulator system are presented in Appendices A and B. The
intention here is only to demonstrate that the simple adaptive mechanisms in zIP traders can
give results better than zi-C traders and more similar to those of human traders. Following
the comparison of zIP and zI-C traders, Section 6.4 presents results from using zIP traders in
experimental markets similar to those lused by Smith, and illustrates the dynamics of adaptation
in zip traders. Section 6.5 describes related research, and finally Section 6.6 discusses further
issues that could be explored with zIp traders.
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6.1 Qualitative Considerations

In order to eliminate the need for sophisticated memory mechanisms, each zip trader alters
its profit margin on the basis of four factors. The first is whether the trader is active in the
market (i.e., still capable of making a transaction), or inactive (i.e., has sold or bought its full
entitlement of units, and has ‘dropped out’ of the market for the remainder of this trading
period). The three other factors all concern the last (most recent) shout: its price, denoted by
gq; whether it was a bid or an offer; and whether it was accepted or rejected (i.e., whether it
resulted in a transaction or not). As discussed above, each trader maintains a profit margin, g,
which is multiplied by the limit price for a unit, A, to determine the shout-price p. Increasing p
raises p for a seller and lowers p for a buyer. A zip buyer will, in principle, buy from any seller
that makes an offer less than the buyer’s current bid shout-price; similarly, a z1P seller sells to
any buyer making a bid greater than the seller’s current offer shout-price.

For an inactive trader, there is little incentive to lower the profit margin: the trader has
already successfully engaged in however many transactions it was entitled to. Even if this was a
result of luck, it may as well wait for the luck to run out before it starts reducing its profit margin.
But, if the trader drops out of the market and subsequently observes transactions occurring at
prices which indicate that the inactive trader could have realised even higher profits, it should
be able to raise its profit margin before the start of the next day. For these reasons, zIP traders
can raise their profit margins regardless of whether they are active or inactive, but only active
traders reduce their margins.

When should a trader raise its profit margin? For a seller s;, if the last shout resulted in a
transaction, and s;’s shout-price p; was less than the transaction price ¢, then the indications
are that s; could have asked an even higher price and still secured a deal, so s; should increase
its profit margin p;. The seller’s shout price could also be increased if its shout- price equals
the transaction price (i.e., if p; = ¢), because the resultant shift in the underlying supply curve
should be in the seller’s favour. Thus, if p; < g, seller s; should increase y;. Similarly, a buyer
b; should raise its profit margin whenever events in the market indicate that it could buy a unit
for a lower price than its current shout-price p;: that is, whenever p; 2> q.

Deciding when to lower a trader’s profit margin is more difficult. If sellers compete by
reducing their margins whenever a buyer makes an unsuccessful bid (below the sellers’ lowest
shout), the sellers would be playing into the hands of the buyers: if the buyers make a sequence
of very low bids, the sellers’ margins could be eroded to minimal levels while the buyers’ margins
remain unchanged. The reverse holds if buyers cut their profits whenever a seller makes an offer
that is rejected by the buyers. Thus, if a bid is rejected, it should be the buyers that reduce
their margins: in particular, any buyer who would have shouted a bid lower than the rejected
value of g should reduce their margin, thereby raising their next bid. Buyers that would have
shouted a bid higher than ¢ need not reduce their margins just yet. By similar arguments, when
the last shout was a rejected offer at a price ¢, any seller that would have shouted an offer price
p > ¢ should reduce its profit margin.

But it may also be necessary for an agent to reduce its profit margin when a shout is accepted
(i.e., a transaction occurs). Consider the case when a buyer makes a bid which is then accepted
by a seller. If the transaction price is less than the price a seller would have shouted, then that
seller should lower its profit margin because it is in danger of being undercut by the opposition
(the seller that accepted the bid would have shouted a price lower than the bid). By the same
reasoning, a buyer with a shout-price lower than that at which a seller’s offer is accepted by
some other buyer should lower its mprgin, so raising the price of its next bid, in order to avoid
being priced out of the market.
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These considerations can be summarised by the following pseudo-code:
o For SELLERS: '

— if (the last shout was accepted at price ¢)
— then

1. any seller s; for which|p: < ¢ should raise its profit margin

2. if (the last shout was |a bid)
then
1. any active seller s; for which pi 2 ¢ should lover its margin

— else

1. if (the last shout was |an offer)
then
1. any active seller s; for which pi 2 ¢ should lower its margin

e For BUYERS:

— if (the last shout was accqpted at price q)
— then
1. any buyer b; for vhich P" > ¢ should raise its profit margin

2. if (the last shout vasian offer)
then |
1. any active buyer b; for which p: < ¢ should lower its margin

— else

1. if (the last shout was|a bid)
then
1. any active buyer bj for which p; < ¢ should lover its margin

In order to test these qualitative ba.i‘ga.ining mechanisms in (simulations of ) real markets, it
is necessary to specify how the profit margins of the buyers and sellers are raised or lowered.
This requires a quantitative adaptation mechanism, discussed in the next section.

6.2 Adaptation

At a given time ¢, an individual zIP 1trader (denoted by subscript %) calculates the shout-price
pi(t) for a unit j with limit price A;; ﬁsing the trader’s real-valued profit-margin u;(t) according
to the following equation: 5

pit) = Aij(1+ pi?)) (9)

This implies that a seller’s ma,rgﬂ;n is raised by increasing p; and lowered by decreasing ui,
with the constraint that u;(t) € [0,00);Vt. The situation is reversed for buyers: they raise their
margin by decreasing p; and lower ik by increasing p, subject to pi(t) € [-1,0};V¢. The aim
is that the value of y; for each trader should alter dynamically, in response to the actions of
other traders in the market, increa.sitg or decreasing to maintain a competitive match between
that trader’s shout-price and the shouts of the other traders. In order to do this, some form
of adaptation or ‘update’ rule will Qe necessary. One of the simplest update rules in machine
learning, which forms the basis of adaptation algorithms such as back-propagation in neural
networks (e.g., Rumelhart, Hinton, & Williams, 1986) and reinforcement in classifier systems
(e.g., Wilson, 1994, 1995), is the Widrow-Hoff “delta rule”:

g(z+ 1) = A(t) + A(t) (10)
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Where A(t) is the actual output at time t; A(t+1) is the actual output on the next time-step;
and A(t) is the change in output, determined by the product of a learning rate coefficient 3 and
the difference between A(t) and the desired output at time ¢, denoted by D(t):

A(t) = B(D(t) — A(1)) (11)

It is clear that, if the desired output remains constant (D(t) = k;Vt), the Widrow-Hoff rule
gives asymptotic convergence of A(t) to D(t), at a speed determined by 4. This adaptation
method will be employed in the zZIP traders: when a trader is required to increase or decrease its
profit margin (on the basis of the hetristics developed in Section 6.1), a ‘target price’ (denoted
by 7;(t)) will be calculated for each trader, and the Widrow-Hoff rule will then be applied to take

the trader’s shout-price on the next time-step (p;(t+ 1)) closer to the target price 7;(¢). Because
the shout-price is calculated using t’le (fixed) limit price A;; and (variable) profit margin u,,
it is necessary to rearrange Equation 9 to give an update rule for the profit margin y; on the

transition from time ¢t to t + 1:

it 4 1) = (pilt) + D))/ Aes — 1 (12)

Where A;(t) is the Widrow-Hoff delta value, calculated using the individual trader’s learning
rate §;:

Ai(t) = Bi(ri(t) — pi(?)) (13)

All that remains is to determine how to set the target price 7;(t). While a simple method
would be to set the target price equal to the price of the last shout (i.e., Ti(t) = q(t)), this
presents a significant problem. When the last shout price is very close to, or equal to, the
trader’s current shout price (i.e., pi(t) ~ ¢(¢)), the value of A;(t) given by Equation 13 will
be very small, or zero. Thus, traders who would have shouted prices close to ¢(t) are likely to
make negligible alterations to their profit margins, and so will shout very similar prices when
next given the opportunity. But in a competitive market, there is a need for the agents to be
constantly testing the market, always pushing for higher margins. For example, if it happens
that all traders are shouting prices in the range $1.00 to $1.05, the differences between their
shouts and the transaction prices will never be more than a few cents, so they will hardly alter
their shouts, and so the system will stabilise at this price range even if the true competitive
equilibrium is at $10.00. This sounds unlikely because, intuitively, it is desirable to have sellers
always trying for higher prices and buyers always trying for lower prices. Thus, it is necessary
for the target price to be different from the current shout or transaction price: for example, if
a transaction occurs at $1.00, a trader with a limit price of $0.50 should aim for a price higher
than $1.00, while a buyer with a limit price of $1.75 should aim for a target price lower than
$1.00.

There are many ways in which the target price 7;(t) could be determined. In the current zIp
traders, the target price is generated using a stochastic function of the shout price g(t), shown
in Equation 14:

(1) = Ri(t)q(t) + Ai(t) (14)

Where R; is a randomly generated coefficient that sets the target price relative to the price
g(1) of the last shout, and A;(t) is a (small) random absolute price alteration (or perturbation).
When the intention is to increase the dealer’s shout price, R; > 1.0 and A; > 0.0; when the

intention is to decrease it, 0.0 < R; < 1.0 and A; < 0.0. Every time a trader’s profit margin is
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altered, the target price is calculated using newly-generated random values of R; and A;, which
are independent and identically distributed for all traders. The use of relative increases ensures
that large values of ¢(t) are altered by greater amounts than small values of ¢(t). For example,
a shout of $10.00 might lead to a seller’s target price of $12.50 (an absolute increase of $2.50)
while a shout of $2.00 leads to a target of $2.50 (an absolute increase of $0.50), but the relative
increase is the same in both cases (i.e., 25%). The use of small absolute perturbations ensures
that even very small shout prices lead to targets that differ by a few cents, and can be considered
as random noise in the calculation of the target price.

Finally, in many applications of the Widrow-Hoff rule where the desired output D(t) varies
dynamically, the learning system requires ‘damping’ to prevent high-frequency oscillations around
D(t). Consider the case where a trader’s observations of the shouts and transactions in the mar-
ket lead it to repeatedly increase its profit margin: if the next transaction to occur indicates
that the profit margin is now too high, it may be premature to immediately reduce the margin;
it might be better to reduce the rate of increase of the margin, rather than the margin itself.
If the first indication that the margin should be reduced is reinforced by subsequent shouts
or transactions, then eventually the rate of increase can take on a negative value (leading to
reductions in the profit margin). Figuratively, the sequence of prices for shouts and transactions
builds a “momentum” indicating which way the profit margin should be altered. This can éasily
be achieved by giving each trader a momentum coefficient, denoted by v; (7i € [0,1]) so that
if 7; = 0 the trader takes no account of past changes when determining the next change to the
value of the profit margin p;, but with larger non-zero values of ; greater emphasis is accorded
to past changes. Such momentum mechanisms are often employed in back-propagation neural
network learning (Rumelhart et al., 1986). Equation 15 shows the general form of the equation
for momentum-based updates, with I';(0) = 0; Vi:

Li(t+1) = 7Ti(t) + (1 — 7)A:(1) (15)

Using T'; in place of A; in Equation 12, and defining I';(0) = 0; V4, gives the following update
rule, which is used in the zIP traders:*

pi(t +1) = (pi(t) + Ti(1)) /i — 1 (16)

The behavior of groups of ziP traders using the profit margin update rule of Equation 16
are illustrated in the following sections. In all the experiments reported there, R; is uniformly
distributed over the range [1.0,1.05] for price increases and over [0.95,1.0] for price decreases,
giving relative rises or falls of up to 5%, and .A; is uniformly distributed over [0.0,0.05} for
increases and [—0.05,0.0] for decreases, giving absolute alterations of up to five cents, thereby
modelling a degree of uncertainty or error in the trader’s formulation of the target price. The
value of each trader’s learning rate f3; is randomly generated when the trader is initialised,
using values uniformly distributed over [0.1,0.5], and remains fixed for the duration of the
experiment. Similarly, the each trader’s momentum coefficient 7; is randomly generated from
a uniform distribution over [0.2,0.8] and remains constant for the duration of the experiment.
Initial values for the u; profit margins of the traders are [0.05,0.35] for sellers and [-0.35, —0.05]
for buyers: that is, all traders commence each experiment with the profit margins between 5
and 35 percent.

*Note that when there is no momentum {v = 0), Equation 16 reduces to Equation 12.
|
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6.3 Results

To allow direct comparison, results are presented here from zIP traders operating in the markets
that were used to show the failure of zi-C traders: the supply and demand curves for these
markets were illustrated in Figure 2#, 26, 28, and 30. Results showing the average of 50 runs
for zIP traders in these four markets are shown in Figures 36, 37, 38, and 39. As can be seen by
comparison with the zi-C results in ﬁ“igures 25, 27, 29, and 31, the average transaction prices of
the zIP traders in these markets are much closer to the theoretical predictions than are those of
the z1-c traders. Figures 36 and 37 clearly show average transaction prices rapidly converging
to the theoretical equilibrium price of $2.00, typically within the first four trading days and
remaining at that level for the remaining days, with very little variance.

3.00 . . . . I 3.00

250 250
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Figure 36: Mean zIP transaction prices, aver- Figure 37: Mean zIP transaction prices, aver-
aged over 50 zIP experiments, for the supply and aged over 50 zIP experiments, for the flat supply
demand shown in Figure 24 (Po = $2.00): format shown in Figure 26 (Po = $2.00): format as for
as for Figure 25. See text for discussion. Figure 27. See text for discussion.

The data presented in Figures 38 and 39 are less satisfactory: the initial average transaction
prices are close to those of the z1-C traders, but this is followed by a comparatively slow (yet
steady) approach to the theoretical equilibrium price, from below. To further illustrate the
behavior of zIP traders in these two markets, Figures 40 and 41 show data from experiments
where there were 30 trading days, rather than 10. As is clear from these figures, the long-term
tendency of the zIP traders is towards the equilibrium price. If the various system parameters
(such as the initial distributions of profit margins, and the distributions of learning rates and
momentum values) were altered, faster approach to equilibrium could be demonstrated.

Similarly, the approach to equilibrium from below in Figure 36 is an artefact of the buyers
and sellers having initial values of profit margin drawn from distributions over the same ranges
of percentages: because the sub-marginal sellers have lower limit prices than the sub-marginal
buyers, the absolute profit values (i.e., measured in §) are lower for the sellers than for the buyers,
and so initial transactions are more likely to occur at less-than-equilibrium prices. Again, the
initial settings of the traders’ parameters could be altered to eliminate this bias (i.e., give the
sellers higher percentage profit ma gins than the buyers).

However, the intention here is not to demonstrate ZIP traders with optimal parameter-
settings: rather, the data in these graphs serves to demonstrate that the simple zIP trading
strategies can readily achieve results that are impossible when using ZI-C traders, and are closer
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to those expected from human subjec¢ts or traditional rational-expectations theoretical predic-
tions, with the same ZipP parameter vﬂf}lues in a variety of market conditions. On these grounds
at least, the minimally adaptive zIP traders represent a significant advance on the work of Gode

and Sunder.
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Figure 38: Mean zIP transaction prices, aver-
aged over 50 ZIP experiments, for the flat supply
and demand, with excess demand, shown in Fig-
ure 28 (P, = $2.00): format as for Figure 29.
Trading for 10 days. See text for discussion.
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Figure 40: Mean zIP transaction prices, laver-
aged over 50 ZIP experiments, for the flat s}lpply
and demand, with excess demand, shown in Fig-
ure 28 (P, = $2.00): format as for Figure 29.
Trading for 30 days. See text for discussion.
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Figure 39: Mean zP transaction prices, aver-
aged over 50 ZIP experiments, for the flat supply
and demand, with excess supply, shown in Fig-
ure 30 (Po = $2.00): format as for Figure 31.
Trading for 10 days. See text for discussion.
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Figure 41: Mean zIP transaction prices, aver-
aged over 50 ZIP experiments, for the flat supply
and demand, with excess supply, shown in Fig-
ure 30 (Po = $2.00): format as for Figure 31.
Trading for 30 days. See text for discussion.

It is also possible to plot Smith’s measure of allocative efficiency and Gode and Sunder’s
measure of profit dispersion for the Z*P traders. As with the Zi-C traders, measures of allocative
efficiency for zip traders are typically3 very high (often averaging 100%), and so are not plotted



here. However, plots of profit dispersion are more revealing: average profit dispersion values for
both zI-C and zIP traders in the four markets introduced in Figures 24, 26, 28, and 30 are shown

in Figures 42 to 45 respectively.
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Figure 42: Mean z1-C and ziP profit dispersion
levels for the market of Figure 24, over 10 days.
The zI-c traders show a near-constant mean profit
dispersion around 0.35, while the mean dispersion
for zIp traders falls rapidly and stabilises at values
less than 0.05.
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Figure 44: Mean zi-c and zIP profit dispersion
levels for the market of Figure 28, over 10 idays.
The z1-c traders show a near-constant mean profit
dispersion around 0.6, while the mean dispérsion
for zIP traders falls gradually from approximately
0.65 to near 0.4.
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Figure 43: Mean zi-c and zIP profit dispersion
levels for the market of Figure 26, over 10 days.
The z1-C traders show a near-constant mean profit
dispersion around 0.25, while the mean dispersion
for zIP traders falls rapidly and stabilises at values
close to 0.01.
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Figure 45: Mean z1-C and zIP profit dispersion
levels for the market of Figure 30, over 10 days.
The zI-C traders show a near-constant mean profit
dispersion around 0.5, while the mean dispersion
for zIp traders falls steadily from less than 0.4 to
around 0.1

As can be seen from the profit dispersion figures, in all cases the final (Day 10) profit
dispersion is significantly less for zIP traders than for zi-C traders. In Figures 42 and 43 the zip
profit dispersion falls sharply over the first four days and then levels out to a roughly constant



value; in Figures 44 and 45 the fall is less dramatic but could, presumably, be made more
rapid by appropriate alteration of the parameter-settings, as was discussed previously. But, to
reiterate, the intention here is to show the performance of zIp traders with identical parameter
settings in a variety of markets, rather than with parameter settings tuned for each market. As
was discussed in Section 4.2, Gode and Sunder (1993) note that the zi-c profit dispersion levels
are lower than those of the zI-u traders but appreciably higher than those of human traders.
As is demonstrated in Figures 42 to 45, zip traders rapidly adapt to give profit dispersion levels
that are in some cases approximately a factor of ten less than those of zi-C traders. On this
basis, it seems safe to claim that the performance of the zip traders in the experimental markets
used here is significantly closer to that of human traders than is the performance of zi-C traders.

6.4 Discussion

In addition to comparing the behavior of zip and zi-c traders, we can also compare the behavior
of zIp traders to Smith’s results from human subjects. The symmetric market in F igure 24 is
clearly comparable to the markets used in some of Smith’s early experiments (e.g., Charts 1
to 3 in Smith (1962): Chart 1 was shown in Figure 6). The flat-supply market in Figure 26 is
comparable to Smith’s (1962) Chart 4 (shown in Figure 7), and the excess-demand market in
Figure 28 is comparable to Smith’s (1962) Chart 6 (Figure 8). In particular, Smith notes that in
his excess-demand market, “...The approach to equilibrium is from below, and the convergence
is relatively slow.”: both of these qualities are exhibited by the zIp trader results in Figures 38
and 40 but not the zi1-c trader results in Figure 29.

