
Workflow Management:
State of the Art vs. State of the Products

Weimin Du, Ahmed Elmagarmid*
Software Technology Laboratory
HPL-97-90
July, 1997

workflow It has been over ten years since the first workflow
product was introduced. Despite the large number
of workflow vendors and research efforts all over
the world, despite all the rosy predictions about the
workflow market, and despite all the hype about
the workflow technology, workflow is still far from
pervasive. This paper tries to understand the
situation from a technical point of view, focusing on
the development and enactment aspects of
workflow processes. We discuss the current
capabilities of workflow products, major issues that
need to be addressed before workflow can be
pervasive, as well as possible future trends and
research that will help workflow succeed.

*Purdue University, West Lafayette, Indiana
To be published in the proceedings of NATO Advanced Study Institute on Workflow Management Systems,
Istanbul, Turkey August 12-21,1997.
 Copyright Hewlett-Packard Company 1997

Internal Accession Date Only

Work
ow Management:

State of the Art vs. State of the Products

Weimin Du

Hewlett-Packard Labs.

Palo Alto, CA 94304, USA

Ahmed Elmagarmid

Purdue University

West Lafayette, IN 47907, USA

Abstract

It has been over ten years since the �rst work
ow product was introduced. Despite the

large number of work
ow vendors and research e�orts all over the world, despite all the

rosy predictions about the work
ow market, and despite all the hype about the work
ow

technology, work
ow is still far from pervasive. This paper tries to understand the situation

from a technical point of view, focusing on the development and enactment aspects of work-

ow processes. We discuss the current capabilities of work
ow products, major issues that

need to be addressed before work
ow can be pervasive, as well as possible future trends and

research that will help work
ow succeed.

1 Introduction

1.1 Background

Computer technology, as a major industry revolution, has evolved to a point that it has been

successfully used in all application domains such as banking, �nance, and telecommunication.

The application of computer technology has greatly increased productivity and has provided

better services. Despite their great success, the early version of computer applications have

the following two major drawbacks.

First, they are monolithic in nature. All business policies and information accesses were

hard-coded into the applications. These systems are hard to maintain and enhance, when

the business policies and data changed. The advance of database technology has successfully

separated data accesses from the applications. As database applications, they are more

adaptive to data changes. On the other hand, business policies are still hard-coded and any

changes would require modifying application code.

1

Second, they are isolated. The computer applications (especially those developed in old

days) are usually designed and developed to work independently to solve speci�c problems.

The advance of network and distributed computing technologies have made it possible for

them to collaborate in primitive ways such as and sending messages. There are however

great needs to intergrate those isolated information and process islands at a higher level so

that they can collaboratively provide business solutions that each individual application is

unable to provide.

Work
ow has been proposed to address the above problems of early computer applications.

The basic idea behind the work
ow technology is to separate business process and work
ow

management component from the existent applications to increase
exibility and maintain-

ability. The major driving forces of work
ow are the need for business re-engineering whose

purpose is to increase productivity, reduce cost, and respond to the changing environment

more quickly, and the advent of technologies such as distributed computing, object technol-

ogy, databases, etc. that facilitate open and reliable information exchange and collaboration

across the organization.

The separation of business policies from applications not only makes (work
ow-based) appli-

cations easier to maintain and enhance, as changes in procedures can be made using work
ow

tools without having to rewrite the application, but also provides several other advantages.

For example, a work
ow system can dramatically increase productivity, as business proce-

dures are automated. A work
ow system supports policy-driven allocation of resources and

can therefore adapt dynamically to changing workloads. Since work
ow processes can be

understood by computers, it is also possible to develop work
ow tools that track process

executions and control process execution in a more
exible way. Another big advantage of

work
ow systems is that it simpli�es application development, not only because application

components can be reused, but also because functions common to many applications such

as recovery have already been provided (by the underlying work
ow management systems).

1.2 Work
ow Systems

Work
ow management is a diverse and rich technology and is now being applied over an

ever increasing number of industries. Work
ow is also a generic term which may refer to

di�erent things at di�erent levels such as process modeling at the business process level, or

process speci�cation and enactment at the system level. In this paper, we discuss issues

on process speci�cation and enactment for various kinds of work
ow systems (e.g., ad hoc,

administrative, production, and collaborative work
ow systems). The business perspective,

for example, issues such as business re-engineering, process modeling, and BPR tools, will

not be covered.