In the zIP experiments shown so far, the supply and demand schedules have remained fixed
for the duration of the experiment. However, as was noted in Section 4.1, Smith (1962) also
experimented with dynamic changes in supply or demand: in some of his experiments, at the
end of a trading day a new set of limit prices was distributed to the buyers, sellers, or both.
Typically, the human traders would adapt, converging to the new market equilibrium values.
This rapid, robust, and decentralized adaptation is one of the attractions of using the continuous
double auction as a market organisation. Thus, it is important to explore the behavior of z1p
traders when supply or demand alter (either increase or decrease): for ziP traders to be of
genuine use in applications of market-based control or internet-based commerce, they should |
exhibit smooth and fast convergence to the new equilibrium that results from shifts in supply
or demand. '

Figure 46 shows a transaction-price time-series from one experiment which uses the symmet-
ric market of Figure 24 for the first ten days. At the end of Day 10, an increase in demand is
imposed: the demand curve is shifted upwards by adding $0.50 to each buyer’s limit price (P
increases to $2.25), and the experiment continues for another five days. Figure 47 shows the
average results from 50 such experiments. Similarly, Figure 48 shows transaction prices from
one experiment where the symmetric market of Figure 24 is again used for the first ten days, but
an increase in supply is then imposed by subtracting $0.50 from each seller’s limit price ( Py de-
creases to $1.75) and trading continues for another five days. These figures clearly demonstrate
that groups of zIp traders are capable of rapidly adjusting to new equilibrium values resulting
from changes in supply or demand.

In Smith’s (1962) paper, one experiment examined the effects of a different market structure,
where only sellers were allowed to shout offers: buyers were not allowed to shout bids, but could
passively observe the prices offered by the sellers (Smith’s results from this experiment were
shown in Figure 9). Each buyer therefore had the privilege of being able to ignore offer prices that
were “too high” and accept prices that were within their range, without giving any indication of
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Figure 46: Transaction-price time series for
one experiment with a sudden increasg in de-
mand. Initial market is illustrated in Figure 24
(Po = $2.00). After 10 trading days, demand is
increased (Po = $2.25) and the experiment con-
tinues for another 5 days. See text for discussion.
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Figure 48: Transaction-price time series for
one experiment with a sudden increase in sup-

ply. Initial market is illustrated in Figure 24
(Po = $2.00). After 10 trading days, supply is

increased (Po = $1.75) and the experim

ent con-

tinues for another 5 days. See text for discussion.
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Figure 47: Mean zIP transaction prices, aver-
aged over 50 increased-demand experiments.
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Figure 49: Mean ziP transaction prices, aver-
aged over 50 increased-supply experiments.



their limit prices. Smith proposed this as an approximation to an ordinary retail market, where
sellers bear the responsibility of advertising their prices and buyers decide whether to buy or
not without entering into any kind of bargaining or haggling process. Smith’s comments on his
expectations and actual results for this experiment are illuminating:

“Since sellers desire to sell at the highest prices they can get, one would expect
the offer prices to be high, and, consequently, one might expect the exchange [i.e.,
transaction| prices to show a persistent tendency to remain above the predicted
equilibrium. The result was in accordance with this crude expectation in the first
market period [i.e., day] only.... Since sellers only were making offers, the prices
tended to be very much above equilibrium. Five of these offers were accepted at
prices ranging from $2.69 to $2.80... The competition of sellers pushed the offer
prices lower and the remaining buyers made contracts at prices [of $2.35, $2.00,
and $2.00]. The early buyers in that first market period never quite recovered from
having subsequently seen exchange prices fall much below the prices at which they
had bought. Having been badly fleeced, through ignorance, in that first trading
period, they refrained from acrepting any high price offers in the remaining three
periods of the test. This action, together with seller offer price competition, kept -
exchange prices at levels persistently below equilibrium for the remainder of [the
experiment].” Smith (1962).

While it is not immediately clear how Gode and Sunder’s zI-C trader experiments could be
modified to allow for such studies, the zip traders can be used in a straightforward copy of
Smith’s experimental retail market. The supply and demand curves for the market are shown
in Figure 50, and the mean daily transaction prices of zIP traders (in 50 experiments, with the
same parameter values as used in the previous zip experiments) are shown in Figure 51. As
can be seen, the average transaction prices are typically less than $2.00 (significantly . below
the theoretical equilibrium price of $2.25). There also appears to be little or no convergence
towards equilibrium, or reduction in variance. The apparent lack of convergence or reduction in
variance can be better understood by examining individual price trajectories: Figures 52 to 55
show time-series of the transaction prices in four individual experiments using ZIP traders in the
market of Figure 50. As can be seen, in all four experiments the market converges to a fairly
constant transaction price by Day 4, but the value converged on can vary: in Figures 52 to 54,
all trades on Day 10 are within $0.15 bf the theoretical equilibrium, while in Figure 55 no trade
is less than $0.40 off the equilibrium price. As is clear in Figure 51, the price converged on is,
on average, significantly less than the theoretical equilibrium: qualitatively, this result agrees
with Smith’s (1962) observations of human subjects in his experimental ‘retail markets’.

Of these four single experiments, the price series in Figure 52 most closely resembles that of
Smith’s subjects: only three trades occur at transaction price more than a few cents above the
equilibrium price; while many more odcur at prices lower than equilibrium, which is approached
very slowly, from below. Whether thjs is due to early trades at high prices preceding a series
of low-price trades that induce a resistance to higher prices in ‘fleeced’ traders requires a more
detailed examination of the dynamics of individual experiments. In Figure 56, text output from
Day 1 is shown: in the first four tra s, sellers announce a price and one or more buyers are
willing to buy at that price (the buyer who gets the deal is chosen at random from those that
are willing). In the fifth trade, Seller 100 makes an offer of 83.52 which is ignored by the buyers:
Seller 9 then offers at $3.51; this is also ignored and Seller 9 offers again at $3.50, which is
again ignored; Seller 5 then offers at § -37, which is taken up by Buyer 0. For sixth trade, there
is a sequence of 33 ignored offers, which ends when Seller 4 makes an offer of $2.12 (having
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Figure 50: Supply and demand for market
where only sellers shout: 12 buyers and 11 sellers. Figure 51: Mean zIP transaction prices, aver-
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Figure 52: Transaction-price time series for one Figure 53: Transaction-price time series for one
experiment of the market of Figure 50 experiment of the market of Figure 50.
previously offered $2.40, $2.22, and |$2.16). For the seventh, there are 49 ignored offers before
Seller 3 finally drops the offer price to $2.07, and a deal is done. In the eighth trade, 100 shouts

fail to find a taker, and the first trading day ends.

The long sequences of ignored shouts can be made less likely by employing the NYSE rule:
running the same experiment but with the improvement rule enforced leads to a termination of
the first day after the fifth transactipn: in the sixth trade, Seller 3 offers at $2.21 but this offer
is ignored and no other active sellers are able to make a better offer and so (because of the NYSE
rule) the first trading day is ended. Using the NYSE rule in this market gives a transaction-price
time series broadly similar to that of Figure 52, although in other markets it can impair the
equilibration of ziP traders, because it reduces the number of shouts they are exposed to and
therefore slows the adaptation process.

The effects this sequence of accepted and ignored offers has on the profit margins of the zip
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Figure 54: Transaction-price time series for one Figure 55: Transaction-price time series for one
experiment of the market of Figure 50. experiment of the market of Figure 50.

buyers and sellers is illustrated in Figure 57, which shows the bid-and-offer arrays at the start of
Day 1 and at the start of Day 2. As can be seen, the apparent supply and demand curves have
altered significantly. For intra-marginal units, the traders have increased their profit margins,
flattening the supply and demand curves and bringing them closer together, thereby reducing
the apparent surplus. For extra-marginal units, the traders have decreased their profit margins,
again lessening the distance between the curves.

To better illustrate the alterations in the bid-and-offer arrays between the two states shown
in Figure 57, Figure 58 shows the temporal progression of the arrays after each attempt to trade
in Day 1. As can be seen from the graphs labelled E to H, after four transactions the apparent
supply and demand curves do not intersect, and so there is no equilibrium price or quantity. This
gives rise to sequences of ignored shouts (5 before Figure 58E, 33 before Figure 58F, 49 before
Figure 58G, and 100 before Figure 58H), which in turn lead to alteration of the traders’ profit
margins, thereby altering the apparent supply and demand so that eventually an intersection
does occur, and then a transaction can take place. Typically, as soon as the apparent supply
and demand curves intersect, two traders make a deal and leave the market, and in doing so
they alter the apparent supply and demand back to a state where no equilibrium is indicated.

Figure 59 shows the bid-and-offer arrays at the start of each subsequent day in the experi-
ment. As is clear, although the rank ordering of the traders varies as they alter their prices up
or down by a few cents, there is very little change in the overall shape of the bid-and-offer arrays
after Day 3. The fact that in this experiment the market converges on transactions around
$2.12 (i.e., less than the theoretical equilibrium price of $2.25) is not a problem: it is consistent
with Smith’s (1962) results from his experiment with human subjects, where transaction prices
also converged to a stable below-equilibrium level; and may be a consequence of using such a
one-sided market structure (i.e, this is not a continuous double auction).

Significantly, explanations of why the data in Figure 51 converges on a stable price helow
equilibrium cannot rely on folk-psychological notions such as ‘badly fleeced’ buyers resisting
price increases: by specifying and observing simple synthetic trading agents, it is possible to
demonstrate the same overall market behavior without relying on abstract or vague descriptions
of the mental states of the participants in the market. In this sense, the work described here is
similar to other work in cognitive science that is justified by the principle that it can be more
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day O trade 1
Seller 7 offers at 3.060 (reward=0.560) 1 traders willing to deal
Seller 7 sells to Buyer 1 (reward=0.440)

day O trade 2 :
Seller 2 offers at 1.790 (roward=0.540t 5 traders willing to deal
Seller 2 sells to Buyer 3 (reward=1.21p)

day O trade 3 |

Seller O offers at 1.320 (revnrd=0.57gg 8 traders willing to deal
Seller O sells to Buyer 8 (reward=0.43D)

day O trade 4

Seller 1 offers at 1.750 (reward=0.750) 6 traders vwilling to deal
Seller 1 sells to Buyer 6 (reward=0.500)

day O trade 5 |

Seller 10 offers at 3.520 (reward=0.270) No willing takers (fails=1)
Seller 9 offers at 3.510 (reward=0.510) No willing takers (fails=2)
Seller 9 offers at 3.500 (reward=0.500} No willing takers (fails=3)
Seller 5 offers at 2.370 (reward=0.370
Seller 5 sells to Buyer O (reward=1.38

1 traders willing to deal
)

day 0 trade 6
-210 (reward=0.710) No willing takers (fails=1)

Seller 3 offers at 2

Seller 6 offers at 2.520 (reward=0.270) Ko willing takers (fails=2)

Seller 6 offers at 2.530 (reward=0.280) No willing takers (fails=3)

Seller 8 offers at 2.930 (reward=0.180) No willing takers (fails=4)

Seller 10 offers at 3.360 (reward=0.100) No willing takers (fails=§)

Seller 9 offers at 3.080 (reward=0.080) No villing takers (fails=6)

Seller 8 offers at 2.820 (reward=0.070) No willing takers (fails=7)

Seller 9 offers at 3.040 (reward=0.040) ¥No willing takers (fails=8)

Seller 9 offers at 3.010 (reward=0.010) No willing takers (fails=9)

Seller 4 offers at 2.400 (reward=0.650) No willing takers (fails=10)
|

Seller 4 offers at 2.220 (reward=0.470)‘lo willing takers (fails=15)
. ;

Seller 4 offers at 2.160 (revard=0.410)| No willing takers (fails=24)
Seller offers at 2.780 (reward=0.030) 5o willing takers (fails=32)

Seller offers at 2.120 (reward=0.370)(1 traders willing to deal

8
Seller 9 offers at 3.010 (reward=0.010) No willing takers (fails=33)
4
Seller 4 sells to Buyer 4 (reward=0.630‘

day O trade 7 §
Seller 10 offers at 3.350 (reward=0.100) |No willing takers (fails=1)

e i

Seller 8 offers at 2.780 (reward=0.030) No willing takers (fails=49)
Seller 3 offers at 2.070 (reward=0.570) |1 traders willing to deal
Seller 3 sells to Buyer 2 (reward=1.180

day O trade 8

Seller 8 offers at 2.760 (reward=0.010) llo willing takers (fails=100)

Figure 56: Text output showing shouts ajd deals for Day 1 in the experiment of Figure 52. Much text has been
deleted to increase clarity.
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Figure 57: Bid-and-offer arrays in the experiment of Figure 52. Limit and shout prices are indicated using the
triangles introduced in Figure 5. Left: at the start of Day 1. Right: at the start of Day 2.

fruitful and more parsimonious to attempt an understanding of how some behavior is generated
by synthesising an artificial system that exhibits that behavior, rather than by analysing a
natural system that exhibits the same behavior (see e.g., Braitenberg (1984) and Cliff and
Noble (1997)).

Thus, although the discussion here has demonstrated that zip traders can give results quali-
tatively similar to those of humans in ‘retajl market’ experiments (and that zI-C traders probably
could not), that is a relatively minor point. Perhaps of more general significance is that with
synthetic adaptive agents it is possible to record all manner of significant variables, both internal
and external to the agent, and to visualise them in styles such as those shown in Figures 51
to 59. And this is from just one experiment, which took less than five seconds to run on a
medium-power workstation (a Sun Sparc20). Clearly, tens or hundreds of thousands of experi-
ments can be run with artificial agents in the time jt takes one experiment to be conducted with
human subjects. This is not necessatily an advantage: each experiment has the potential to
generate masses of data; managing, visualising, and analysing the data to arrive at meaningful
conclusions could present serious problems, and should be noted as a topic for further work.
Other further directions in which this work could be taken are discussed Section 6.6: before
that, Section 6.5 describes related work.

6.5 Related Work

As was noted earlier, Gode and Sunder’s work on ZI traders has been cited approvingly in a
number of texts discussing continuous double auctjons. Despite this, there appear to be very
few papers that are comparable to the work described here: | know of no other critiques of
Gode and Sunder’s work, and have found only two papers that describe artificial trading agents
similar to the zip traders developed here. These two papers are by Easley and Ledyard (1992)
and Rust et al. (1992).

Easley and Ledyard (1992) consider several theories for price formation and equilibration,
attempting to explain how human traders converge to equilibrium. They introduce a mathemat-
ical notation which they use to describe specific hypotheses concerning trading strategies and
equilbration in double-auctions; a number of analytic proofs then lead to three specific predic-
tions, which they test by comparison to data from human experiments. Their trading strategies
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Figure 58: Temporal progression of bid-and-offer arrays for days 1 to 2 in the price series shown in Figure 52.
Each graph shows the bid-and-offer arrays of the active traders after a transaction: A is after the first transaction;
B is after the second transaction; And so on until H which is after the eighth (end of Day 1).
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Figure 59: Temporal progression of bid-and-offer arrays for days 3 to 10 in the price series shown in Figure 52.
Each graph shows the bid-and-offer array a{ the start of a day’s trading: A is day 3; B is day 4; and so on until
H which shows the start of day 10. See text| for discussion.
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are simple mechanisms which rely on a memory of data from past trading days. Specifically,
Easley and Ledyard’s trading strategies use the following information: the lowest-priced offer or
contract in the previous day’s trading; the highest-priced bid or contract in the previous day’s
trading; the most recent bid, offer and contract prices in the current day’s trading; the time
remaining to the end of the current trading day; and an indicator of whether the agent has
traded in the current day (their traders are designed to trade only one unit per day, so this
indicator is similar to the way in which the zip traders cease to be active once they have traded
all their entitlement; however, zIP traders may enter into more than one transaction per day).
Clearly, Easley and Ledyard’s trading strategies could require more memory than a zip trader,
and also their strategy is only fully effective after the first day of trading; yet it is often on the
first day that the most significant shifts in behavior occur. Their analysis relies on a simplifying
assumption that is questionable in practice: they assume that, when more than one trader is
interested in a transaction, the buyer with the highest shout price or the seller with the lowest
shout price is guaranteed the deal (Easley & Ledyard, 1992, p.70). Despite (or possibly because
of) this, several of the experimental observations they present contradict their theoretical pre-
dictions. Furthermore, as Easley and Ledyard (1992, p.87) note, their theory does not apply to
experiments in which one side of the market is not allowed to bid or offer (e.g., ‘retail’ markets)
and it doesn’t predict the effects of shifts in supply and demand curves. As was demonstrated
in Section 6.4, zIP traders can give human-like equilibration in such situations: for this reason,
it would seem that z1P traders are an advance on the work of Easley and Ledyard (1992).

Rust et al. (1992) report on a series of experimental economics tournaments they organised,
where other researchers were invited to submit software agents that would compete against one
another in a simplified double auction. The double auction was simplified by synchronizing it
into a two-stage process that was iterated several times per trading day. In the first stage, all
traders simultaneously shout a bid or offer, and these shouts are distributed to all traders. In
the second stage, the trader with the highest current bid and the trader with the current lowest
offer are given the option of entering into a transaction: they can either agree a deal, or refuse.
In addition to the array of bids and offers, each trader has access to public information which
includes the number of buyers; the number of sellers; the identities of the traders; the number
of rounds (experiments), periods (days per experiment) and timesteps (iterations per day); the
number of units each agent will have; and the distribution from which the unit limit prices are
generated (Rust et al., 1992, p.164). The trading agents were allowed to be both buyers and
sellers, although some researchers submitted seller-only or buyer-only strategies. A number of
tournaments were held, and the different strategies were ranked in order of the profits they
generated. Few details are given of the specifications of the different strategies, so a detailed
comparison with zip traders is difficult. However. a key difference between these tournaments
and the ziP (and ZI-C) experiments is that the tournaments involved heterogeneous groups of
traders. Traders with radically different strategies could compete in the same market, and much
of the focus in Rust et al. (1992) is on the way in which the different trading strategies interacted,
both with a fixed number of different strategies and in ‘evolutionary’ tournaments where the
relative numbers of the different trading strategies altered over time, so more profitable strategies
became more numerous than less profitable ones. The ‘population dynamics’ of the tournaments
occupy much of the discussion:

“We find that the top-ranked programs vield a fairly “realistic” working model
of a [double auction] market in the sense that their collective behavior is consistent
with the key “stylized facts” of human experiments. We also find that a very simple
strategy is a highly effective and robust performer in these markets. This strategy was

H8



able to outperform more complex algorithms that use statistically based predictions
of future transaction prices, explicit optimizing principles, or sophisticated “learning
algorithms”. The basic idea behind the approach can be described quite simply:
wait in the background and let others do the negotiating, but when bid and [offer]
get sufficiently close, jump in and “steal the deal”. However, the results of our
evolutionary tournaments show that when too many other traders try to imitate this
strategy, market efficiency can fall precipitously. ... Specifically, if too many traders
“wait in the background”, little information is generated until just before the end of
the trading period. This tends to produce “closing panics” as traders rush to unload
their [units] in the final seconds of the trading period, resulting in failure to execute
all potentially profitable transjactions.” (Rust et al., 1992, p.157, original emphasis).

Thus, there is no focus in Rust ‘et al. (1992) on explicit critiques of Gode and Sunder’s zI
traders, or on exploring the behavior of homogeneous groups of traders in particular market
environments such as the symmetric, flat supply, excess-supply ‘box’, excess-demand ‘box’,
increased-demand symmetric, increased-supply symmetric, and ‘retail’ markets used with zip
traders in Sections 6.3 and 6.4. Furthermore, the reproductive success of the “wait in the
background” trader strategy indicates that the ‘evolutionary’ tournaments can favour trading
strategies that, when used to form homogeneous groups of traders, can give rise to market
dynamics that are manifestly ill-suited to applications in market-based control or internet-based
commerce.

The new scientific field of artificial life is often characterised as the study of complex adaptive
systems. In brief, such systems typically exhibit complex coherent global behavior arising from
the interaction of groups of components which are individually simple in comparison to their
global behavior. A number of major scientific problems fall within this category. Examples
include: the origins of life (in the form of self-sustaining or ‘autocatalytic’ cyclic chemical chain
reactions) from a pre-biotic chemical ‘soup’; the co-operative and competitive co-evolution of
self-replicating and self-regulating organisms; the emergence of coherent patterns of activity from
the asynchronous firing of groups of nerve cells; co-ordinated group motion such as flocking in
birds or schooling in fish; and so on. Studies in artificial life typically involve computational
models or simulations, studying models that are too complex to yield to analytic approaches.
Given this focus, the convergence to equilibrium of groups of traders operating in market-based
environments would seem to be a natural candidate for artificial life research.