A work
ow process, as de�ned in [WfMC94b], is a coordinated (parallel and/or serial) set of

process activities that are connected in order to achieve a common business goal. A process

activity is de�ned as a logical step or description of a piece of work that contributes toward

2

the accomplishment of a process. A process activity may be a manual process activity and/or

an automated process activity. A work
ow process is �rst speci�ed using a process de�nition

language and then executed by a work
ow management system (WFMS). A WFMS is a sys-

tem that completely de�nes, manages and executes work
ow process through the execution

of software whose order of execution is driven by a computer representation of the work
ow

process logic.

It has been over ten years since the �rst work
ow product was introduced. There are now

at least several dozens of work
ow products available on the market with certain work-

ow capabilities. Work
ow technology has been used in a wide range of application areas

such as banking (loan application), �nance (stock), insurance (claim process), health care,

telecommunication, manufacturing, and document management.

Despite all these e�orts, work
ow is far from pervasive. There are many reasons for the

situation. The following are some of the major ones, from a technical point of view,

Infrastructure. Work
ow systems are much more than just work
ow engines that execute

work
ow processes. Successful execution of a work
ow process requires proper support

from the underlying infrastructure. For example, technologies such as distributed com-

puting, object orientation, and security are necessary for the work
ow engine to invoke

external applications (especially legacy applications). Unfortunately, distributed com-

puting and object technologies such as CORBA and ActiveX/DCOM have not been

mature enough for real applications until recently.

Standards. The lack of standards has been one of the major obstacles to wide application

of work
ow technology. Unlike relational databases, each work
ow vendor has its

own work
ow model, speci�cation language, and API. Recent e�orts by the Work
ow

Management Coalition (WfMC) have made signi�cant progress, but there is still a long

way to go.

Complexity. Work
ow application development is a complex task involving more than

simply specifying a process de�nition, which itself is a formidable task. Other (and

harder) tasks include wrapping external applications to be invoked by the work
ow

engine, managing work
ow resources, and setting up communication infrastructure.

Unfortunately, current work
ow systems provide little help for facilitating these tasks.

Every major work
ow applications require lengthy and intensive collaboration between

the work
ow vendors and the application developers.

Technology. Despite all the technical progress, work
ow technology is still far from ma-

ture. It is evident that none of the existing work
ow products or research prototypes

can provide the same level of support as relational database management systems do

for reliable and consistent process execution. It is true that many work
ow appli-

cations do not need this level of support. But it is also important for the work
ow

3

management system to have the ability so that mission critical applications that are

currently implemented using other technologies (e.g., database) can be re-engineered

using work
ow.

There are other papers discussing the limitations of existing work
ow products and outlining

important research issues (see, e.g., [AAEM97], [MAG+95] and [VLP95]). This paper focuses

on technical solutions in order to make work
ow more pervasive. We discuss the current

capabilities of work
ow products and major issues that need to be addressed before work
ow

can be successful in the market place.

2 Work
ow Products

In this section, we �rst summarize the major features, enabling technologies, and successful

applications of the current generation of work
ow systems. We then describe a few industry

trends that we believe are important to the next generation of work
ow systems.

2.1 Current Status

Work
ow systems have evolved at least three generations according to [MB91]. The �rst

generation of work
ow systems are monolithic applications of a particular application area

(e.g., image or document management). The second generation work
ow systems factored

out the work
ow components but they are still tightly coupled with the rest of the products.

The third generation work
ow systems have generic, open work
ow engines which provide an

infrastructure for robust production-oriented work
ow. The work
ow speci�cation is given

separately through a graphical user interface and is interpreted by the work
ow engines.

[VLP95] has also predicted a fourth generation of work
ow systems that are part of the

middleware and will o�er services among other services.

2.1.1 Work
ow Product Features

Work
ow products of the early age (e.g., WorkFlo by FileNet) are image-based. The purpose

of such systems is to automate and manage the
ow of images, data, text, and other infor-

mation throughout an organization. These systems are thus also data- or document-centric.

The main function of a data-centric work
ow process is to route the data (e.g., a design

document) so that people can work on the data.

In recent years, most work
ow vendors have either developed or relabeled their products as

non image-based. Most of the work
ow products are also process-centric (instead of data-

centric) in the sense that work
ow processes formalize and enforce business policies. On the

other hand, there are still needs for data-centric work
ow products and there are vendors

such as XSoft focusing on the segment.

4

In the following, we summarize major features of the current generation of work
ow products

that are non image-based and process-centric. Note that this is not a complete list and

the listed features may also not be supported by all work
ow products. Nevertheless, we

believe that these features characterize the current generation of work
ow products and are

supported (at least partially) by most work
ow products.

Graphical representation. Perhaps the most signi�cant improvement of the current gen-

eration of work
ow products over earlier generations is the ability to specify and rep-

resent work
ow processes as graphical maps. In the map, major work
ow steps, data

and control
ows, as well as other components of a work
ow process are displayed

graphically using icons and lines connecting icons. The idea is to provide an intelligible

process view to non-programmers such as business analysts, re-engineering consultants,

end-users and supervisors.

The work
ow process map is now a standard component of all work
ow products. But

it di�ers signi�cantly from vendor to vendor with respect to the information contained

in the map and the way it is represented. For example, some products support only

a single one-level map while others represent process maps hierarchically, i.e., that

there is one main map which contains icons representing submaps. Some products

manipulate work
ow data explicitly on the map while other do not. The granularity of

process maps is also di�erent. For example, some products do not include speci�cs of

the work
ow activities. As noted in [Silv95], most work
ow products fail to describe

the work
ow process with su�cient clarity and completeness.

Architecture. Work
ow systems, by nature, are distributed systems. Most work
ow sys-

tems employ client/server architecture and run on multiple platforms. There is a

work
ow engine which acts as a coordinator. Other components of work
ow systems

such as process monitor, process starter, and process controller are all clients of the

engine. External applications that perform work
ow tasks can be both geographically

dispersed and on di�erent platforms.

The work
ow engines in most existing work
ow systems are still centralized in the

sense that the entire execution of a process is handled by a single work
ow engine (or

a cluster of engines that share the same data storage). It is possible in some work
ow

systems to start a subprocess at a di�erent machine as a step of the containing process

execution. But the subprocess execution and the containing process execution can be

considered as separate process executions with little interaction except data passing at

the beginning and end of the subprocess execution. No work
ow systems can support

reliable and consistent process execution collectively by more than one independent

(share nothing) work
ow engine.

Data model. In the WfMC work
ow reference model, three kinds of work
ow data have

been identi�ed: process control data that is manipulated by the work
ow management

system only; process relevant data that is used by both the application and work
ow

5

management system; and application data that is used by the work
ow application

only. The idea is to separate business policies (e.g., control
ow and data used in
ow

control) from application details (e.g., data used to perform a task).

All work
ow products have their data models but some of them are quite di�erent from

the WfMC model. For example, many work
ow systems do not distinguish between

process relevant data and application data. In these systems, work
ow engines have

accesses to all work
ow data (including application data).

User model. A user model speci�es each user's role and the role the user coordinate. The

idea is to separate the concept of logical role which is the speci�cation of capabilities

needed to perform a task and the concept of physical resources that have certain

capabilities to perform the tasks. Process designers specify roles for work
ow tasks at

design time and speci�c resources that have the required capabilities will be assigned

to the tasks at process execution time. The advantage is the independence of the

work
ow process from speci�c resource that may change in the process lifetime.

There are still work
ow products that do not distinguish between logical roles and phys-

ical resources. However, many work
ow products do support this basic user model.

Some even support more complicated model that allows speci�cation of a user's orga-

nization and manager, the function and processes that the user is authorized to use,

etc.

Rule capability. Almost all work
ow products allow process executions that are more com-

plicated than simple sequences. Complex
ow control requires work
ow products to

have rule capability. Most work
ow products have built-in rule engines. But the rule

speci�cation can be quite di�erent. Some products provide script languages for rule

speci�cation while others have graphical rule editors that are easier to use.

Tools. One of the advantages of using work
ow over monolithic applications is that work
ow

management systems include tools for process monitoring, tracking, and controlling.

Most work
ow products provide process development tools and some also provide

animation and simulation tools.

2.1.2 Enabling Technologies and Standards

Standards and enabling technologies are important factors in making work
ow pervasive.

In the past few years, signi�cant progress has been made with respect to work
ow related

standards such as WfMC, MAPI-WF, and ODBC and enabling technologies such as email,

CORBA, and ActiveX/DCOM.

WfMC standards. WfMC was founded in 1993 and is now considered the primary stan-

dard body for the work
ow market. The standardization work of WfMC is centered

around the work
ow reference model (see Figure 1).