However, the international artificial life journal and conference proceedings show a distinct
lack of such research. While there is a small core of work on the iterated prisoner’s dilemma,
a classic game-theory problem in which the emergence of cooperative behavior among non-
altruistic agents can be explored, and of direct relevance to oligopolistic markets (see, e.g.,
Axelrod (1984), Stanley, Ashlock, and Tesfatsion (1993) Batali and Kitcher (1994), and May,
Bohoeffer, and Nowak (1995)), I know of only two papers published in the artificial life literature
that explicitly study market trading strategies: Nottola, Leroy, and Davalo (1991) and de la
Maza and Yuret (1994). Both of these papers report on the application of simple evolutionary
adaptation methods to optimize simple trading strategies for speculative markets, and both
set the equilibrium price via a centralised process that collects prices from all individuals and
determines the equilibrium value that balances supply and demand (Nottola et al., 1991, p.191),
(de la Maza & Yuret, 1994, p.326). For this reason, neither of these two papers are relevant to
the study of equilibration or bargaining behaviors in continuous double auctions.

The apparent lack of work in artificial life on agents with bargaining behaviors for market-
based environments is confirmed in a recent review paper by Leigh Tesfatsion, a professor of
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economics and mathematics at Iowa State University (Tesfatsion, 1997). The paper presents a
summary overview of aspects of artificial life especially relevant for the study of decentralized
market economies. The two main areas of research activity discussed are: the combination of
" evolutionary game theory (e.g., iterated prisoner’s dilemma) with preferential partner selection
(i-e., the ability to choose or refuse particular opponents in the game); and an extension of this,
where trade networks can form and evolve. In the studies of trade networks, the prisoner’s
dilemma game is used to model risky trades between individuals. Thus, there is no emphasis on
bargaining mechanisms in this work, and the indications from Tesfatsion (1997) are that little
or no work in Artificial Life is comparable to the work on zIP traders presented here.

6.6 Further Work

While the results presented in the previous section indicate that the zipP bargaining mechanisms
give results more comparable to human traders than do Gode and Sunder’s zI-C traders, there
are many possible ways in which this work could be extended.

First, the rationale for the ziP mechanisms comes from the qualitative arguments of Sec-
tion 6.1, and while the results are promising, it would be more satisfactory to develop a more
rigorous, analytic treatment of these mechanisms. The qualitative rationale could perhaps be
supported by game-theory analysis, or the algorithmic complexity could be analysed both in
time and in space (e.g. costs for storage and network bandwidth). Furthermore, it would be
attractive to develop proofs concerning the convergence to equilibrium of zIP systems.

Also, the demonstrations of the ziP traders come from simulations of minimally simple
markets, similar to those used in Smith’s early experiments. There are a variety of ways in
which the complexity of the market environments could be increased, which may reveal the
need for revisions or extensions to the basic ziP mechanisms introduced here.’

Relatively straightforward additions to the market structure include endowing the agents
with the right to buy or sell multiple units of commodity, with each agent’s units having different
limit prices, possibly also with the lot-size of each deal being chosen by the agents. A natural
next step would then be to have multiple types of commodity, with the possibility of one being
a substitute for another.

The use of z1P mechanisms in agents that have the right to both buy and sell could be
investigated, giving the possibility of agents engaging in speculation and arbitrage. Currently,
the agents trade in what amounts to a single centralised trading-pit: it would be attractive to
explore the dynamics of spatially distributed or segmented markets where agents can only trade
with nearby agents: the topology of such distributed markets (e.g. whether a 2-dimensional grid
of agents has planar, cylindrical, or toroidal topology) may have a significant effect on dynamics
and stability of the markets. Another significant issue to examine is the extent to which the
market dynamics are affected by the division of time into discrete ‘days’: in many applications
this assumption may be untenable, and it may be the case that agents ‘drop out’ of the market
and re-enter it in an asynchronous fashion, for varying periods of time. The introduction of
delays and noise into distributed markets is also likely to have a significant impact on their
dynamics. In particular, delays and noise introduce uncertainty and risk: received signals might
be incorrect, through corruption by noise or as a consequence of being out-of-date. Because of

*George van Montfort (personal commpunication, 1997) notes that there is at least one special case where the
current ZIP traders will not reach equilibrium. If only sellers can shout, and the initial bid-and-offer arrays give
non-intersecting apparent supply and demand curves (because all the buyers’ shout prices are lower than all the
sellers’ limit prices) then all shouts are offlers but no shout is ever accepted: adaptation in the sellers will reduce
their offer prices, but the buyers will never lower their profit margins and so no transaction will ever occur. It
would be necessary to extend the current [ZIP trading strategies to solve this problem.
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this, it may be necessary for the traders to reason about their ‘beliefs’ concerning the reliability
of the data used in making trading decisions.

As a complement to the current system where z1p traders buy and sell in a commodity market,
zIP traders could be developed for use in asset markets, where the items bought and sold can
generate an income (the dividend stream) while they are owned (see, e.g., Davis and Holt (1993,
p.162ff.), Sunder (1995)). Moreover, the current zip market is a spot market (transactions are
for items bought and sold immediately - “on the spot”): it would be interesting to evaluate
the performance of zIP traders in derivative markets. Derivative markets involve the buying
and selling of forward contracts such as futures (i.e., binding obligations) and options (i.e.,
exercisable rights): each contract is for the purchase or sale of units at a pre-specified price, on
or by a given date in the future: for a review of some simple types of derivatives, see Wilmott,
Howison, and Dewynne (1995). Derivative markets provide mechanisms for spreading risk and
for intertemporal arbitrage.

It is seems very probable that, as market organisations with fewer simplifying constraints
are used and as the range of possible actions available to the traders increases, more complex
decision and adaptation mechanisms will be required. An obvious first approach would be to
introduce “higher-order” adaptation mechanisms so that values which are currently parameters
for each agent become variables. That is, the values for the learning rate (4 in Equation 13) and
momentum (7 in Equation 15) for each agent could be varied dynamically on the basis of that
agent’s experiences in the market. Also, other variables may be introduced into the adaptation
and bargaining mechanisms: there are a number of variables that the current zIp traders do not
take account of which a human trader might use to determine more profitable prices. Examples
include: whether there are more buyers than sellers (or more offers than bids shouted) and vice
versa; the time remaining until the end of the trading period; predictions of cyclical fluctuations
in supply and demand; the average prices of the competition (to allow aggressive or predatory
pricing, under-selling or over-bidding to attack the competition); and so on. Also, the current
ZIP traders are specified as discrete-time processes, but in more realistic (i.e., more complex)
markets, it is likely that continuous-time processes will be required.

Although more traditional machine learning techniques may also be usefully employed, recent
work in biologically-inspired computing (so-called “artificial life”) has seen the development of a
number of adaptation mechanisms that could be employed in automatically adapting or tuning
trading agents. Such techniques include the wide variety of neural-network learning algorithms,
and evolutionary approaches such as genetic programming and classifier systems. This may allow
further exploration or strengthening of the links between evolutionary and economic dynamics
(see e.g. Hodgson (1993) and Vromen (1995)). In all cases, the profit accrued by an agent could
be used as an obvious reinforcement payoff or reward signal.

6.7 Summary

This section commenced with the simple qualitative arguments, presented in Section 6.1, for
how a minimally inteliigent trader might operate, and Section 6.2 then discussed some simple
quantitative adaptation mechanisms taken from the machine learning literature. Together, these
strategy and adaptation define the current zip traders.

The results presented in Section 6.3 demonstrated that the zip traders yield better results
than zi-c traders: Section 5.3 showed zi-C traders converging to equilibrium in one market but
failing (as predicted) in another three: the zip traders do not fail to reach equilibrium in any
of these four markets. It was also demonstrated that profit dispersion is lower in z1p trader
markets than in z1-c markets, so the ZIP results are closer to the human-trader data presented
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by Gode and Sunder (1993). ‘

The discussion in Section 6.4 compared the results of zIP traders to Smith’s (1962) data from
human subjects, in markets where} Z1-C traders either fail or cannot be used without extending
their specification. The zIP traders were demonstrated to give results qualitatively similar to
those of Smith’s human subjects:T even the modes of failure are similar in ziP and human
traders. (That is, like humans, zip traders showed a slow approach to equilibrium from below
in the excess-demand markets of F #gu'res 8, 38, and 40, and a convergence to below-equilibrium
prices in the ‘retail’ market of Figures 9 and 51 to 55.) :

Smith also experimented with tering supply and demand mid-way through the experiment,
and with ‘high-volume’ markets where his human subjects were given the right to buy or sell
more than one unit per day. Again, zIP traders exhibit human-like performance in such markets.

These similarities between theoretical predictions, human data, and z1P traders are striking
and significant because of the sim?ﬁcity of the trading strategies and adaptation mechanisms
in the zIP traders. While Section 5 demonstrated that zi-c traders are too simple, the results
in this section indicate that zIp traders are simple enough to give human-like performance, but
not too simple. Having established these baseline results, Section 6.6 sketched out possibilities

for extending this work. Clearly, tlﬂere is much further work that could be done.
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7 Conclusion

The development of computational mechanisms that allow groups of software agents to exhibit
. bargaining behaviors in market-based environments satisfies a number of needs. In market-based
control, simple mechanisms are required to give computationally efficient, robust, and truly
distributed resource allocation and control in computational ecologies. Such mechanisms could
also be employed in the growing field of commerce on the internet. Moreover, such mechanisms
act as mechanistically rigorous statements of potential models of human bargaining behaviors,
although it is likely that more complex mechanisms would be required to further account for
the many subtleties and nuances of human behavior: empirical work in experimental economics
and human psychology would also be necessary to validate any models. Once validated, such
model agents could be used in the manner intended in the work of Arthur (1993) or Easley and
Ledyard (1992), for conveniently testing theories concerning the behavior of humans in different
market structures and conditions.

Gode and Sunder’s work was an important contribution to the field of experimental eco-
nomics, providing an absolute lower limit on the mechanistic complexity of trading agents, and
demonstrating that allocative efficiency is a poor indicator of the intelligence of agents in a
double-auction market. However, the critique presented in Section 5 indicates that some of the
tendencies of zi-C traders towards theoretical equilibrium values are predictable from a priori
analysis of the statistics of the system. This in turn indicates a need for bargaining mechanisms
more complex than the simple stochastic generation of bid and offer prices.

The work on zIP traders, reported in Section 6, should be viewed as a preliminary sketch
of what forms such bargaining mechanisms might take. The zIP traders are more complex
than Gode and Sunder’s z1-c traders, but only slightly, and in any case are manifestly much
less complex than humans. Nevertheless, the results from the zip traders, both in terms of
equilibration and profit dispersion, are clearly closer to those from human experimental markets
than are the results from zI-c traders. It is reassuring to see that very simple mechanisms can
give such human-like results, but there is much further work that could be done in exploring
behavior of zip traders in more complex market environments, and in attempting to extend the
behavioral sophistication of such traders without unduly adding to their complexity.
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A The Code

The system is relatively compact: xm total, the source files contain about 2500 lines of code. The
code is written in ANsI C, in a fashion that should help porting to C++ or Java: structures and
structure-manipulating functions afre grouped together where appropriate.

There are seven main source fi es, most of which have associated header files. Of these,
only two (agent, discussed in Sectjon A4, and smith, discussed in Section A.8) are directly
involved in running the simula.tionF: the others are used to provide data-logging (ddat and
tdat in Sections A.6 and A.5); experiment control (expctl in Section A.3); random numbers
(random in Section A.2); and visui}isation of supply and demand curves (sd in Section A.7).
The Unix system utility make may lﬁe used with the makefile of Section A.9 to compile all the
files together: makefile also indicates the cross-dependencies between the various header and
code files. There is one further header file, used to define system-wide maxima for array bounds,
described in Section A.1. ;

The makefile produces an executable called smith. The executable requires two arguments:
an integer specifying how many experiments should be run, and the name of a control-file. If
more than one experiments are to be run, the same experimental conditions are repeated n
times (without re-setting the seed of the random number generator), and summary statistics are
calculated. The control file specifies a number of important system parameters which determine
the experimental conditions, such as the number of buyers, the number of sellers, and their
associated supply and demand schedules. Further details of the format for the control file are
given in Section A.3. ‘

The main function in Section A& includes definition of an integer value verbose which can
be set to zero to suppress output to stdout while the experiments are running, or set to positive
integer values to allow a running corﬁbmentary of the action of the system to appear. Verbose
is passed from main to subordinate functions: setting all calls to verbose=1 can be useful in
debugging or in understanding the system, but can generate megabytes of text.

While the system is running, it generates files in a format suitable for input to the Unix
system utility xgraph, recording time?-series of variables of interest as the trading sessions and
days progress. Files illustrating the underlying and apparent supply and demand schedules are
also generated in xfig2.1 format by the routines in sd (Section A.7).

Brief notes are provided below to supplement the comments embedded in the code. A sample
control-file and the resultant output aj.re provided in Appendix B.
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A.1 System Maxima: max.h

Rather than use dynamic memory allocation, the code is written to use fixed-length arrays, with
the maximum array lengths deﬁne%l by constants listed in this file. The experiment-control file,
read by the routines in expctl (Section A.3) allows for virtual array sizes to be specified that
are smaller than these system limits. Max.h also has system limits on the maximum number of
iterations for some of the major loaps in the main function (Section A.8): again, in several cases
these can be overridden by specifying smaller values in the expctl control file.

maz.h: mazima for array bounds etc

#define MAX_N_DAYS 30

#define MAX_TRADES 100

#define TOT_TRADES (HAX_N_DAYS*HAX_TRADES)

#define MAX_FAILS 100 /*mazimum n;hmbers of bids/offers allowed to fail before day’s trading closes+/

#define MAX_BUYERS 100

#define MAX_SELLERS 100

#define MAX_AGENTS (HAX_BUYERSN{AX_TELLERS?HAX_BUYERS:HAX_SELLERS)
#define MAX_UNITS 3 /#maz no.. of unijts an agent can sell/buym/

#define MAX_SCHED 2 /#maz no. of supply or demand schedules in an ezperiments/
#define MAX_ID 30 /*maz no. of chars in id tag used for output filess/
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A.2 Random Numbers: random

The following routines were used inl preference to system-dependent (psuedo-)random number
generators. The use of portable, platform-independent random-number routines increases repli-
cability and, in the case of the ro#tines used here, also increases the statistical reliability of
the results. The negative side is that these routines are much more computationally expensive
than the quick-and-dirty routines typically provided as system calls. The routines in this section
are reproduced or adapted from Numerical Recipes in C: The Art of Scientific Computing by
W. Press, B. Flannery, S. Teukolskyj, and W. Vetterling, Cambridge University Press, 1988.

Note also that random.h defines the type Real, used in place of float or double to allow
easy system-wide switching between} different numeric precisions.

A.2.1 random.h

random.h

Dave Cliff, May 1991

Some general random routines

Copied or adapted from Numerical recipies|in C by Press, Flannery, Teukolsky, and Vetterling, (CUP, 1988).
#define Real double

void rseed(int #*); /*resced random number generators/

Real randval(Real); /#return a (near)uniform distributed random number € [0, limit]*/

int irand(int); /#return a random integer € {0, ..., limit — 1} */

Real gaussrand(void); /#returns a N(0,1) random deviates/

NB: abs(gaussrand()) will be > 3 about once in 400 trials (the 3 — o rule).

Real exprand(Real); /*ezponential distribution with specified means/

A.2.2 random.c

random.c

Dave Cliff, May 1991

#include <math.h>
#include <time.h>
#include <stdio.h>
#include "random.h"

ran! from the Numerical Recipes in C Book - it’s the slowest bul (?) best
e L N T T T T T
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#define M1 259200
#define IA1 7141
#define IC1 54773
#define RM1 (1.0/M1)
#define M2 134456
#define IA2 8121
#define IC2 28411
#define RM2 (1.0/M2)
#define M3 243000
#define IA3 4561
#define IC3 51349

float rani(idum)

int *idum;

{
static long ix1,ix2,ix3;
"static float r[98];
float temp;
static int iff=0;
int j;
void nrerror();

if (»idum < 0 {| iff == 0) {
iff=1;
ix1=(IC1-(*idum)) % M1;
ix1=(IA1*ix1+IC1) ¥% M1;
ix2=ix1 % M2;
ix1=(IA1*ix1+IC1) % M1;
ix3=ix1 % M3;
for (j=1;j<=97;j++) {
ix1=(IA1*ix1+IC1) % M1;
ix2=(IA2%ix2+IC2) ¥ M2; |
r{jl=(ix1+ix2+RM2)*RM1;
}
*idum=1;
}
ix1=(IA1*ix1+IC1) % M1;
ix2=(IA2*ix2+IC2) % M2;
ix3=(IA3%*ix3+IC3) % M3;
j=1 + ((97*ix3)/M3);
if (3>97T 11 j<1)
/* nrerror(”RANI: This cannot happen.”); »/
fprintf(stderr,”RAN1: This cahnot happen.”);
temp=r[j];
r{jl=(ix1+ix2*RM2)*RM1;
return temp;

#undef M1

#undef IA1
#undef IC1
#undef RM1
#undef M2

#undef IA2
#undef IC2
#undef RM2
#undef M3

#undef IA3
#undef I1C3
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bR RAR LI LEL LT LI TR T E P P

NB rani is not exported - it’s maskea‘ by the following routines
rseed: reseed the random number generator from the system clock if (*s)=0 then the system clock is used,
otherwise the (*s) is used | '

void rseed(int *s)
{ time_t tseed;
int seed;

if((#s8)==0) |

{ time(&tseed); 3
seed=(int) (tseed%32767);
*s=geed; }

else seed=»s;

fprintf(stdout,"\n: Seed is %d\n",seed);

/* srandom(seed); */ ‘

seed=seed*-1;

rani(&seed);

randval: return a (near)uniform distributed random number in the range 0..limit, as a Real

Real randval(Real limit)

{ float rv;
int i=1;
/%get a random value in the range 0..1x/
rv=rani (ki) ;
return(limit*((Real)rv));

}

\

trand: return a random integer in [0..limit-1)

int irand(int limit)
{ int ir;
/*while loop is used to trap the ezceptiongl case where the underlying deviate in [0,1] actually returns 1.00+/
ir=limit;
while(ir==limit)
{ ir=(int) (floor(randval ((Real)limit))); }
return(ir);

gaussrand: return a N(0,1) deviate

Real gaussrand(void)
{ static int iset=0;
static Real gset;
Real fac,r,v1,v2;

if(iset==0)

{ do { v1=2.0%randval(1.0)-1.0;
v2=2.0*randval (1.0)-1.0;
r=(vi*v1)+(v2»v2);

} while (r>=1.0);
fac=sqrt(-2.0%log(r)/r);
gset=vixfac;
iset=1;
return(v2s*fac);

}

else

{ iset=0;

return(gset);
}
}
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exprand: ezponentially distributed variable: also from numerical recipes.

Real exprand(Real mean)
{ Real r;

r=0.0;

while(r==0.0)

{ r=randval(1.0); }
return ((-log(r))*mean);




A.3 Experiment Control: expctl

The main parameters of interest in Smith’s experiments are read from an “experiment control”
data-file, referred to as the control-ﬁle provided as a command-line argument to smith. The use
of control-files allows for batch- proc¢ssmg (e.g. multiple overnight runs); in principle, a graphical
user interface could be developed to ‘allow for interactive creation and editing of the control data.
Lines in the control-file starting with the character ‘#’ are treated as comments, and ignored.
Otherwise, control parameters are rLad from the file in the following order:

Parameter Daﬂa—type Meaning

i.d. string ,chai; 0 : i.d. tag attached to output files, etc.

no. of days int> 0 number of trading ‘days’

mintrades int € {1,..., maxtrades} minimum number of trades per day

maxtrades int 2 mintrades maximum number of trades per day
- random-flag int € {0,1} flag denoting ZI-C or ‘intelligent’ traders

NYSE-flag int e {0,1} flag set to 1 for ‘NYSE’ trading rule

no. of demand schedules int > 0 number of demand schedules

D-Sched-1 SD-sched first demand schedule

D-Sched-2 'SD-sched second demand schedule

D-Sched-n SD-dched final demand schedule

no. of supply schedules  int > 0 number of supply schedules

S-Sched-1 SD-sched first supply schedule

S-Sched-2 SD-sched second supply schedule

S-Sched-m SD-sched final supply schedule

The meaning of most of the above parameters should be clear to readers with an under-
standing of Smith’s experimental methods. With NYSE-flag= 1, sellers are only allowed to
make offers that improve on (are lessJ than) the current best offer and buyers are only allowed to
make bids that improve on (are mor¢ than) the current best bid; this auction protocol is used at
the New York Stock Exchange (NYSE), among other places. With NYSE-flag= 0, no such con-
straint is imposed. In line with Smlth s methods, different supply and demand schedules can be
introduced during the course of an experiment. The number of demand schedules is specified in
the control-file, followed by spec1ﬁcat10ns of each schedule; following this, the number of supply
schedules is specified, followed by a specification of each supply schedule. Each schedule should
be listed in the control-file in the following order:

Parameter Data-type Meaning

no. of agents int> 0 number of traders

startday int> 0 day on which this schedule first applies

endday int>startday last day on which this schedule applies

shout inte {0,1} flag whether agents can shout or remain passive

agentsched-1 Agent-sched first agent’s schedule of units
agentsched-2 Agent-sched s$econd agent’s schedule of units

agentsched-n Agent-sched final agent’s schedule of units

Where the Agent-sched data structure is simply a specification of the number of units that
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agent is given to buy or sell, and tjhe limit price for each unit; specified in the control-file as:

Parameter Data-type eaning
no. of units  int> 0 how many units the agent has to buy or sell

unit-price-1 Real> 0 lihlit price of first unit
unit-price-2 Real> 0 libit price of second unit
unit-price-p Real> 0 li‘mit price of last unit

The header file expctl.h contains the structure definitions for Agent_sched and SD_sched,
along with a structure Expctl which holds all the control parameter values once they have
been read from the file and (partially) validated by the function expctl_in defined in the file
expctl.c. An example control file is shown in Section B.1.

A.3.1 expctlh

ezpctl.h: header file for experiment controk data struct and i/o etc
Dave Cliff
Aug 1996

Agent-sched: data associated with ond agent’s buy/sell limits etc

typedef struct an_agent_sched{
int n_units; /*how many| units the agent has/wants+/
Real limit[MAX_UNITS); /=limit pricel of each unite/

} Agent_sched;

SD-sched: data associated with a supﬁly or demand schedule

typedef struct sd_sched{

int n_agents; /*how many agents involveds/
int first_day; / *{irst day this schedule applies tos/
int last_day; /*last day this schedule applies tox/

int can_shout; /*boolean: 0=;silent traders; 1=jcan shoutx/
Agent_sched agents[MAX_AGENTS]; /=details of individual agentse/
} SD_sched; 1

Ezpctl: ezperiment control parameters;

typedef struct a_expctl{ :
char id[MAX_ID]; /#id characters for output filest/

int n_days; /%*number of trading periods to run fors/

int min_trades; /*ﬂinimum number of trades per dayx/

int max_trades; /*mazimum number of trades per day=/

int random; /#*baolean: 0=; ZIP; 1=;ZI-Cx/

int nyse; /*baolean: 0=;NYSE off; 1=;NYSE ons/

int n_dem_sched; /*number of demand schedules/

SD_sched dem_sched[MAX_SCHED]; /*details of demand schedulese/

int d_sched; /*indez of currently active demand schedulex/

int n_sup_sched; /*number of supply schedules+/

SD_sched sup_sched[MAX_SCHED]; /*détails of supply schedulest/

int s_sched; /*index of currently active supply schedule«/
} Expctl;

void expctl_in(char [],Expctl #*,int);
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A.3.2 expctl.c

ezpctl.c: read ezperiment control parameters from a file
Dave Cliff
Aug 1996

This does some validity checks but still need to be careful that the data-file it reads from is structured correctly.
When there is more than one schedule Jor supply or demand, they must be listed in the data-file in the order they
are to become active. The first-day for the|Oth schedule is set to zero, whatever value is given in the data-file

#include <math.h>
#include <stdio.h>
#include <ctype.h>

#include "random.h"
#include "max.h"
#include "expctl.h"

#define LLEN 1024 /*maz. no. of characters in a linet/

get-non-comment-line: read to start of next line that doesn’t start with ‘%’

int get_non_comment_line (FILE *fp)
{ int c,reading=1;
char s[LLEN];

while(reading)
{ /%get to first non-whitespace char/
c=’ ? ;
vhile(isspace(c))
{ c=fgetc(fp);
if(c==EOF) return(EOF);
}

/%is this a comment line %/

if(c=='97)

{ /»yes: read the rest of this lines/
ungetc(c,fp);
fgets(s,LLEN,fp);

}

else

{ /*no: put the char back and ezite/
ungetc(c,fp);
return(EOF-1); /*i.e. something that isn’t EOFs/

}

}
}

read-sched: read a supply or demand schedule
int read_sched(FILE *fp,SD_sched *sched, int verbose)
{ int i,*pi,a,u;

float f,*pf;

pi=&i; pf=&f;
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/*read number of agentss/
if(get_non_comment_line(fp)!=EOF)‘
{ if(fscanf(fp,"%d",pi) !=EOF)
{ sched->n_agents=(#pi); 3
if((sched->n_agents<1)lI(schedF>n_agents>HAx_AGENTS))
{ fprintf(stderr,"\nFail: # agents must be in range {1,...,%d}\n",
MAX_AGENTS) ; | '
exit(0);
}
if (verbose)
{ fprintf(stdout," Y%d agents: ",sched->n_agents); fflush(stdout); }
}
else {fprintf(stderr,”\nFail: can’t read # agents \n"); exit(0);}

else {fprintf(stderr,”\nFail;: EQF reading # agents\n"); exit(0);}

/%read start daye/
if(get_non_comlent_line(fp)!=EOF)
{ if(fscanf(fp,"%d",pi)!'EUF)
{ sched->first_day=(*pi);
if (verbose) .
{ fprintf(stdout,"from day %d ",sched->first_day); fflush(stdout); }
}
}

/*read end days/
if(get_non_connent_line(fp)!-EOF)
{ if(fscanf (fp,"%d",pi) !=EOF)
{ sched->last_day=(#pi);
if(sched—>1ast_day<sched—>first‘day)
{ fprintf(stderr,"\nFail: last_iay(xd)<first_day(%d)\n",
sched->last_day,sched+>first_day);
exit(0);
}
if (verbose) ‘
{ fprintf(stdout,"to day %d\n",sched->last_day); fflush(stdout); }
}
}

/*read shout flage/
if(get_non_comment_line(fp) !=EOF)
{ if(fscanf(fp,"%d",pi)!-EDF)
{ sched->can_shout=(#pi);
if((sched->can_shout<0)Il(sched—?can_shout>1))
{ fprintf(stderr,"\nFail: can_shout not Boolean (%d)\n",
sched->can_shout);
exit(0);
}
if(verbose)
{ if(sched->can_shout)
{ fprintf(stdout,"(These traders CAN SHOUT)\n"); fflush(stdout); }
else
{ fprintf(stdout," (These tradeds are SILENT)\n"); fflush(stdout); }




/*read agent pricing specsx/
for(a=0;a<sched->n_agents;a++) ‘
{ if(get_non_comnent_line(fp)!=Eoﬂ)
{ if(fscanf(fp,"%d",pi) '=EOF)
{ sched->agents[a].n_units=(*pi);
if((sched->agents[a].n_unitsFl)l|(sched->agents[a].n_units>HAX_UNITS))
{ fprintf(stderr,"\nFail: # #nits must be inrange {1,...,%d}\n",

MAX_UNITS);
exit(0);
}
if(verbose)
{ fprintf(stdout,” Agent %2d, %d units: ",a,sched->agents[a].n_units);
fflush(stdout);
}

for(u=0;u<sched->agents[a].n4units;u++)
{ if (fscanf (fp,"%f",pf) !=EQOF)
{ sched-)agents[a].lilit[u]P(Real)(tpf);
if (sched->agents[a].limit|[[u]<0.0)
{ fprintf(stderr,"\nFail: negative price (Y%f)\n",*pf);
exit(0); ’
}
if (verbose)
{ fprintf(stdout,"Ys ",8ched->agents[a].limit[ul);
fflush(stdout);
}
}
}

if (verbose) {fprintf (stdout,"\n"); fflush(stdout); }
}
}
} /*end of reading the agent datax/
}

ezpctl-in: read ezpctl data from a specified file

void expctl_in(char filename[],Expctl %*ec,int verbose)
{ int *pi,i,sched;

float f,spf;

FILE #fp;

fp=fopen(filename,"r");

if (fp==NULL)

{ fprintf(stderr,"\nFAIL: can’t open \"%s\" as expctl input file\n",filename);
exit(0);

}

pi=i; pf=gf;

/xread id stringe/
if(get_non_comment_line(fp)!=EOF)
{ /*copy id string up to but not including the newlinex/

fscanf (fp,"%s\n",&(ec->id));

if (verbose)

{ fprintf(stdout,"ID: %s\n",ec—>id)# fflush(stdout); }
} N H
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/*read number of days+/
if(get_non_conment_line(fp)!=EOF)‘
{ if(fscanf(fp,"%d",pi) ! =EOF)
{ ec->n_days=(*pi);
if ((ec->n_days<1) | | (ec->n_days>MAX_N_DAYS))
{ fprintf(stderr,"\nFail: # tﬁading days must be in range {1,...,%d}\n",
MAX_N_DAYS) ; :
exit(0);
}
if(verbose)
{ fprintf(stdout,"%d days: ",eh—>n_days); fflush(stdout); }
} I
else { fprintf(stderr,"\nFail: can’t read number of days\n"); exit(0); }
} «
else { fprintf(stderr,"\nFail: EOF| reading number of days\n"); exit(0); }

/*read min number of trades per day=/
if(get_non_comment_line(fp) !=EOF)
{ if(fscanf (fp,"%d",pi) !=EOF)
{ ec->min_trades=(*pi);
if((ec->min_trades<1) | | (ec->min_trades>MAX_TRADES))
{ fprintf(stderr,"\nFail: min # trades must be in range {1,...,%d»\n",
MAX_TRADES) ; ’
exit(0);
}
if(verbose)
{ fprintf(stdout,"min_trades=Y%d ",ec->min_trades); fflush(stdout); }

else { fprintf(stderr,"\nFail: can’t read min_trades\n"); exit(0); }

}
else { fprintf(stderr,"\nFail: EOF reading min_trades\n'); exit(0); }

/*read maz number of trades per days/
if(get_non_comment_line(fp) !=EOF)
{ if(fscanf (fp,"%d",pi) !=EOF)
{ ec->max_trades=(#»pi);
if((ec—>nax_trades<ec—>-in_tradhs)ll(ec—>-ax_trades>HAx_TRADES))
{ fprintf(stderr,"\nFail: max # trades muts be in range {id,...,%d}\n",
ec->min_trades,MAX_TRADES) ;
exit(0);
}

if (verbose)
{ fprintf(stdout,"max_trades=}d\n",ec->max_trades); fflush(stdout); }
} ‘
else { fprintf(stderr,"\nFail: can’t read max_trades\n"); exit(0); }
}
else { fprintf(stderr,"\nFail: EOF reading max_trades\n"); exit(0); }

/*read random flage/
if(get_non_comment_line(fp) !=EOF)
{ if(fscanf (fp,"Y%d",pi) '=EOF)
{ ec->random=(*pi);
switch(ec->random)
{ case 1: if(verbose) fprintf(stdout,”Random (ZI-C) traders; ");
break;

case 0: if(verbose) fprintf(stdout,"Intelligent traders; ");
break;
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default: fprintf(stderr,"\nFail: random flag must be boolean\n");
exit (0);
}
if(verbose) fflush(stdout);
}
else { fprintf(stderr,”\nFail: can’t read random flag\n"); exit(0); }
} f :
else { fprintf(stderr,"\nFail: EOF 'reading random flag\n"); exit(0); }

/*read nyse flage/
if(get_non_comment_line(fp) !=EOF)
{ if(fscanf(fp,"%d",pi) !=EOF)
{ ec->nyse=(#pi);
switch(ec->nyse)
{ case 1: if(verbose) fprintf(stdout,"NYSE trading rules\n");
break;

case 0: if(verbose) fprintf(stdout,"no NYSE rules\n");
break;

default: fprintf(stderr,"\nFail: NYSE flag must be boolean\n");
exit(0); :
}
if (verbose) fflush(stdout);
}
else { fprintf(stderr,"\nFail: can’t read nyse flag\n"); exit(0); }
}
else { fprintf(stderr,"\nFail: EOF reading nyse flag\n"); exit(0); }

/*read number of demand schedules/

if (get_non_comment_line(fp) !=EQF)

{ if(fscanf (fp,"%d",pi) t=EOF)

{ ec->n_dem_sched=(%pi);
if((ec->n_den_sched<1)l|(ec->n_den_sched>HAX_SCHED))
{ fprintf(stderr,"\nFail: # demand scheds must be in range {1,...,%d}\n",
MAX_SCHED) ;
exit(0);

}

if(verbose) -
{ fprintf(stdout,"%d demand scheflules:\n",ec->n_dem_sched);
fflush(stdout);
}
}

else {fprintf(stderr,”\nFail: can’t read # demand schedules\n"); exit(0);}
else {fprintf(stderr,"\nFail: EQOF reading # demand schedules\n"); exit(0);}

/*read the schedulest/ w
for(sched=0;sched<ec->n_dem_sched:scﬁed++)
{ if(verbose) fprintf(stdout,” Demand schedule %d:\n",sched);
if(read_sched(fp,&(ec->dem_sched[s hed]) , verbose)==EQF)
{ fprintf(stderr,"\nFail: no more demand schedules\n");
exit(0); !
) ‘
}

ec->d_sched=0; . !
l}
ec—>dem_sched[ec—>d_sched].first_day=P;



/*read number of supply schedulest/
if(get_non_conment_line(fp)!=EOFN
{ if(fscanf (fp,"%d",pi) '=EOF)
{ ec->n_sup_sched=(#pi);
if ((ec~>n_sup_sched<1) || (ec- ->n_sup_sched>MAX_SCHED) )
{ fprintf(stderr,"\nFail: # stply scheds must be in range {1,...,%d}\n",
MAX_SCHED) ;
exit(0);
}

if (verbose)
{ fprintf(stdout,"%d supply sthedules:\n",ec->n_sup_sched);
fflush(stdout);
}
}
else {fprintf(stderr,"\nFail: can’t read # supply schedules\n"); exit(0);}
}
else {fprintf(stderr,"\nFail: EOF reading # supply schedules\n"); exit(0);}

/#read the scheduless/

for(sched=0;sched<ec->n -sup_sched}sched++)

{ if(verbose) fprintf(stdout," S#pply schedule %d:\n",sched);
if(read_ sched(fp,t(ec->snp_sched[sched]) verbose)==EOF)
{ fprintf(stderr,"\nFail: no more supply schedules\n");

exit(0);

}

}

ec->s_sched=0;
ec->sup_sched[ec->s_sched] .first_day=0;

fclose(fp);
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A.4 The Agent: agent

The definition for the data structtjlre Agent associated with each trading agent is given in
agent.h. The functions in agent.c|allow agents to be initialised, and have their dealing strate-
gies altered in response to the ongoing stream of offers and bids accepted and declined.

A.4.1 agent.h

agent.h: general global constants and structures
Dave Cliff
August 1996

#define NULL_EQ -1 /*signals no equilibriums/
symbolic constants for agent type, shout type, and whether shout is accepted or rejected

#define BUY 1
#define SELL 0

* #define BID 1
#define OFFER O
#define DEAL 1
#define NO_DEAL 0
#define END_DAY 2

typedef struct an_agent{
int job; /*BUYing or SELLings/ .

int active; /#still in the market 9%/

int n; /#number of deals dones/

int willing; /+want to make a trade at this price %/
int able; /*allowed to trade at this pricefs/

Real limit;  /sthe bottom-line price for this agenix/

Real profit; /=profit coefficient in determinining bid/offer pricex/
Real beta; /*coeff for changinb profit over time (learning rate )« /
Real momntm; /*momentum in changing profite/

Real last_d; /=last changes/

Real price; /*what the agent w‘fll actually bid«/

Real quant;  /+*how much of this commoditye/

Real bank; /*how much money this agent has in the bank/
Real a_gain; /*actual gaine/

Real t_gain; /=*theoretical gairm/

Real sum; /*in determining average rewards/
Real avg; /*average rewards/
} Agent;

void set_price(Agent *);

void shout_update(int deal_type, int status,
int n_sell,Agent sellers(],int n_buy,Agent buyers[],Real price,
int verbose);

void buy_init(Agent b[],int verbose);

void sell_init(Agent s[],int verbose);

int villing_trade(Agent *a,Real price);

void profit_alter(Agent *a,Real Price,int verbose);
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A.4.2 agent.c

agent.c: defines an agent, how it adapts, ietc.
Dave Cliff ‘
Aug 1996

#include <math.h>
#include <stdio.h>
#include "random.h"
#include "max.h"
#include "agent.h"

#define BONUS 0.00

#define MARKUP 1.1
#define MARKDOWN 0.9
#define MARK 0.05

set-price: set the price of an agent fram its limit and profit values

void set_price(Agent *a)

{ a->price=(a->limit)*(1+a->profit);
/*normalise to one-cent precisions/
a->price=(floor((a->price*100)+0.5))/100;

}

agent-init: initialise the common elements of an agent (buyer or seller)

void agent_init(Agent *a,int verbosd)
{
a->beta=0.1+randval (0.4);
a->bank=0.0;
a->n=0;
a->sum=0.0;
a->last_d=0.0;
a->momntm=0.2+randval (0.6);
a->momntm=randval(0.1);
a->active=1;
if(verbose) :
{ fprintf(stdout,"prof=y+5.3f beta=¥%5.3f mom=¥5.3f bank=%5.2f\n",
a—>profit,a->beta,a—>nonﬁtn,a->bank);
}
}

buy-init: initialize the buyers

void buy_init(Agent b[MAX_AGENTS],injt verbose)
{ int a; ‘

for(a=0;a<MAX_AGENTS;a++)

{ blal.job=BUY;
bla] .profit=-1.0%(0.05+randval(0.3));
if(verbose) fprintf(stdout,"B%2d ",a);
agent_init (b+a,verbose);

}
sell-init: initialize the sellers

80



void sell_init(Agent s[MAX_AGENTS], 1ht verbose)
{ int a;

for(a=0;a<MAX_AGENTS;a++)
{ s[al. job=SELL;
sla].profit=0.05+randval(0.3);
if (verbose) fprintf(stdout, "S%2d‘" a);
agent_init(s+a,verbose);
}
}

willing-trade: is an agent willing to trade at given price?

int willing_trade(Agent *a,Real price)
{ if(a->job==BUY)
{ /»willing to buy at this price?x/
if ((a~>active)&&(a->price>=price)))
{ a->willing=1; }
else
{ a->willing=0; }

else

{ /#willing to sell at this price?s/
1f((a—>act1ve)t&(a->pr1ce<=pr1ce)D
{ a->willing=1; }
else
{ a->villing=0; }