6

Invoked

Applications

In
te

rf
ac

e
4

Interface 1

Workflow
Engine(s)

In
te

rf
ac

e
5

Engine(s)
Workflow

Interface 2 Interface 3

Workflow Enactment Service
Other Workflow

Enactment Service(s)

Administration
&

Monitoring Tools

Process
Definition Tools

Workflow

Client

Applications

Figure 1: WfMC work
ow reference model

The reference model speci�es a framework for work
ow systems, identifying their char-

acteristics, functions and interfaces. The focus has been on specifying the �ve APIs

that surround the work
ow engine. These APIs provide a standard means of commu-

nication between work
ow engines and clients (including other work
ow components

such as process de�nition and monitoring tools). So far, WfMC has draft speci�cations

for all APIs except interface 3. Most work
ow vendors plan to support the WfMC APIs

and some vendors have already demonstrated the WfMC APIs (e.g., for interface 2)

working with their work
ow engines.

Work
ow interoperability and standards are vital as automation technology becomes

more complex and the Coalition's work in this industry is central to keeping up with the

rapid progress. On the other hand, work
ow standardization is still in its preliminary

stage and has a long way to go.

MAPI work
ow Framework. MAPI is a message API standard promoted by Microsoft

and the MAPI work
ow framework (MAPI-WF) is Microsoft's initiative to the WfMC.

The idea is to combine the functionalities of work
ow systems and the
exibility of mes-

saging systems so that applications that span both messaging users and line-of-business

applications can be deployed. It addresses the interoperability issue between messaging

systems and work
ow systems. In a message environment, a work
ow request (e.g., of

interface 4) can be packaged within some body part of a message. MAPI-WF provides

a standard set of body parts and properties so that work
ow packages can be delivered

7

to and from the work
ow engine. Work
ow components (e.g., work
ow engines, work-

ow applications, and work
ow tools) that conform to MAPI-WF can communicate

via messaging systems such as Microsoft Exchange.

Given the popularity of messaging systems and the in
uence of Microsoft, MAPI-WF

will play an important role. Many work
ow vendors have already expressed their inten-

tions to support MAPI-WF in their work
ow products. To the best of our knowledge,

no vendors have actually demonstrated it in their products.

Enabling Technologies. The two most important enabling technologies for work
ow sys-

tems in recent years are object technology and distributed computing technology. Un-

like other software systems such as database management systems, work
ow systems

are distributed and open by nature. To perform a work
ow task, the work
ow engine

needs to invoke remote work
ow applications. Object and distributed computing tech-

nologies such as CORBA and ActiveX/DCOM are very useful in wrapping, managing,

and invoking heterogeneous applications.

Several work
ow products have used CORBA and ActiveX/DCOM as transport ser-

vices to invoke remote applications. There is also research (e.g., [DKM+97]) investigat-

ing a CORBA-based work
ow enactment system which supports a scalable software

architecture, multi-database access, and an error detection and recovery framework.

2.2 Industry Trends

Work
ow is a young area and is changing rapidly. Existing work
ow products are evolving

with new features and new products are being introduced. It is still not very clear what

the next generation of work
ow products will be. In the following subsections, we list some

industry trends that are both important and general enough that they could be adopted

by most work
ow vendors in the near future. In the next section, we discuss some more

advanced issues that are also important but are either not mature enough or not general

enough to likely to be widely adopted by work
ow vendors in the near future.

2.2.1 Open and Extensible Interfaces

As mentioned, work
ow systems are distributed and open by nature. The organizations that

will use work
ow systems already have computer networks, applications (e.g., spreadsheets),

data (stored in �les, databases, etc.) and other information. To be useful, a work
ow

management system must �t into the organization's existing computing environments.

Most existing work
ow products include application programming interfaces. External ap-

plications can be integrated with the work
ow system and external data can be used for

work
ow process execution via, e.g., application data handlers. To be a really open work-

ow system, extensible interfaces are needed for incorporating other existing resources and

information that are needed in work
ow process execution.

8

For example, events are one of the major means that work
ow processes interact with each

other and with the external environment. A telecommunication network management process

must be able to react to alarms generated by the managed telecommunication network and

generate events to e�ect changes in the network. Although most work
ow products still

don't support events (especially external events that interact with external environments),

there are work
ow systems that do. There are also research projects that address the issue.