}

return(a->villing);

profit-alter: update profit margin on basis of sale price using Widrow- Hoff style update with learning rate 8.

void profit_alter(Agent *a,Real price,int verbose)
{ Real c,diff,change,newprofit;

if(verbose) fprintf(stdout,"lim=Y%5. 3f prof=%5.3f price=Y5.2f",
a->limit,a->profit, a->price);

diff=(price~-(a->price));
change=((1.0—(a—>momntn))*(a~>betd)tdiff)+((a—>lonntn)*(a->1ast_d));

if(verbose) fprintf(stdout,” last_d=Y5.3f diff=%5.2f chng=Y+5.3f",
a~>last/ d,diff,change);

a->last_d=change;

/#set new prices by altering profit margin«/
newprofit=((a->price+change)/a->1limit)-1.0;
if (a->job==SELL) 1
{ if(newprofit>0.0) a->profit=newprofit; }
else
{ if(newprofit<0.0) a->profit=newprofit; }

set_price(a);
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if(verbose) ‘
{ fprintf(stdout," nu_prof=Y%5.3f ﬁu_price=%5.2f",a—>profit,a->price):}
} ! .

shout-update: update strategies of bug)ers and sellers after a shout

void shout_update(int deal_type,int| status,int n_sell,
Agent sellers(],int n_buy,Agent buyers[],Real price,
int verbose)
{ int b,s;
Real target_price;
/*any seller whose price is less than or equal to the deal price raises profit margins/
/*(this is an attempt to increase proﬁts nezt time around)x/

for(s=0;s<n_sell;s++)
{ if(verbose) fprintf(stdout,"S%02d(%d) ",s,sellers[s].active);

if (status==DEAL)
{ if(sellers[s].price<=price)
{ /*could get more? - try raising margine/
target_price=(price=(1, 0+ra$dva1(HARK)))+randva1(0 05);
profit_alter(sellers+s, target_price,verbose) ;

}

else
{ /#wouldn’t have got this deal, so mark the price downs/
if( (deal_type==BID) &&
('willing_trade(sellers+s,price)) &&
(sellers[s].active)
)
{ target_price=(price*(1.0-randval (MARK)))-randval (0.05);
profit_alter(sellers+s,ta#get_price,verbose);
}
}
}

else /*NO DEAL=/
{ if(deal_type==0FFER)
if((sellers(s]).price>=price)&&(sellers[s].active))

{ /*would have asked for more and lost the deal, so reduce profitk/
target_price=(price*(1.0-randval (MARK)))-randval(0.05);
profit_alter(sellers+s,targdt_price,verbose);

}

}
if(verbose)fprintf(stdout,"\n");

for(b=0;b<n_buy;b++)
{ if(verbose) fprintf(stdout,"B%02d(%d) ",b,buyers[b].active);

if (status==DEAL)
{ if(buyers[b].price>=price)
{ /*%could get lower price? - try rassing margin (i.e. cutting price)x/
target_price=(pricet(1.0-ranhva1(HARK)))-randval(0.0S);
profit_alter(buyers+b,target_price,verbose);

}
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else
{ /*wouldn’t have got this deal, so mark the price up (reduce profit )/
if( (deal_type==0FFER) && !
(twilling_trade(buyers+b sprice)) &t
(buyers[b]l.active) |
)
{ target_price=(price*(1.0+ra} dval (MARK)))+randval (0.05);
profit_alter(buyers+b, targ:j:_price ,verbose);
} i
}
}

else /*NO-DEALs/
{ if(deal_type==BID)

if ((buyers[b] .price<=price)&&(bliyers[b].active))

{ /*would have bid less and also Ios# the deal, so reduce profite/
target_price=(price*(1.0+randyal(MARK)))+randval(0.05);
profit_alter(buyers+b ,target_price »verbose);

} i
}
if(verbose)fprintf(stdout,"\n");

83



A.5 Trading Data: tdat

The file tdat.h defines a structure for recording the details of a single trade: the transaction
price, whether the shout was a bid or offer, and what the theoretical and actual equilibrium
price and quantities were at the tim%: of the trade. The file tdat.c then defines a function which
writes a file of the time series of these data, in a format suitable for display by the Unix system
utility xgraph. ‘

A.5.1 tdat.h

‘tdat.h: header for routines that record and display data in one trading session
Dave Cliff
Aug 1996

typedef struct trade_data{
Real deal_p; /#price at which deal sudceeds+/
int deal_t; /*type of deal accepted (&id or ask)*/
Real t_eq_p; /*theoretical equilibrium prices/
int t_eq_q; /#theoretical equslibrium lqguantitys/
Real a_eq_p; /#actual equilibrium pricb/
int a_eq_q; /*actual equilibrium quc?ntityt/

} Trade_data;

void xg_trades_graph(Trade_data tdat t] [MAX_TRADES],
Day_datas,int,int,char [],int);

A.5.2 tdat.c

tdat.c: routine for manipulating data and stats recorded during a single trade, i.e., the auction leading to one deal
Dave Cliff ~
Aug 1996

#include <stdio.h>
#include <math.h>

#include "random.h"
#include "agent.h"
#include "max.h"
#include "ddat.h"
#include '"tdat.h"

zg-trades-graph: plot stats concerning individual trades in xgraph format

void xg_trades_graph(Trade_data tdat[MAX_N_DAYS] [MAX_TRADES],
Day_data *ddat,
int n_days,int max_trades,
char filename[],int n_exps)
{ Real gx,dgx,q;
int t,d;
FILE =fp;
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fp=fopen(filename,"w");
fprintf(fp,"TitleText: %s: n=Y%d\n\nh",filename,n_exps);
dgx=(1.0/((Real) (max_trades)));

fprintf (fp,"\"Price\n");
for (d=0;d<n_days;d++)
{ gx=d+1;
q=(ddat+d) ->quant .sum;
for(t=0;t<q;t++)
{ if(tdat[d][t].deal_p>=0.0) fprintf (fp,"%f %f\n",gx,tdat[d] [t].deal_p);
gx+=dgx;
}
}

fprintf (£p, "\n\"Actual EqP\n");
for(d=0;d<n_days;d++)
{ gx=d+1;
q=(ddat+d)->quant .sum;
for(t=0;t<q;t++)
{ if(tdat[d][t].a_eq_q!=NULL_EQ) ifprintf(fp,"%f %f\n",gx,tdat[d] [t].a_eq_p);
gx+=dgx;
}
}

fprintf (fp,"\n\"Theoretical EqP\n");;
for(d=0;d<n_days;d++)
{ gx=d+1;
q=(ddat+d) ->quant . sum;
for(t=0;t<q;t++)
{ if(tdat[d]1[t].t_eq.q'=NULL_EQ) fprintf(fp,"%f %f\n" ,gx,tdat[d) [t].t_eq_p);
gx+=dgx;
}
}

fclose(fp);
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A.6 Day Data: ddat

In one ‘day’ there will generally be more than one transaction. In both Smith’s experiments
and those of Gode and Sunder, a variety of statistics are calculated at the end of a day, using
the data for the trades that have occurred in that day; plots of time series of these daily data
. may then be produced. The file dd#t -h contains structure declarations for recording day data:

both single time-series and also a,ggregate time-series where the mean and standard deviation
(s.d.) are of interest. f

A.6.1 ddat.h

ddat.h: header for ddat.c routines
Dave Cliff
Sept 1996

datatype for Real sum and sum of squares, used in calculuating mean and s.d.

typedef struct real_stat{
Real sum,sumsq;
int n;

} Real_stat;

data and stats for a day’s trading

typedef struct day_data{

Real_stat alpha; /*Smith’s alphas/

Real_stat quant; /%Quantitys/

Real_stat effic; /#Efficiencys/

Real_stat price; /#prices/

Real_stat pdisp; /#profit dispersais/

Real_stat volty; /*transaction price volatilitys/
} Day_data;

ddat-init: initialise daily data

void ddat_init(Day_data #*);
ddat-update: update daily data

void ddat_update(Day_data llr,im:,Real,i}leal,Real,l?.eal,Re:—.\l);
ddat-zgraph: plot the daily stats in zgrdph format

void xg_daily_graph(Day_data dd[],int,int,char *);

A.6.2 ddat.c

ddat.c: code for handling data/stats compiled at end of each trading day
Dave Cliff
Sept 1996

#include <math.h>
#include <stdio.h>
#include <string.h>
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#include "random.h"
#include "ddat.h"
#include "max.h"

#define SMALLREAL 0.0000001 /*used to dodge rounding errors on sqrt */

" #define DD_ALPHA O
#define DD_QUANT 1
#define DD_EFFIC 2
#define DD_PRICE 3
#define DD_PDISP 4
#define DD_VOLTY 5

rstat-zero: set everything to zero in on% Real-stat structure

void rstat_zero(Real_stat #*r)
{ r->sum=0.0;

r->sumsq=0.0;

r->n=0;

}
ddat-init: initialise day data

void ddat_init(Day_data *ddat)

{
rstat_zero(k(ddat->alpha));
rstat_zero(&(ddat->quant));
rstat_zero(&(ddat->effic));
rstat_zero(&(ddat->price));
rstat_zero(&(ddat->pdisp));
ratat_zero(&(ddat->volty));

ddat-update: update day data.

void ddat_update(Day_data *dd,int n_ddals,
Real sum_price,Real glpha,Real pdisp,Real effic,Real pdiff)
{ Real v;
if(n_deals>0)
{ (dd->price.sum)+=(sum_price/n_deals);
(dd->price.sunsq)+=((sun_price/n-deals)*(sum_price/n_deals)):
(dd->price.n)++;

=sqrt(pdiff/n_deals); /*root mean square differencex/
(dd->volty.sum)+=v;
(dd->volty.sumsq)+=(vsv);
(dd->volty.n)++;

(dd->alpha.sum)+=alpha; |
(dd->alpha.sumsq)+=(alpha*alpha);
(dd->alpha.n)++;

(dd->effic.sum)+=effic;
(dd—>effic.sumsq)+=(effic#effic);
(dd->effic.n)++;

(dd->quant.sum)+=n_deals;

(dd->quant .sumsq)+=(n_deals*n_deals);
(dd->quant .n)++;
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(dd->pdisp.sum)+=pdisp; ‘
(dd->pdisp.sumsq)+=(pdisp*pdisp) ;
(dd->pdisp.n)++;

)
}

ddat-meanpmsd: plot mean plus and minus one standard deviation

void ddat_meanpmsd(FILE #fp,int field,int n_days,int n_exps,Day_data dd[])
{ int d,n[MAX_N_DAYS];

Real mean,neansq,diff,sum[HAX_N_DdYS],sumsq[HAX_H_DAYS];

char fieldstr([30];

if (n_days>MAX_N_DAYS)

{ fprintf(stderr,"\nFAIL: MAX_N_DAYS too small in ddat.c: recompile\n");
exit(0);

}

switch(field)
{ case DD_ALPHA: strcpy(fieldstr,"Alpha");
for(d=0;d<n_days;/d++)

{ sum{d)=dd[d] .alpha.sum;
sumsq[d]=dd[d].alpha.sumsq;
n(d}=dd[d] .alpha.n;

}

break;

case DD_QUANT: strcpy(fieldstr,"Quantity");
for (d=0;d<n_days;d++)

{ sum[d]=dd[d].quant.sunm;
sumsq[d]=dd [d] .quant . sumsq;
nldl=dd[d].quant .n;

}

break;

case DD_EFFIC: strcpy(fieldstr,"Efficiency");
for(d=0;d<n_days;d++)

{ sum[d]=dd[d].effic.sum;
sumsq[d)=dd[d].effic.sumsq;
n[d]=dd[d).effi¢.n;

}

break;

case DD_PRICE: strcpy(fieldstr,"Price");
for(d=0;d<n_days;d++)

{ sum{d]=dd[d}.price.sum;
sumsq(dl=dd[d] .price.sumsq;
nldl=dd[d] .price.n;

}

break;

case DD_PDISP: strcpy(fieldstr,"[ispersion“);
for(d=0;d<n_days;d++)

{ sum[d]=dd[d].pdisp.sum;
sumsq[d]=dd[d].pdisp.sumsq;
n[d]l=dd[d] .pdisp.n;

}

break;
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case DD_VOLTY: strcpy(fieldstr,"volatility");
for(dto;d<n_days;a++)

{ sumn[d]=dd[d].volty.sum;
sunsq[d]‘dd[d].*olty.sumsq;
n[d]=dd[d].volt*.n;

}

break;

default: fprintf(stderr,”\nFAIL: |bad field in ddat_meanpmsd (%d)\n",field);
exit(0);

fprintf(fp,"\" %s (mean)\n",fieldstr);
for (d=0;d<n_days;d++) tprintf(fp,"%d %f\n",d+1,sum[d]/n[d]);
fprintf(fp,"\n");

fprintf(fp,"\" %s (-1s.d.)\n",fieldstr);
for(d=0;d<n_days;d++)
{ mean=sum{d]/n[d];
meansq=mean*mean;
diff=(sumseq[d]l/n(d])-meansq;
if (diff<SMALLREAL) diff=0.0;
fprintf (fp,"%d %f\n",d+1,mean-sqrit (diff));
}
fprintf(fp,"\n");

fprintf(fp,"\" %s (+1s.d.)\n",fieldstr);
for(d=0;d<n_days;d++)
{ mean=sum[d1/n[d];
meansq=mean#*mean;
diff=(sumsq[d]/n[d])-meansq;
if (diff<SMALLREAL) diff=0.0;
fprintf (fp,"%d %f\n",d+1,meantsqrt(diff));
}
fprintf (fp,"\n");

ddat-zgraph: plot the daily stats in zgraph format

void xg_daily_graph(Day_data dd[],intin_days,int n_exps,char #fname)
{ int 4;
FILE *fp;

fp=fopen(fname,"w");
fprintf(fp,"TitleText: %s: n=%d\n\n",fname,n_exps);

if(n_exps<2)
{ /#no sense tn calculating SD«/

fprintf(fp,"\" Alpha\n");
for(d=0;d<n_days;d++) fprintf(fp,"%d %f\n",d+1,dd[d].alpha.sum);
fprintf(fp,"\n");

fprintf(fp,"\" Efficiency\n"); ‘
for(d=0;d<n_days;d++) fprintf(fp,"%d %f\n",d+1,dd{d].effic.sum);
fprintf(fp,"\n");
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fprintf(fp,"\" Quantity\n"); :
for(d=0;d<n_days;d++) fpr1ntf(fﬂ,"%d %f\n",d+1,dd[d].quant.sum);
fprintf(fp,"\n");

fprintf(fp,"\" Dispersion\n");
for(d=0;d<n_days;d++) fpr1ntf(fp\"7d 4f\n",d+1,dd[d].pdisp.sum);
fprlntf(fp,"\n")

else

{ /*plot mean and s.d. for the daily sta{ts‘/
ddat_meanpmsd(fp,DD_PRICE,n_days,n_exps,dd);
ddat_meanpmsd(fp,DD_ALPHA,n_days,n_exps,dd) ;
ddat_meanpmsd(fp,DD_EFFIC,n_days,n_exps,dd);
ddat_meanpmsd(fp,DD_QUANT,n_days,n_exps,dd) ;
ddat_meanpnsd(fp,DD_PDISP,n_days}n_exps,dd);
ddat_meanpmsd(fp,DD_VOLTY,n_days,n_exps,dd) ;

}

fclose(fp);
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A.7 Supply and Demand: sd

Visualisation of the supply and dem#nd curves is of great use in understanding the dynamics of
the system: as sellers and buyers make deals, they may be required to withdraw from the market,
‘and their absence can shift both thé,»underlying supply and demand curves (calculated on the
basis of the limit prices of the traders). The apparent supply and demand curves, calculated
on the basis of the prices the traders| are-‘shouting’ in the auction, can undergo variations both
when traders leave the market, and when traders adjust their shout-prices on the basis of their
observations of other shouts in the market.

The files sd.h and sd.c define a function supdem which will return either the underlying
(theoretical) or apparent (actual) values of equilibrium price, equilibrium quantity, and maxi-
mum available surplus. If a non-null character string is given in the argument fname, a file is
produced which can be displayed using the Unix system utility xfig, version 2.1. The functions
with names commencing xf_ defined in sd.c exist to mask the intricacies of the xfig2.1 file
format. Full details of the xfig2.1 file format are available from:

http://www.cs.virginia.edu/helpnet/Authoring_Tools/xf ig/FORMAT2.1.html

A sample supdem output file is giﬁren in Section B.3.

A.7.1 sd.h

supdem.h
Dave Clif
Sept 1996

acouple of symbolic constants

#define EQ_THEORY O
#define EQ_ACTUAL 1

void supdem(int,Agent #,int,Agent #,int,Real #,int *,Real *,int,
char [],Real *,int);

A.7.2 sd.c

sd.c - code for working with stepped supply and demand curves, producing output in zfig format
Dave Ciiff ‘
Sept 1996

#include <math.h>
#include <stdio.h>
#include "random.h"
#include "agent.h"
#include "max.h"
#include "sd.h"

#define MAX_PRICES ((MAX_AGENTS)=*MAX_UNITS)
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maz number of points in a polyline
#define MAX_POINTS (MAX_PRICES#*3)

constants for Xfig drawing
#define SCALE_FACTOR 1200 /#pizels per inchx/

#define X_INCHES 7

#define Y_INCHES 6 ‘

#define LMARGIN_X ((int) (0.15#X_INCHES*SCALE_FACTOR))

#define LMARGIN_Y ((int) (0.15+Y_INCHES*SCALE_FACTOR))

#define GRAPH_X ((int) (0.70*X_INCHES*SCALE_FACTOR))

#define GRAPH_Y ((int)(0.70*Y_INCH‘S*SCALE_FACTOR))

#define Y_EQ_0  LMARGIN_Y+GRAPH.Y

#define X_EQ_0 LMARGIN_X+GRAPH_X

#define AX_THICK 1 /*thickness of azis liness/
#define AX_PTS 18 /*pointsize for labelling azesx/
#define TICK_X ((int)(0.025%GRAPH_Y)) /*z tick heights/

#define TICK_Y ((int)(0.025%GRAPH_X)) /*y tick lengthe/

#define X_TICKS 10 /*aim at this numbe%r of ticks on the z azisx/
#define Y_TICKS 10 /#aim at this number of ticks on the y azise/

#define MAX_LABELLEN 80 /*mazimum number of characters in a label/
#define PL_SOLID 0 /*polyline solid linestylex/

#define PL_DASHED 1  /=polyline dashed linestylex/

#define PL_DOTTED 2  /#polyline dotted linestylex/

#define TRI_UP 0

#define TRI_DOWN 1

#define NULL_EQ -1 /=signifies no equili&rium price/quantityx/

sort: just bubble

void sort(int order,int field,int n,Real 1[1[2})
{ int i,j,swap; ‘
Real t;

if((field<o0) || (field>1))

{ fprintf(stderr,"\nFail: bad field=%d in sort\n",field);
exit (0);

}

for(i=0;i<n;i++)
{ for(j=0;j<i;j++)
{ if(order)
{ if(1{i][field]>1[j1[field]) swap=1; else swap=0; }
else
{ if(1[il[field]1<1[j][field]) swap=1; else swap=0; }

if (swap)
{ t=1[ilT0]; 1[ilC0]=1[3100]; Y[jIL0]=t;
t=1[i101]; 10i1C013=1(3301]; 1(5]1 [1]1=¢;
}
}
}
}

zf-polyline: draw a polyline in zfig
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void xf_polyline(FILE *fp,int lstyle,int 1thick,Real dlen,int npoints,
int coords[MAX_POINTS][2])
{ int p; ‘

" fprintf(£fp,"2 1 %d %d -1 70 0 -1 ﬁG.Sf 00-100 %d\n",
lstyle,lthick,dlen,npoints);
for(p=0;p<npoints;p++)