Another example that requires extensible interfaces is the integration of existing corporate

directories. The information about users and the corporate hierarchy is necessary for as-

signing resources to perform work
ow tasks. Requiring users to register themselves to the

work
ow system as some products do is clearly not the best way. A more
exible way is to

provide interfaces to integrate existing corporate directories into the work
ow engine. This

not only saves work
ow application development time, but also makes the later maintenance

easier and avoids possible inconsistencies.

There are already work
ow products with extensible interfaces for integration of existing

resource management systems. More products will provide the interface in near future as

this is a feature greatly appreciated by work
ow application developers.

2.2.2 Process Development Environments

The development of work
ow applications is generally di�cult, due to their complexity. The

current work
ow products address the problem by providing graphical user interfaces for

process design and management. GUI tools, however, only address one aspect of the problem

which is relatively easier: specifying process templates. A harder problem is to integrate the

work
ow process with the computing environment. The problem is hard because of the

heterogeneity and complexity of the computing environments. To make things worse, most

work
ow vendors designed and marketed their products as generic tools trying to cover all

application areas.

We believe that work
ow will not become pervasive until the complexity of developing

work
ow applications can be signi�cantly reduced. One way of doing that is to provide

a good development environment. A good environment must be domain-speci�c to provide

commonly used process templates, commonly used data forms, tools to wrap and manage

commonly used applications, basic communication infrastructure, etc. Currently, there are

special-purpose work
ow products available on the market for speci�c domains. For example,

Araxsys has a work
ow product speci�cally targeting the healthcare market (see [Arax97]).

For the general-purpose work
ow products, it is possible to develop special packages based on

the general-purpose work
ow engine. For example, FileNet has introduced VisualFlo/Payable

for account payables. HP has introduced AdminFlow for business administration. More such

packages will be expected to cover application domains such as telecommunications, banking,

and �nance.

9

As mentioned, an important aspect of a work
ow process development environment is to

wrap external applications to be used by work
ow processes. The wrapped applications

can be packaged into a library and then reused by work
ow processes. Work
ow process

development can be further simpli�ed if work
ow activities can be reused. Work
ow activ-

ities include much more than just external applications to be invoked. Other information

includes: logical role speci�cation that maps to the speci�c external application, data needed

to perform the task, communication mechanisms, consistency and deadline speci�cation, etc.

Unfortunately, most work
ow products do not support this level of reuse, as work
ow activi-

ties contain process-speci�c information (e.g., position in the process) that cannot be reused.

It is thus necessary to separate process-speci�c and process-independent parts of work
ow

activities. For example, HP's work
ow product distinguishes between the two parts and

allows the reuse of the process-independent parts of work
ow activities. This allows the

special-purpose work
ow environment such as AdminFlow to be easily developed based on

the general-purpose work
ow engine.

2.2.3 Wide Area Work
ow

The current generation of work
ow products has been criticized for rigid process models,

narrow application focus, and platform restrictions (see [Delp97]). These work
ow products

best service applications where business rules, process
ows, and work participants are known

in advance and rarely change. The advent of wide area networks and the world wide web

has provided new opportunities for work
ow. Most work
ow vendors have provided web

interfaces to their work
ow products. There are also research projects trying to develop

work
ows on the web (see, e.g., [MPSK97]).

As predicted in [Delp97], one possible change for work
ow technology is users' environments

where work
ow tasks are performed. Work
ow users will use universal access available via

open interfaces such as email, telephone, fax, pager, Web, and intranets/extranets to perform

work
ow tasks. The key is to separate work
ow processes from the user environment so that

changes at one side will not a�ect the other. The major di�erence between the traditional

and wide area work
ows is that work
ow users have control over what and how they receive

information in the latter. The advantage is faster response time and greater productivity by

providing multiple access points to the same information and allowing users to use tools of

their choice.

3 Work
ow Research

Work
ow is an active research area with research e�orts from both academia and industry

(see, e.g., [VLP95] and [MAG+95]). On the other hand, work
ow research, especially that

from academia, has so far made little impact on work
ow products. There are two main

reasons for the situation. First, early work
ow systems, having evolved from di�erent areas

such as o�ce automation systems, job control systems, and document management systems,

10

were struggling to de�ne basic models, architectures, and functionalities, while work
ow

researchers, most of whom had strong database backgrounds, have been focusing on intro-

ducing advanced database techniques to work
ow systems. On the other hand, work
ow

vendors have so far not been very successful in applying work
ow technology to applications

that require advanced database features such as ACID transactions, and work
ow researchers

have also failed to develop techniques that are
exible enough for work
ow systems.