{ fprintf(fp," - %d %d\n" ,cooﬂjds [p1[0],coords{pl[1]); }

zf-text: draw some test in zfig

void xf_text(FILE *fp,int points,Real| angle,int x,int y,char text[])
{ fprintf(£p,"4 0 -1 0 0 0 %d %f 4 195 135 %d %d %s\\001\n",
points,angle,x,y,text);

}
zf-triangle: draw a shaded triangle

void xf_triangle(FILE *fp,int base_x,int base_y, int peak_y,int dx)
{ int shade;

if (base_y>peak_y)

{ shade=15;} /*pointing down*/
else

{ shade=5;} /#*pointing ups/

fprintf(£p,"23 0 1 -1 7 0 0 %d 0.000 0 0 -1 0 0 4\n",shade);
/*peakx/

fprintf (fp," %d %d ",base_x+dx/2,peak_y);

/*basex/

fprintf(£fp,"%d %d %d %d ",base_x,base_y,base_x+dx,base_y) ;
/back to the peaks/ :

fprintf(fp,"%d %d\n",base_x+dx/2,peak_y);

setcoords: load values into a coordinate pair

void setcoords(int c[][2],int p,int x,int y)

{ if (p>=MAX_POINTS) :
{ fprintf(stderr,"\nFAIL: p=Yd >= HA*_POINTS=Zd\n",p,HAX_POIHTS); exit(0); }
clpl[0]=x; c[pll1l=y;

}

neat-ticks: find a "neat” inter-tick interdal for azis labelling
int neat_ticks(int range,int max_ticks)

{ int tick_step,
tmp=1;
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if (range>max_ticks) |

{ tick_step=(int)(floor(0.5+(rang#/((Real)(max_ticks)))));
/*pick a nice stepsize: this is a bit of a kludgex/
tmp=2;
if(tick_step>2) tmp=5;
if(tick_step>7) tmp=10;
if(tick_step>11) tmp=15;
if(tick_step>17) tmp=20;
if(tick_step>22) tmp=25;
if(tick_step>30) tmp=50;
if(tick_step>60) tmp=100;
if(tick_step>120) tmp=150;
if(tick_step>170) tmp=200;
if(tick_step>220) tmp=250;
if(tick_step>300) tmp=500;
if(tick_step>600) tmp=1000;

}

tick_step=tmp;

return(tick_step);

}

draw-azes: do the price and qitantity} azes dr and dy are returned with the number of pizels in a unit-step
miny is baseline y value, mazy is maz y value on graph

void draw_axes(FILE #fp,int min_q, int max_q,Real min_p,Real max_p,
int eq.p,int eq_q,int surplus,char fname[],
int #dx,int *dy,int eminy,int *maxy)
{ int t,p,
tick,
start,
tick_step,
delta,
imin_p, imax_p,
coords [MAX_POINTS] [2],
range;
char labelstr[MAX_LABELLEN];

/*draw the azess/

p=0; |
setcoords(coords,p++, LMARGIN_X,LMARGIN_Y);
setcoords(coords,p++,LHARGIN_X.Y_EQ_0);
setcoords(coords,p++,X_EQ_0,Y_EQ_0);
xf_polyline(fp,PL_SOLID,AX_THICK,0.00,p,coords);

/*horizontal azis: quantity«/
range=(max_g-min_q);
tick_step=neat_ticks(range,X_TICKS);
delta=GRAPH_X/(1+(range/tick_step)
(*dx)=delta/tick_step;
start=min_q-1;

if(start<0) start=0;




for(t=start;t<=max_q;t+=tick step)‘

{ tick=LMARGIN_X+(((t-start)/tick $tep)*de1ta)
p=0;
setcoords(coords,p++,tick,Y_EQ_0);
setcoords(coords,p++,tick,Y_EQ_0+TICK_X);
xf_polyline(fp,PL_SOLID,AX THICKJO 00,p,coords) ;
if(t>min_q-1)
{ sprintf(labelstr,"%d",t); ‘

xf_text(fp,AX_PTS,0.0,tick,Y_Eq_0+2*TICK_X,labelstr);

}

}

sprintf(labelstr, "Quantity"); ‘
xf_text(fp,AX_PTS,0.0,LHARGIN-X+(imt)(GRAPH_X*0.4),Y_EQ_0+4#TICK_X,labelstr);

/*vertical azis:pricex/

imin_p=(int) (100#min_p);
imax_p=(int) (100*max_p);
range=imax_p-imin_p;
tick_step=neat_ticks(range,Y_TICKS);

/*fiddle imin-p and i-mazp to make them integer multiples of tick-stepx/
imin_p=(imin_p/tick_step)#*tick_ stepL /*integer division: lower bounds/
imax_p=(1+(imax_p/tick_ step))*tlck_btep. /*integer division: upper bounde/
range=imax_p-imin_p;

sminy=imin_p;

*maxy=imax_p;

delta=GRAPH_Y/(range/tick_step);

*dy=GRAPH_Y/range;

delta=(*miny)*(xdy);

for(t=imin_p;t<=imax_p;t+=tick_step)

{ tick=Y_EQ_0-(t*(#dy))+delta;
p=0;
setcoords(coords,p++,LMARGIN_X,tick);
setcoords(coords,p++,LMARGIN_X+TI(K_Y, tick);
xf_polyline(fp,PL_SOLID,AX_THICK 0 00,p,coords);
sprintf (labelstr,"%d",t);
xf_text(fp, AX_PTS,0.0,LHARGIH_X-44TICK_Y,tiCk,labelstr):

/*annotate with key valuess/
if (eq_q==NULL_EQ)
{ sprintf(labelstr,

"Price ; Eq.Price=<-> Eq.Quant=%2d Surplus=%4d",
0,0);
}
else
{ sprintf(labelstr,
"Price Eq.Price=%3d Eq.Quant=%2d Surplus=Y4d",
eq_p,eq_q,surplus);
}

xf_text(fp,AX_PTS,0.0,LHARGIN_X—4*TICK_Y,tick-4*TICK_Y,1abelstr);
/*add the filename for reference, but in small textx/

sprintf(labelstr,"%s",fname);
xf_text(fp,AX_PTS/2,0.0,LHARGIN_X—4¢TICK_Y,tick-G*TICK_Y,fname);
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supdem: from a list of supplier price% and a list of demander prices, return values: equilibrium price, equilib-
rium quantity, maz surplus. The maz surplus figure is integrated from 1 to maz-trades, rather than 1 to maz(nb,ns)
- the mazimum total profit that could haﬂe been earned is dependent on how many trades are allowed.
|
void supdem(int ns,Agent sellers[],‘nt nb,Agent buyers([],int max_trades,
Real *ep,int #iq,Real *iurplus,int field,char fname[],
Real *bounds,int verbose)
{ int maxn,a,s,b,no_intersect,not_found,
q; /*quantityc/ ‘
Real sp[MAX_PRICES][2], /sseller limit and quote pricest/
bp[MAX_PRICES] [2], /*buyer limit and quote pricesx/
profit,tot_surp,
maxprice,minprice;
FILE *fp;

/*these declarations are for the zfig drawing stuffe/
int p, /*point inderr/
min_q, max_q, /*minimum and mazimum quantities on graphs/
dx,dy,tx,ty,miny, fy,maxy,
coords [MAX_POINTS] [2]; /#*coordinate points in polyline etcx/
char labelstr[MAX_LABELLEN];

*ep=-1.0;
*iq=NULL_EQ;

if (((nb*MAX_UNITS)>MAX_PRICES)| | ((ns*MAX_UNITS)>MAX_PRICES))

{ fprintf(stderr,"\nFail: too many units in supdem() -- recompile\n");
exit(0); ‘

}

8=0;
for(a=0;a<ns;a++)
{ if(sellers[a].active)
{ for(q=0;q<sellers[a].quant;q++)
{ spls][0)=sellers[a).limit;
spls]l[1]=sellers[a].price;
if(8==0)
{ maxprice=sellers(al.price; minprice=sellers([a]. limit; }
else
{ /*for sellers, limit;=pricex/
if(sellers[a].price>maxpride) maxprice=sellers[a]. price;
if(sellers[a].limit<minprice) minprice=sellers[a].limit H
}
S++;
}
}
}

b=0;

for(a=0;a<nb;a++)

{ if (buyers[a].active)

{ for(q=0;q<buyers[a].quant; q++)
{ bp[bl [0]=buyers([a].limit;

bp(bl [1]=buyers[al.price;
/*for buyers, limit; =pricex/
if (buyers(al.limit>maxprice) maxprice=buyers([a).limit;
if (buyers[al.price<minprice) minprice=buyersfa] .price;
b++;
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sort(1,field,b,bp);
sort(0,field,s,sp);

maxn=(s>b?s:b) ;
min_g=1;
max_q=maxn;

if (verbose) |
{ fprintf(stdout,"Max_trades=Y%d\n" Jmax_trades);
fprintf(stdout,"Minprice=%f naxpﬁice=%f min_q=Y%d max_q=%d\n",
minprice,maxprice,min_q,max_q);

} f

if (bounds !=NULL)
{ /*autoscaling is OFF»/
min_q=(int) (*bounds) ;
max_q={int) (*(bounds+1));
minprice=#(bounds+2) ;
maxprice=#(bounds+3) ;
if (verbose)
{ fprintf(stdout,"Autoscaling is OFF. Bounds are:\n");
fprintf(stdout,"Minprice=}f laxﬁrice=%f min_q=%d max_q=¥%d\n",
linprice,naxpri#e,lin_q,nax_q);

tot_surp=0.0;

if (sp[0] [field]>bp[0] [field])

{ /slowest selling price is larger than highest buying pricex/
no_intersect=1;

}

else

{ /*find intersect points/
no_intersect=0;
not_found=1;

for(q=0;q<maxn;q++)

{ /*intersection®/
profit=bplql [field]-splq] [field];
if (not_found)
{

if(splq]l [field]>bplq) [field])

{ /=straightforward intersecte/ :
tep=(sp[q-1][field]+bp[q-1][ﬁield])/Q.O;
*ig=q;
not_found=0;

else
{

if ((q+1==s) &k (q+1==b))

{ /=last buyer and sellers/
*ep=(splq][field]+bp[q) [field])/2.0;
*ig=q+1;
if (q<max_trades) tot_surp+sprofit;
not_found=0;
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else
{ if((q+1)==s)

{ /*run out of active sellets but still some buyers/
*xep=(bplql[field]+bp{q+1] [fieldl)/2.0;
*+iq=q+1; |
if (q<max_trades) tot_surp+=profit;
not_found=0;

}

else
{ if((q+1)==b)

{ /*run out of active buyers but still some sellersx/
(xep)=(splql [field]+splq+1][field])/2.0;
(*iq)=q+1;
if(q<max_trades) to{_surp+=profit;
not_found=0;

}

}
}
}

if(not_found)
{ if(q<max_trades)
{
tot_surp+=profit;
}
}
}

if(verbose)

{ fprintf(stdout,"quantity %2d ",q+1);
if(q<s) fprintf(stdout,"supply=45.3f ",splql [field]l);
else fprintf (stdout," ")

if(q<b) fprintf(stdout,"demand=%5.3f ",bplql [field]);
else fprintf(stdout," ");

fprintf(stdout,"profit=Yf cum.surp=if ",profit,tot_surp);
fprintf (stdout,"\n");
}
}
}

*surplus=tot_surp;

if (verbose)
{ switch(field)
{ case EQ_THEORY: fprintf (stdout,"Theoretical");
break;
case EQ_ACTUAL: fprintf(stdout,"Actual");
break;
default: fprintf(stderr,"\nFail: bad field=%d in supdem\n",field);
exit (0);
}
fprintf(stdout," equilibrium pride=%f at %d; max surplus=Yf\n",
*ep,*iq,*surplus);

}

if(fname[0] '=>\0")
{ /*write an zfig filex/
fp=fopen(fname,"w");
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/*do the preamblex/ ;
fprintf (fp,"#FIG 3.1\nLandscape\WCenter\nInches\n1200 2\n");

/*do the azes tickmarks and labellinge/

draw_axes(fp,min_q,la.x_q,linprice‘,naxprice, (int)floor ((*ep*100)+0.5),
*iq,(int)floor((*surplu#t100)+0.5),fname,
&dx,&dy,2miny,&maxy) ;

/*do the supply triangles and build the}.mpply curvesx/
p=0; :
for(q=0;q<s;q ++)
{ tx=LMARGIN_X+(q#dx);
xf_triangle(fp,tx,Y_EQ_0-(int) ( plq] (0]1*dy*100)+(miny*dy),
Y_EQ_0-(int) (%p [q] [1]*dy*100)+ (miny*dy) ,dx) ;
fy=Y_EQ_0-(int) (sp[q] [field]+dy
setcoords(coords,p++,tx,fy);
" setcoords(coords,p++, tx+dx,fy) ;

100) +(miny=dy) ;

} i
setcoords(coords,p++, tx+dx, Y_EQ_0-(maxy*dy)+(miny+dy)) ;
/*do the supply curvex/ ‘
xf_polyline(fp,PL_SOLID,AX_THICK, 0| 00 »P,coords);

/#do the demand triangles and build the demand curves/

p=0;

for(q=0;q<b;q++)

{ tx=LMARGIN_X+(q*dx);
xf_triangle(fp,tx,Y_EQ_0-(int) (bplq] [0]*dy*100)+(miny*dy) ,

Y_EQ_0-(int) (b [q] [1)*dy*100)+(miny*dy) ,dx) ;

fy=Y_EQ_0-(int) (bplq] [field] *dy*?OO)ﬂ'(ninytdy) ;
setcoords(coords,p++,tx,fy);
setcoords(coords,pﬁ,tx-'-dx,fy) ;

} :
setcoords(coords,p++,tx+dx, Y_EQ_0) H
xf_polyline(fp,PL_SOLID,AX_THICK ,0.100,p,coords);

/*equilibrium price and quantitye/

if(!no_intersect)

{ p=0;
setcoords(coords,p++,LMARGIN_X, Y_EQ_0-((*ep) *dy*100)+(miny*dy) ) ;
setcoords(coords, p++, tx+dx,Y_EQ_0+( (*ep)*dy*100)+(miny#+dy)) ;
xf_polyline(fp,PL_DASHED,AX_THICK L4 .00,p,coords) ;

p=0; ‘
setcoords(coords, p++, LMARGIN_X+( (fiq)*dx) »Y_EQ_0-((*ep)*dy*100)+ (miny*dy)) ;
setcoords(coords,p++, LMARGIN X+ ( (#iq)*dx),Y_EQ_0);
xf_polyline(fp,PL_DASHED,AX_THICK 14.00,p,coords) ;

fclose(fp);
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A.8 The Smith Experiments: smith

The main function allows an expefiment defined in a given control-file to be run one or more
times. The number of repetitions is a command-line argument, and the control-file parameters
and syntax are explained in Sectiﬁn A.3, with an example control-file in Section B.1. Data
. is gathered and output using the ifunctions defined in ddat, tdat, and sd (Sections A.6, A.5,
and A.7 respectively). j ‘

The system approximates the ﬂaraﬂel asynchronous activity of a community of traders in a
discrete cinematographic fashion: time is chunked into discrete ‘slices’. At the start of each slice,
the active traders that are able to sI\out are identified and one of them is chosen at random; that
agent’s price for an offer or bid is then ‘shouted’, i.e. made public to the remaining agents. The
agents in the other community (i.e, buyers if a seller shouted, or sellers if a buyer shouted) are
then examined to see whether theiriinternal price level is such that they are willing to do a deal.
One agent is chosen at random frcim the list of willing agents to do a deal with the ‘shouter’,
and the trading data of these two igents is adjusted accordingly. If no agents are willing to do
a deal, a count of ‘failed deals’ is incremented and the system loops back to random choice of
another shouter. Agents can adjust their price level on the basis of whether the deal succeeded
or failed, and whether the shouter ¢came from their community or the other one. This continues
until there are either no agents ablé to trade in one of the communities, or a pre-set number of
failed deals is reached. '

smith.c : the master program
Dave Cliff
Sept 1996

#include <math.h>
#include <stdio.h>

#include "max.h"
#include "random.h"
#include "agent.h"
#include "sd.h"
#include "ddat.h"
#include "tdat.h"
#include "expctl.h"

reward: monetary reward for a deal

Real reward(Agent *a,Real price)
{ Real r;
if ((a->job)==SELL)
{ r=((price-(a->1imit))); }
else
{ r=(((a->limit)-price)); }

if(r<0.0) r=0.0;

return(r);

}

get-price: get a price from an agent) -

Real get_price(Agent *a,int id,int random, int verbose)
{ Real price;
Real rmin=0.01,rmax=4.0; /*bounds pn random pricesx/
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if (random)
{ /*agent price is generated at random#/
if (rmax<a->limit)
{ fprintf(stderr,"\nFail: rmax tgo low in get_price()\n");
exit(0);
}

else price=(a->limit)+randval (rmax-(a->1limit));
price=(£floor(0.5+(price*100)))/100;
a->price=price;

}

else price=a->price;

if (a->job==BUY) price-rnin+randv§1((a—>1ilit)-r1in):

if (verbose)
{ if(a->job==BUY) fprintf(stdout,"Buyer %d bids at %5.3f (revard=%5.3f)\n",
id,price,revard(a,price));
else fprintf(stdout,"Seller %d offers at %5.3f (revard=%5.3£)\n",
id,price,revard(a,prﬁce));
}

return(price);

get-willing: form a list of agents willing to deal

int get_willing(Real price,Agent agents[],int n,int ilist[],char *s,int random,
int verbose)
{ int willing=0,a;
Real r_price,p;

p=price;

for(a=0;a<n;at++)
{ if(random)
{ /*agent generates a price at random, compares it to given prices/
/*and is willing if random price makes a profite/ ‘
agents[al.villing=0;

if (agents[al.active)
{ r_price=get_price(agents+a,a,randon, verbose) ;
if (agents[a]. job==BUY) ‘
{ if(r_price>price)
{ agents[a).willing=1; p=r_price; }

else
{ if(r_price<price)
{ agents[a).willing=1; pP=r_price; }
}
}
}

else
{ /*use some intelligences/
willing_trade(agents+a,price);

}

if(agents[a].willing)
{ ilist([willing)=a;
willing++;

101



if(verbose)
{ fprintf(stdout,"%s%2d willi
s,a,p,revard(agents

g (r)price=Y5.3f reward=%5.3f\n",
ﬁa,price));
} I
}
}

if(verbose) fprintf(stdout,"%d tr#ders willing to deal\n",willing);

return(villing);
}

get-able: form a list of agents able toideal

int get_able(Real Price,Agent agent#[],int n,int ilist{],char *s,int verbose)
{ int able=0,a;

for(a=0;a<n;a++)
{ if(agents[a].able)
{ ilist[able]=a;
ablet++;
if (verbose)
{ fprintf(stdout,"%s%2d able (keuard=%5.3f)\n",
s,a,reward(agents+a,brice));
} ‘
}
}
return(able);
}

bank: adjust bank balances of buyer and seller in a deal

void bank(Agent *s,Agent *b,Real price,Real *surplus,int verbose)
{ Real r; )

/*xsellers/
r=reward(s,price);
(s->bank)+=r;
(s->a_gain)+=r;
(*surplus)+=(r);

(s->quant)--;

if(s->quant<1) s->active=0;

if(verbose)

{ fprintf(stdout,"Seller: limit=Y%f revard=yf{ bank=)f quant=%d (surp=%f)\n",
s->limit,r,s->bankps->quant,*surplus);

}

/*buyers/
r=reward(b,price);
(b->bank) +=r;
(b~->a_gain)+=r;
(*#surplus)+=(r);

(b->quant)--;

if(b->quant<1) b->active=0;

if(verbose)

{ fprintf(stdout,"Buyer: limit=%f revard=}f bank=Yf quant=Y%d (surp=Y}f)\n",
b—>limit.r,b—>ban$,b->quant,*surplus):

}
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day-init: initialise all data structures [for start of day

void day_init(int exp_number, int daj_number,Day_data *ddat ,Expctl =ec,
Agent sellers[],Agent Luyers[],
Real *p_0,Real *nax_sutplus,int verbose)
{ int b,s,q_O,s_sched,d_sched,n_buy, _sell;
Real eq_profit; 3
char filename[40];

/*initialise the buyerse/

if (day_number==0)
{ /#*first day: read the first demand schédules/
ec->d_sched=0; f
}
else :
if ((day_number-1)==(ec->dem_sched[ :c->d_sched] . last_day))
{ /*previous day was last day on that dimand schedule: updates/
(ec->d_sched)++; ‘
if (ec->d_sched==ec~->n_dem_sched)
{ fprintf(stderr,”\nFail: ran out| of demand schedules on day %d\n",
day_number); ’
exit(0);
}
}
d_sched!ec->d__sched;
n_buy=ec->dem_sched[d_sched]. n_agents;

/*mark all buyers active, set quantities and limit pricess/
for (b=0;b<n_buy;b++) |
{ buyers[b] .quant%c->den_sched[d_s¢hed] -agents[b].n_units;
buyers[b].active=1;
buyers(b].a_gain=0.0; }
/*NOTE: ONLY ALLOWS FOR ONE{LIMIT PRICEx/
buyers[b].limit=ec->dem_sched [d_sched].agents[b].1imit[0];
set_price(buyers+b); 3
if(verbose) fprintf (stdout, "buyer Jd price 4£\n",b,buyers[b].price);
}

/*initialise the sellersx/

if(day_number==0)
{ /+first day: read the first demand ached*‘llet/

ec->g_sched=0;
}
else
if((day_number-l)==(ec—>sup_sched[ec+>s_sched].1ast_day))
{ /*previous day was last day on that supply schedule: updatex/

(ec->s_sched)++;

if(ec—>s_sched==ec->n_sup_sched)

{ fprintf(stderr,"\nFail: ran out of supply schedules on day %d\n",

day_number) ;
exit(0);

}
}
s_sched=ec->s_sched; ;
n_se11=ec—>sup_sched[s_sched].n_agents;

/*mark all sellers active, set quantities and| limit prices+/

for(s=0;s<n_sell;s++) ,
{ sellers[s] -quant=ec->sup_sched[s_sched].agents[s].n_units :
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}

sellers[s].active=1;

sellers(s].a_gain=0.0; ;

/«*NOTE: ONLY ALLOWS FOR ONE LIMIT PRICEx/
sellers(s].limit=ec->sup_sched [#_sched] .agents[s].limit[0];
set_price(sellers+s); |

if(verbose) fprintf(stdout, "sel]&er %d price %f\n",s,sellers[s] .price);

}

/*find theoretical equilibrium pricex/
if (exp_number==0) sprintf(f ilename} »"%88d%02d_000.£ig" ec->id, day_number+1);
else sprintf(filename,"\0"); ‘
supden(n_sell,sellers,n_buy,buyers,
ec->max_trades,p_0 ,&q_0 ,maxL_surplus »EQ_THEORY, filename,
NULL,verbose);

/xset theoretical gains for buyers and sellers«/

for(b=0;b<n_buy;b++)

{ eq_profit=buyers[b]. quant*(buyers[b].limit-(*p_0));
if(eq_profit<0.0) eq_profit=0.0;
buyers[b].t_gain=eq_profit;

}

for(s=0;s<n_sell ;s++)

{ eq_profit=sellers[s].quant*( (*p_(P)-sellers [s].limit);
if(eq_profit<0.0) eq_profit=0.0;
sellers(s].t_gain=eq_profit; <

}

trade: see if a buyer and a seller can b¢ Jound who will enter into a trade

void trade(Trade_data *tdat,Agent sel}iers [1,Agent buyers([J,Expctl *ec,

{

Real max_surplus,Real *su.jplus,int *stat,int verbose)

int b,s, /*buyer and seller indices/
dt, /*deal typex/
status, /*what’s happenings/
eq_q, /*equilibrium quantitye/
n_willing, /#*number of agents wﬁling to trade at a given pricex/
n_able, /*number of agents able to trade at a given pricex/
n_fails, /*number of failed/declined bids/offerse/
n_buy, ~ /*number of buyers«/ ‘
n_sell, /*number of sellersx/
active_b, /xnumber of active buyers«/
active_s, /*number of active sel%{ers#/
sell_shout, /*can sellers shout oﬂ¢rs o/
buy_shout, /xcan buyers shout bids %/
traders, /*number of traders to| choose from when generating shout/
first_offer,/*flag raised until an dpening offer is madex/
first_bid, /#*falg raised unitl an o})em’ng bid is madex/
ilist (MAX_AGENTS]; /#list of indicest/
Real eq_p, /*xequilibrium prices/

cur_surp, /*current actual maz s rplusk/
best_offer,/*used in NYSE rulesx
best_bid, /*used in NYSE rules*

price; /*price of bid/askx/

n_buy=ec->dem_sched[ec~>d_sched] .n_ ents;
n_sell=ec->sup_sched{ec~>s_sched].n_| gents;
sell_shout=ec->sup_sched [ec->s_sched .can_shout;
buy_shout=ec->dem_sched[ec->d_sched] 8 can_shout;
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if((sell_shout==0)&&(buy_shout==0)D

{ fprintf(stderr,"\nFAIL: Can’t ha#e both buyers AND sellers silent\n");
exit(0);

}

/+find the theoretical equilibrium pricex/
supdem(n_sell.sellers,n_buy,buyersiec->max_trades,
teq_p,teq_q,tcnr;surp,EQ_TH#ORY,
"\0",NULL, verbose) ; ‘
if(eq_q!=NULL_EQ) { tdat->t_eq_p=eq_p; tdat->t_eq_q=eq_q; }
else tdat->t_eq_q=NULL_EQ;

/%find the actual equilibrium pricex/
supdem(n,sell,sellers,n_buy,buyers,Pc->max_trades,
&eq_p,teq_q,&cur_surp,EQ_ACTbAL,
“\0",NULL, verbose) ;
if(eq_q!=NULL_EQ) { tdat—)a_eq_p=eq#p; tdat->a_eq_q=eq_q; }
else tdat->a_eq_q=NULL_EQ;

n_fails=0;
status=NO_DEAL;
first_offer=1; first_bid=1;
while((status==NO_DEAL)&& (n_fails<MAX_FAILS))
{
/*count active agents and mark them as able to bide/
active_b=0;
for (b=0;b<n_buy;b++)
{ if(buyers[bl.active)
{ buyers[b].able=1;
active_b++;
}
else buyers[b].able=0;
}
active_s=0;
for(s=0;8<n_sell;s++)
{ if(sellers[s].active)
{ sellers(s].able=1;
active_s++;
}
else sellers(s].able=0;

}

traders=0;
if(sell_shout) traders+=active_s;
if (buy_shout) traders+=active_b;

if(verbose) fprintf(stdout,"%d trad#rs: active_s=Y{d active_b=Yd\n",
traders,active_g,active_b);

if (irand(traders)<active_s)
{ /*is there a seller able to make an offeres/
dt=0FFER;

if (ec->nyse&& (!first_offer))
{ if(ec->random)
{ /*any seller with a limit price higher than best offer can’t dealx/
for(s=0;s<n_sell;s++)
{ if(sellers(s].limit>best_of er) sellers[s].able=0; }
}
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else
{ /*any seller with an equal or higher price can’t offers/
for(s=0;3<n_sell;s++)
{ if(sellers[s].price>=be#t_offer) sellers[s].able=0; }
} H
}

n_able=get_able(0.0,se11ers,n“sell,ilist,"S",verbose);

if(n_able>0)

{ /*an able seller makes an offers
s=ilist[irand(n_able)];
/*get price for sellers/

- price=get_price(sellers+s,s,ec->random,verbose);
if (ec->nyse)

{ if(first_offer)
{ best_offer=price; first_joffer=0; }
else 3
{ if(price<best_offer) besit_offer=price; }

}

/*get willing buyersx/
n_willing=get_villing(price,buyers,n_buy,ilist,"B",ec—>random,verbose);
if(n_willing>0) status=DEAL;

}

else

{
if(verbose) fprintf(stdout,"ﬁo sellers able to offer\n");
n_fails=MAX_FAILS;
status=END_DAY;

}

}

else
{ /#is there a buyer able to make a bid?+/
dt=BID;
if(ec->nyset&(!first_bid))
{ if(ec->random)
{ /*any buyer with limit lower than best bid can’t deak/
for (b=0;b<n_buy;b++) |
{ if(buyers[b].limit<best_bid) buyers[b].able=0; }
} j
else .
{ /xany buyer with an equal or lower price can’t bide/
for (b=0;b<n_buy;b++)
{ if(buyers[b).price<=best_bid) buyers{b].able=0; }
}
}
n_able=get_able(0.0,buyers,n_buy,ilist,"B",verbose);

if(n_able>0)
{ /*an able buyer makes a bidx/
b=ilist[irand(n_able)];

/*get price for buyers/
price=get_price(buyers+b,b,ec+>random,verbose);
if(ec->nyse)
{ if(first_bid)

{ best_bid=price; first_bid=0: }

else ‘

{ if(price>best_bid) best_bid=price; }
}

106



/*get willing selllerss/
n_villing=get_vi11ing(price4sellers,n_sell,ilist,"S",ec->random,verbose);
if(n_willing>0) status=DEAL;
} |
else ; .
{ if(verbose) fprintf(stdout,"No buyers able to bid\n");
n_fails=MAX_FAILS; ‘
status=END_DAY;
" ;
}

if(status==DEAL)
{ /*DEAIx/
if (dt==0FFER)
{ /xselect the willing buyer for this offere/
b=ilist lirand(n_willing)];
if(verbose)
{ fprintf(stdout,
"Seller %d sells to, Buyer Yd (reward=y5.3f)\n",
s,b,reward(buyers+b,price));
}
}

else
{ /*select the willing seller Sor this Yide/
s=ilist[irand(n_villing)];
if (verbose)
{ fprintf(stdout,
"Buyer %d buys from Seller %d (reward=%5.3f)\n",
b,s,revard(sellers+shprice));

/*record what happeneds/
tdat->deal_p=price;
tdat->deal _t=dt H

/*update trading strategies of buyers and sellerss/
shout_update(dt,status,n_sell,sellers,n_buy,buyers,price,verbose);

/*update bank accounts of buyer and sellers/
bank(sellers+s, buyers+b,price, surplus sverbose) ;

}

else

{ /*NO DEAL or END DA Ye/
n_fails++;
if(verbose) fprintf(stdout, "No willing takers (fails=%d)\n",n_fails);
tdat->deal _p=-1.0; /%negative price Fé no deak/

/*update trading strategies of buyers and sellersk/
shout_update(dt,status »n_sell,sellers »n_buy,buyers,price, verbose) ;

}
}
*stat=status;

}
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int main(int argc,char *argv[]})

{ int n_trans, /*number of transadtions on a day/
d, /*days/
status, /*how things are goings/
rs, /*random seedw/
s,b, /*seller, buyer, loopitndicesx/
n_buy, /*number of buyers«,
n_sell, /*numberofse"ennk
n_trades, /*number of trades ttme in a dayr/
n_exps, /*number of experiments to runs/
max_trades, /*marmimum numbedr of trades in a sessions/
verbose=(,
ats_n[MAX_TRADES], /*countsofqnhiesin atsfjx/
eq, /*equilibrium quantitye/
dummy_i, /xdummy integers/
e, /*ezperiment numberk/
t; /*transaction number within q dayx/
Real price,p_O,sigmasum.alpha,ep,list_price,sum_price_diff,
dummy_rl,dummy_r2,
sum_price,
diff,pd,pdisp,pds,
alphatrans, /*alpha over transaction sequence (cf G+5S fig6)s/

ats [MAX_TRADES], /*alpha over transaction sequence (cf G+S fig6)s/
bounddatal4], /«can be used to| inhibit autoscaling on supdem«/
*bounds, o
Bax_surplus,surplus,eff iciency;
char fname[60];
Day_data ddat [MAX_N_DAYS]; |
Trade_data tdat[MAX_N_pAvs] [MAX_TRADES] ;
Real_stat ats_e [MAX_TRADES] ; /*for summarising atsf] over ezperimentse/
Agent buyers[MAX_AGENTS] , :
sellers [MAX_AGENTS] ;
Expctl expctl;
FILE »fp;

if (arge<3)

{ tprintf(stderr,"\nUsage: smith <n_exps> <datafilename>\n");
exit(0);

}

sscanf(argv[l],"%d“,tn_exps):

fprintf (stdout,"%d experiments, dataffile=%s\n",n_exps,argv[2]);

if(n_exps==1) rs=0; .
else rs=999;

rseed(&rs);
expctl_in(argv[?],&expctl,l);

/%initialise daily data records«/
for(d=0;d<expctl. n_days;d++) ddat_init (ddat+d);

for(t=0;t<HAX_TRADES;t++)
{ ats_n[t]=0; ats[t]=0.0;

ats_e[t].n=0; ats_e(t].sum=0.0; ats_je[t] .sumsq=0.0;
}

for(e=0;e<n_exps;e++)
{ /%do one ezperimentx/
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buy_init (buyers,verbose) ;
sell_init(sellers,verbose) ;

for (d=0;d<expctl. n_days;d++)
{ /*one trading period or "day”x/

/*set mazimum number of trades in ithis day/
max_trades=expctl.max_trades P
if(verbose) fprintt (stdout, "\nday Y%d: %d trades\n",d+1,max_trades);

/%set things up Jor the start of the dage/

day_init(e,d,ddat+d, &expctl, sel]lers »buyers,&p_0 »&max_surplus, verbose) ;
n_buy=expctl. dem_sched [expctl. d_sched]. n_agents;
n_sell=expctl.sup_sched [expctl.s_sched] -n_agents;

surplus=0.0;
n_trades=0;
sigmasum=0.0;
sum_price=0.0;
sum_price_diff=0.0;

bounds=NULL;
bounddataf0]=1; bounddataf1]=12; bounddata[2)=0.0; bounddata[3]=3.75; bounds:&‘(bounddnta{b]);

if(e==0) /xfirst experiment e/
{ /*uwrite a figure of the actual supply and demand curvess/
sprintf (fname, "%ssd’/.02d_%03d_00¢ -fig",expctl.id,d+1 »h_trades+1);
supdem(n_sell,sellers »n_buy, buyérs »max_trades,
&dummy_r1,sdummy_i, tdummy_r2,
EQ_ACTUAL, fname, bounds ,verbose) ;

for(t=0; t<max_trades s t++)
{ /*one trading session: either a trade pccurs or g fail is recordeds/

if(verbose) fprintf (stdout,"\nday %d trade %d\n",d,t+1);

trade(&(tdat[d][t]),sellers »buyers,texpctl,
max_surplus, &surplus »&status,verbose);

/#this can generate *ots* of data-files/
if ((verbose>0)gg (e==0)) /*first ezp}zriment P/
{ /*print a figure of the actual supply land demand curyess/
sprintf (fname,
"%ssd%02d_%03d_%03d. figh,expctl, id,d+1,n_trades+1,t+1);
fprintf(stdout, "Writing %s\n",fname) ;
supdem(n_sell,sellers »n_buy ,buyérs »max_trades,
&dummy_r1,&dummy_i, &dummy r2,
EQ_ACTUAL, tname,bounds »verbose);

/*calculate statse/
if(status==DEAL)
{ if(t>0) last_price=price;

price=tdat[d] [t} .deal_p;

if (t>0) sum_price_diff+=((price—last_price)* (price-last_price)) H
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pds=((price—p_O)*(price-p;O));
(ats[n_trades] )+=pds;
(ats_n[n_trades])++:
n_trades++;
sum_price+=price;
sigmasum+=pds; |
a1pha=(100*sqrt(sigmasum/d_trades))/p_O;
efficiency=(surplus/nax_sqrplus)*100;
if (verbose) |
{ fprintf (stdout, "Day %d deal %d alpha=jf efficiency=Yf\n",
d,n_tradks,alpha,efficiency);

} |

}

else

{ if(status==END_DAY) /*give upx/

t=max_trades;

}

} /xend of the trading sessions/

/*update the data for this dayr/

/*profit dispersions/

pd=0.0;

for (b=0;b<n_buy;b++)

{ diff=((buyers[b].a_gain)-(bnwers[b].t_gain));
pd+=(diff*diff);

}

for(s=0;s<n_sell;s++)

{ diff=((se11ers[s].a_gain)-(sellers[s].t_gain));
pd+=(diff*diff);

}

pdisp=sqrt((1/((Real)(n_buy+n_s¢11)))‘pd);

if (verbose) fprintf(stdout,"Dis#ersion=%f\n“,pdisp);

ddat_update(ddat+d,n_trades,sun4price,alpha,pdisp,efficiency,
sum_price_diff);

} /%end of the day loops/

if (e==0)

{ /=plot the trade stats in zgraph formaditx/
sprintf(fnane,"%sresults.xg",expptl.id);
xg_trades_graph(tdat,ddat,expctl}n_days,nax_trades,fnane,n_exps);

/*plot this exp’s per-trans rms deviation of deal price from equilibs/
sprintf(fname,"ﬂsres_rms.xg",expktl.id);
fp=fopen(fname,"v");
for(t=0; t<max_trades;t++)
{ if(ats_n[t]>0)
{ fprintf(fp,"id ",t+1);
fprintf(fp,"%f \n",sqrt(ats [t1/ats_nlt]));
}
}
fclose(fp);
}

for(t=0;t<max_trades st+d)
{ if(ats_n{t]>0)
{ alphatrans=sqrt(ats[t]/ats_n[t]) H
(ats_e(t].sum)+=alphatrans;
(ats_e[t].sumsq)+= (alphatrans*alphatrans) ;
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(ats_e[t].n)++;
}
}

fprintf(stdout,"experiment %d doﬁe\n",e);
} /=end of the ezperiment loops/

/*plot the end-of-day stats in zgraph for%ah/
sprintf(fnale,"Hsres_day.xg",expctlLid);
xg_daily_graph(ddat,expctl.n_days,nLexps,fname);

/*plot per-trans rms deviation of deal price from equilib, over egpsx/
sprintf(fname,"%sres_rms_avg.xg“,exkctl.id);
fp=fopen(fname,"w");
fprintf(fp,"TitleText: %s: n=%d\n\n“,fnane,n_exps);
/*means/
fprintf (fp, "\"Mean\n") ;
for (t=0;t<max_trades;t++)
{ if(ats_e[t].n>0)

{ fprintf(fp,"%d ",t+1);

fprintf(fp, "%t \n“,ats_e[t].sum/hts_e[t].n);

}
fprintf(fp,"\n");
/*+1 standard devs/
fprintf(fp,"\"Hean+lsd\n");
for(t=0;t<nax_trades;t++)
{ if(ats_e[t].n>0)
{ fprintf (£p,"%d ",t+1);
alphatrans*ats_e[t].sun/ats_e[t].m:
fprintf (fp,"%f \n",
alphatrans+sqrt((ats_e[t].sumsqyats_e[t].n)-(alphatranstalphatrans)));
} ;

}
fprintf (fp,"\n");

/*-1 standard dewx/
fprintf(fp,"\"Hean-lsd\n");
for(t=0;t<max_trades;t++)
{ if(ats_e[t].n>0)

{ fprintf(fp,"%d ",t+1);
a1phatrans=ats_e[t].sum/ats_e[t).m;
fprintf(fp,"%t \n",

alphatrans—sqrt((ats_e[t].sumsq/hts_e[t].n)-(alphatrans*alphatrans))):

}

}

fprintf(fp,"\n");

/%n as a proportion of nexpss/
fprintf(fp,"\"n/n_exps\n");
for(t=0;t<max_trades;t++)

{ if(ats_e[t].n>0)

{ fprintf(fp,"%d ", t+1);
fprintf (fp,"%f \n",((Real)ats_e[t].m)/n_exps);

}

}
fclose(fp);
return(1);
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A.9 Putting it together: makefile

This makefile can be used with tbe Unix system utility make to create an executable called
smith. Also, typing make clean Mill erase the executable and all ob ject files.

0BJS = random.o sd.o agent.o tdat.oiddat.o expctl.o

LIBS = -1nm ;
HDRS = sd.h agent.h tdat.h ddat.h max.h expctl.h \
random.h

# CFLAGS = -ggdb
CFLAGS = -0 -Aa

CC = cc

smith : smith.o ${0BJS} ; ${cc} ${CFPAGS} smith.o ${0BJS} ${LIBS} -0 $¢
expctl.o: max.h random.h expctl.h

sd.o: random.h agent.h max.h

agent.o: random.h agent.h

tdat.o: random.h agent.h max.h tdat.h

ddat.o: random.h agent.h max.h ddat.h

smith.o : random.h agent.h max.h ddat.h tdat.h expctl.h
random.o : random.h

.o: ${HDRS} ; ${CC} -c ${CFLAGS} $<

clean: ; rm *.0 smith
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B Sample Input and Output

An experiment control file, zipihii.dat is shown in Section B.1. This defines a simple exper-
iment where each agent buys or sells only one unit, and the supply and demand schedules are
fixed for the first ten days, after which both supply and demand are increased and the experi-
ment continues for another five days. This is the control file used to run the increased-demand
experiments, results from which were illustrated in Figures 46 and 47.

The command-line argument smith 5 ziplhi.dat was given to the Unix prompt, and the
resultant output from the system (with verbose=0) is shown in Section B.2.

The following files were created during this run:

“ry-——————— 1 davec davec 3566 Jun 4 14:49 ziplhires_day.xg
SrWe—————— 1 davec davec 84 Jun 4 14:49 ziplhires_rms.xg
“rWe--———— 1 davec davec 413 Jun 4 14:49 ziplhires_rms_avg.xg
“rw-————-- 1 davec davec 4553 Jun 4 14:49 zipihiresults.xg
“IW-—————— 1 davec davec 8901 Jun 4 14:49 zipihisd01_000.fig
—rW-—~———- 1 davec davec 5905 Jun 4 14:49 ziplhistl_OOl_OOO.fig
“rTW——————- 1 davec davec 6409 Jun 4 14:49 ziplhist?_OOO.fig
SrW-—~———— 1 davec davec 6413 Jun 4 14:49 zip1hisd02_001_000.fig
“rW-————-e 1 davec davec - 6409 Jun 4 14:49 ziplhisd03_000.fig
“ry------- 1 davec davec 6413 Jun 4 14:49 zip1hisd03_001_000.fig
“rW-e————— 1 davec davec 6409 Jun 4 14:49 zipthisd04_000.fig
“ry-----—- 1 davec davec 6413 Jun 4 14:49 2ip1hisd04_001_000.fig
4 bt 1 davec davec 6409 Jun 4 14:49 zip1lhisd05_000.fig
SrW-—————— 1 davec davec 6413 Jun 4 14:49 zip1lhisd05_001_000.fig
“rg--—=--- 1 davec davec 6409 Jun 4 14:49 zipthisd06_000.fig
“rg------- 1 davec davec 6413 Jun 4 14:49 zip1lhisd06_001_000.fig
Srge—————— 1 davec davec 6409 Jun 4 14:49 zip1lhisd07_000.fig
SrW-———e-— 1 davec davec 6413 Jun 4 14:49 zip1hisd07_001_000.fig
S Attt 1 davec davec 6408 Jun 4 14:49 zipthisd08_000.fig
“ru----=--- 1 davec davec 6412 Jun 4 14:49 zip1hisd08_001_000.fig
“ryg-————-- 1 davec davec 6408 Jun 4 14:49 zip1hisd09_000.fig
Sru----——— 1 davec davec 6260 Jun 4 14:49 zip1hisd09_001_000.fig
“rg-—=---- 1 davec davec 6408 Jun 4 14:49 ziplhisd10_000.fig

i L e 1 davec davec 6412 Jun 4 14:49 zip1lhisd10_001_000.fig
“IW-—————— 1 davec davec 6664 Jun 4 14:49 ziplhisdll_OOO.fig
—rw-—————— 1 davec davec 6668 Jun 4 14:49 ziplhisdll_OOl_OOO.fig
SrW-—-——-— 1 davec davec 6665 Jun 4 14:49 zipthisd12_000.fig
Sry-——-——— 1 davec davec 6669 Jun 4 14:49 zip1lhisd12_001_000.fig
“ry-——-—-- 1 davec davec 6665 Jun 4 14:49 ziplhisd13_000.fig
“rW---——-- 1 davec davec 6517 Jun 4 14:49 zip1hisd13_001_000.fig
—rW--—---- 1 davec davec 6665 Jun 4 14:49 ziplhisd14_000.fig
“rW-—————— 1 davec davec 6669 Jun 4 14:49 ziplhisd14_001_000.fig
~ryg------- 1 davec davec 6665 Jun 4 14:49 ziplhisd15_000.fig
“TW-—-———- 1 davec davec 6669 Jun 4 14:49 ziplhisd15_001_000.fig

The files matching *.fig are illustrations of the supply and demand at the start of each
day’s trading: the contents of zip1hisd01_001_000.fig are shown in Section B.3: when files
such as this are used as input to Xfig, graphics such as those shown in Figures 57, 58, and 59
are produced.

The files matching * -xg produce data for X-Y graphs: zipihiresults.xgis the time series
of transaction prices from the first of the n — D experiments (see e.g. Figure 46); zipihires_rms.xg
is the root mean square (RMS) transaction price deviation from equilibrium price indexed by
transaction number for the first experiment, while ziplhires_rms_avg.xg is the average RMS
data for the n = 5 experiments (see e.g. Figures 32 to 35); finally, ziplhires_day.xg contains
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time series (indexed by day numbﬁr) of various statistics calculated at the end of each trading
day, such as average transaction price, Smith’s o measure, allocative efficiency, profit dispersion,
etc.. The contents of ziplhires_day.xg are shown in Section B.4
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B.1 Control File

#id string
zipihi

#number of days

15

#min trades per day

9

#max trades per day

9

#random flag: 0 => intelligent traders; 1 => ZI-C
0

#nyse flag (1=> on)

0

#number of demand schedules

2

#first demand schedule starts here

#number of agents

11

#start day

0

#end day

9

#can_shout

1

#for each agent: number of units, price of each unit
3.25

3.00
2.75

2.50

2.25

2.00

1.78

1.50

1.25

1.00

10.75

#end schedule

¥second demand schedule starts here -~ al] prices up by 0.50
#number of agents

11

#start day

10

#end day

14

#can_shout

1

#for each agent: number of units, price of each unit
1 3.75

1 3.50

13.25

1.3.00

ol e L T T O

115



[l R SN T Y
o e DN N
NN ~NO NN
o nNnS»moem

#end demand schedule
#number of supply schedules
1

#first supply schedule starts here
#number of agents

11

#start day

0

#end day

14

#can_shout

wwmmwm»—-»—-.—-.—-o
N
14,

.25
#end schedule

#second supply schedule starts here
#number of agents

11

#start day

10

#end day

14

#can_shout

1 :

#for each agent: number of units, price of each unit -- all up by 0.50
11.25

.50

.75

.00

.25

.50

.75

.00

.25

.50

.75

#end schedule

e T
mwwwmmmm.—a.—-
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B.2 Output to stdout

5 experiments, data-file=zipthi.dat

: Seed is 999
ID: zipihi

15 days: min_trades=9 max_trades=9
Intelligent traders; no NYSE rules

2 demand schedules:

Demand schedule 0:
11 agents: from day 0 to day 9

(These traders CAN SHOUT)

Agent o0,
Agent 1,
Agent 2,
Agent 3,
Agent 4,
Agent 5,
Agent 6,
Agent 7,
Agent 8,
Agent 9,
Agent 10,

1
1
1
1
1
1
1
1
1
1

1

units:
units:
units:
units:
units:
units:
units:
units:
units:
units:
units:
- Demand schedule 1:

11 agents: from day 10 to day 14

Oi-lh-lHHNMMMww

.250000
.000000
. 750000
-500000
.250000
.000000
. 750000
.500000
+250000
.000000
.750000

(These traders CAN SHOUT)

Agent
Agent
Agent
Agent
Agent
Agent
Agent
Agent
Agent
Agent

0'

W N
© e v e

W W~N®»

Agent 10,
1 supply schedules:

Supply schedule 0:
11 agents: from day 0 to day 14

1
1
1
1
1
1
1
1
1
1

1

units:
units:
units:
units:
units:
units:
units:
units:
units:
units:
units:

3.
3.500000
3.250000
3.000000
2.750000
2.
2
2
1
1
1

750000

500000

.250000
.000000
-750000
.500000
-250000

(These traders CAN SHOUT)

Agent
Agent
Agent
Agent
Agent
Agent
Agent
Agent
Agent
Agent

0,

W N e
© e v e e

- -

O W ~N oW,

-

1
1
1
1
1
1
1
1

1
1

units:
units:
units:
units:
units:
units:
units:
units:
units:
units:
Agent 10, 1 units:

experiment 0 done
experiment 1 done
experiment 2 done
experiment 3 done
experiment 4 done

0.

1

750000

.000000
1.250000
1.500000
1.750000
2.000000
2.
2
2
3

250000

-500000
.750000
-000000
3.

250000
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B.3 Sample Supply-Demaqd -fig Output File and Graphic

$FIG 3.1
Landscape
Center
Inches
1200 2
2101 -17
1260
1260
T139
2101 -17
1260
1260
210t -17
1794
1794
40-1000
210117
2328
2328
40-1000
2101 -17
2862
2862
40-1000
210117
3396
3396
40-1000
210t -17
3930
3930
40-1000
2101-17
4464
4464
40-1000
2101 -~17
4998
4998
40-1000
210117
5532
5832
40-1000
2101 -~17
6066
6066
40-1000
2101 -17
6600
6600
40-1000
210117
7134
T134
40-1000
40-~1000
2101 -17
1260
1406
40-1000
2101 -17
1260
1406
40-1000
2101 -17
1260
1406
40-1000
2101 -17
1260
1406
40-1000
2101 -t7
1260
1406
40-1000
210117
1260
1406
40-1000
2101 -17
1260
1406
40-1000
2101t -1 7
1260
1406
40-1000
40-1000

00 -1 0.000

18 0.000000 4
00 -1 0.000
6119
5994
18 0.000000 4
00 -1 0.000
6119
5994
18 0.000000 4
00 -1 0.000
6119
5994
18 0.000000 4
00 -1 0.000
6119
5994
18 0.000000 4
00 -1 0.000
6119
5994
18 0.000000 4
00-1 0.000
€119
5994
18 0.000000 4
00 -1 0.000
6119
5994
18 0.000000 4
00 -1 0.000
6119
5994
18 0.000000 4
00 -1 0.000
6119
5994
18 0.000000 4
00 -1 0.000
6119
5994
18 0.000000 4
18 0.000000 4
00 -1 o0.000
6119
6119
18 0.000000 4
00 -1 0.000
5419
5419
18 0.000000 4
00 -1 0.000
4719
4719
18 0.000000 4
00 -1 0.000
4019
4019
18 0.000000 4
00 -1 0.000
3319
3319
18 0.000000 4
00 -1 0.000

18 0.000000 4
00 -1 0.000
1919
1919
18 0.000000 4
00 -1 0.000
1219
1219
18 0.000000 4
18 0.000000 4

00

o0

-
“n

195

195
00

195
(]

195
00

19§
00

195
6o

195
195
oo

195
00

()

195
195

~1003

1002
1002

135 1794 6369 1\001
~“1002

135 2328 6369 2\001
-1 002

135 2862 6369 3\001
1002

135 3396 6369 4\001
1002

135 3930 6369 5\001
1002

135 4464 6369 6\001
1002

135 4998 €369 7\001
1002

135 $532 6369 8\001
“1002

135 €066 6369 9\001
1002

135 6600 6369 10\001
1002

135 7134 6369 11\001

135 3611 6619 Quantity\og1

1002

135 676 6119 SO\00t
1002

135 €76 5419 100\00t
“1 002

135 676 4719 150\001
1002

135 676 4019 200\001
1002

135 676 3319 250\001
1002

135 676 2619 300\001
-1002

135 676 1919 350\001
“1002

135 676 1219 400\001
135 676 635 Price

Eq.Price=176
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-
o

w

-1 000 9 0.000000 4 19§

o1

01

o

-

(-]
-

o
ra

(-]
-

o
-

(-]
-

o
-

o
-

©
-

o
-

-]
I

-]
-

o
-

L-]
-

o
-

o
-

L=
[

o
-~

135 676 343 ziplhi!dﬁl_POl_OOO.115\001

170015 0.00000 -1 00 4
1527 8503 1260 S769 1794 5769 1527
-1 700150.00000-1004

2061 S307 1794 5419 2328 5419 2061
~1 70015 0.00000-1004

2595 4747 2328 S069 2862 5069 2595
-1 70015 0.00000-1004

3129 4383 2862 4719 3396 4719 3129
~1 700 150.00000 -100 4

3663 3907 3396 4369 3930 4369 3663
“1 700 150.00000 -100 4

4197 3557 3930 4019 4464 4019 4197
“1700150.00000-1004

4731 2983 4464 3669 4998 3669 4731
1700 150.00000 -1 00 4

5265 2535 4998 3319 5532 3319 5265
-1 700 150.00000-1004

5799 2479 5532 2969 6066 2969 5799
~1 700 150.00000-1004

6333 1863 6066 2619 6600 2619 6333
-1 70015000000 -1004

6867 1373 6600 2269 T134 2269 6867
“1700-1 0.00000-100 23

1260 5503

1794 5503

1794 5307

2328 5307

2328 4747

2862 4747

2862 4383

3396 4383

3396 3907

3930 3907

3930 3557

4464 3557

4464 2983
4998 2983

4998 2535

§532 2535

§532 2479

6066 2479
6066 1863

6600 1863

6600 1373

7134 1373

T134 1219

1 70050.00000-1004

1527 2928 1260 2269 1794 2269 1527
“170050.00000-1004¢

2061 3250 1794 2969 2328 2969 2061
“1700850.00000-1004

2595 3851 2328 2619 2862 2619 2595
17005000000 -1004

3129 4341 2862 3319 3396 3319 3129
“1 7005000000 -1004

3663 4635 3396 4019 3930 4019 3663
~170050.00000-1004

4197 4733 3930 3669 4464 3669 4197
“170050.00000-1004

4731 S069 4464 4369 4998 4369 4731
17005000000 -1004

5265 5139 4998 4719 5532 4719 5265
-170050.00000-1004

5799 5461 5532 5069 6066 5069 5799
~170050.00000-1004

€333 5811 6066 5419 6600 5419 6333
“170050.00000-1004

6867 6091 6600 5769 7134 5769 6867
“1700-1 0.00000-+-100 23

1260 2928

1794 2928

1794 3250

2328 3250
2328 3851
2862 3851
2862 4341
3396 4341

3396 463S
3930 4635
3930 4733
4464 4733
4464 5069
4998 5069
4998 5139
$532 S139

$532 S461
6066 5461
6066 5811
6600 SB11
6600 6091

7134 6091

$503

5307

4747

4383

3907

557

2983

2538

2479

1863

1373

2928

3280

38s1

434

4635

4733

5069

5139

5461

s811

6091
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7134 6119

2111-1700-1 4.00000-1002
1260 4362
7134 4362

2111-1700-1 400000=-1002
3396 4362
3396 6119
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B.4 Sample ddat .xg Output File

TitleText: zipthires_day .Xg: n=§

* Price (mean)

1 1.900571
2 1.934333
3 1.927000
4 1.954333
S 1.987000
6 1.994000
7 2.011667
8 2.012333
9 1.997333
10 1.990667
11 2.246000
12 2.217429
13 2.234286
14 2.243095
15 2.256286

* Price (-15.4.)
- 764857
.856941
.880591
.918889
-949149
.972693
.000462
.997973
.969178
10 1.961961
11 2.213431
12 2.199214
13 2.222680
14 2.225546
15 2.242040

OB NO D w N~
L R

* Price (+15.4.)
2.036285
2.011726
1.973409
1.989808
2.024851
2.018307
2.022872
2.026694
2.025492
10 2.019372
11 2.278569
12 2.235643
13 2.24589¢
14 2.260645
15 2.270531

1
2
3
4
5
6
7
8
9

Alpha (mean)
12.181548
5.135457
4.203779
2.854103
1.958591
1.455158
1.127288
1.156317
1.611285
10 1.767713
11 2.942451
12 1.879179
13 1.0924s5
14 1.221152
15 1.390803

CW® LD D WA

* Alpha (-13.4.)
552933
666247
-801718
-052502
652610
.008860
-639893
.635488
.989116
10 1.090569
11 2.45612¢
12 1.083085
13 0.728010
14 0.792157
15 1.16219¢4

L I N RPN PR
C OO MO mmmep

* Alpha (+15.d.)
1 17.810164
2 B.604667
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3

6.605843
4.655703
3.264572
1.901456
1.614684
1.677147
2.233454
2.444857
3.4287717

12 2.675273

1.456900
1.650147
1.619413

Efficiency (mean)
98.000000
99.333333
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000

14 100.000000
15 100.000000

AR X D
" o

-
~

13
14
15

LB B T R N RN

10
11
12
13
14
18

Etficiency (-1s.4.)
95.333333
98.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000

Efficiency (+15.4.)
100.666667
100.666667
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000
100.000000

* Quantity (mean)

G W NN R W N -
AP RAN RO

W NN AW N -
RO BOOO NN

-200000
.000000
.000000
.000000
000000
000000
000000
000000
000000
6.000000
7.000000
7.000000
7.000000
€.800000
7.000000

Quantity (-15.d.)
-800000
000000
000000
000000
000000
000000
000000
000000
000000
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10 6.000000
11 7.000000
12 7.000000
13 7.000000
14 6.400000
15 7.000000

Quantity (+1s.4d.)

.600000

. 000000

.000000

.000000

.000000

.000000

.000000

.000000

.000000 !
-000000 ;
.000000

12 7.000000

13 7.000000

14 7.200000

15 7.000000

OO NG W N
L W NN - N Y

~ o

* Dispersion (mean)
.172134
073354
062094
042158
028930
.021494
.016651
-017080
023800
10 0.026111
11 0.052813
12 0.033729
13 0.019608
14 0.021478
15 0.024963

V®NODD WA
Cco0oo0oo000O00CO

* Dispersion (-1s.4.)

1 0.096840
2 0.024511
3 0.026613
4 0.015546
5 0.009640
6 0.014902
7 0.009452
8 0.009387
9 0.014610
10 0.016109
11 0.044084
12 0.019440
13 0.013067
14 0.014181
15 0.020860

Dispersion (+15.4.)
0.247427
.122196
097578
.068769
048221
.028086
.023850
.024773
.032990
10 0.036113
11 0.061542
12 0.048018
13 0.026150
14 0.028775
15 0.029067

WD A WN
o000 0ODO0OO0O

* Volatility (mean)
257432
068596
041973
.0373258
025440
026026
016627
018294
.023492
10 0.022558
11 0.069592
12 0.031745
0.018505
14 0.022640
0.022413

L I 7 i O
coo0ooo0o00o0Q
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Volatility (-1s.d4.)
.120674

.021328

023222

021613

013213

018328 B
011129

012639

013094

10 0.016685

11 0.054043

12 0.023414

13 0.014316

4 0.012602

15 0.018563
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-

Volatility (+1s.d.)
.394189
-115867
-060724
053036
037666
033727
022124
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0DO0OO0OOCOO0OO0O0CO

11 0.085171
12 0.040076
13 0.022695
4 0.032678
15 0.026262

o
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