Nevertheless, we believe that research can address issues that are very important in making

work
ow pervasive. Our experience with customers shows that there are many work
ow

applications that require some level of transaction support. The requirements, however, are

very di�erent from those in database systems. As a result, not only do existing database

techniques need to be adapted to �t into the work
ow environment, but also new techniques

need to be developed to address issues that are unique in work
ow systems.

In the section, we discuss some of the important research issues. We will try to emphasize

the di�erences between the database and work
ow environments. Note that this is not a

complete list of work
ow research issues. The purpose is to inspire research in these and

other related areas.

3.1 Transactional Work
ow

The concept of transactions was �rst introduced for database applications in [Gray81]. A

transaction is an execution unit with ACID properties: it maps a database from one consis-

tent state to another (consistency); either all or none of its e�ects take place (atomicity); and

the e�ects are made permanent once committed (durability). Multiple transactions may be

executed concurrently, but the overall e�ect must be equivalent to some sequential execution

(isolation or serializability).

Work
ow models that support certain transactional properties have been viewed by many

researchers as extensions to the relaxed transaction models (see, e.g., [SR93], [CD96], [GH94],

[TV95b], [EL95], [Leym95], [AAE+96] and [KR96]). It has been proven both possible and

very useful to incorporate transactional semantics such as recovery, atomicity and isolation

to ensure correct and reliable work
ow executions (see [JLP+96]). Database techniques have

been adopted to provide transactional properties for work
ow processes. For example, fail-

ure atomicity is ensured via both forward recovery (see [EL96]) and backward recovery (i.e.,

compensation, see [Leym95] and [DDSD97]). Execution atomicity can also be ensured by

specifying consistency units (or execution atomic units) of work
ow processes and coordi-

nating their executions to ensure M-serializability (see, e.g., [BDS+93], [RS94] and [TV95b]).

On the other hand, a work
ow process is fundamentally di�erent from a database transaction

as discussed in [WS97]. First, a work
ow environment is more complicated than a database

and involves heterogeneous and distributed components. A work
ow activity can be very

complicated and involve human interactions. Second, a work
ow process is structurally

11

more complex than a database transaction, and the execution of a process may establish

quite complex control and data
ow dependencies among the activities of the process. A

work
ow process speci�cation may include conditional branching, concurrent execution of

activities, loops, and other complex control structures.

Database recovery techniques such as logging have been successfully adopted in work
ow

systems. There are work
ow products that support reliable work
ow process executions.

Ensuring atomic and consistent process execution, however, is still missing from work
ow

products and remains an open research issue. In this subsection, we discuss new issues

in work
ow compensation and concurrency control as the result of the above di�erences

between the database and work
ow environments.

3.1.1 Compensation

Compensation was introduced in [GMS87] to simulate the transactional properties for long-

running database applications that would be too expensive to implement as single ACID

transactions. The idea was to implement such an application as a saga or sequence of ACID

transactions so that resources needed only at a particular stage could be released after the

corresponding transaction completes. Atomicity was simulated by compensating already

completed transactions in reverse order.

In work
ow systems, compensation is used to deal with process activity failures. When a

process activity instance fails, the work
ow management system is responsible for bringing

the process execution to a designated save point, which is a previous execution step of the

process. The save point represents an acceptable intermediate state of process execution and

hopefully also a decision point where certain actions can be taken to either �x the problem

that caused the failure or choose an alternative execution path to avoid the problem. To roll

back work
ow process execution, compensation activities will be invoked to undo the e�ects

of the completed activities.

Compensation is more complicated (and thus interesting) in work
ow systems than in

database systems for two reasons. First, compensation speci�cation (i.e., when, what, and

how to compensate) is more di�cult, due to the complexity of work
ow processes and activ-

ities. The compensation activity can be as complicated as (or even more complicated than)

the original activity to be compensated. Second, optimization of compensation processes

(i.e., what activities don't need compensation) is important. Unlike database transactions

which can be compensated and re-executed easily and e�ciently, work
ow compensation

can be very costly. It is therefore important to avoid unnecessary compensation as much as

possible.

Existing research on the issue has been focusing on static speci�cation of compensation

scopes. For example, [Leym95] discussed an enhancement to IBM FlowMark which allows

the process designers to specify (at process design time) spheres of compensation to determine

12

the scope and extent of compensation in case of activity failures. The failure of an activity

may cause the compensation of just the failed activity, the entire containing sphere, or the

containing sphere and other dependent spheres. A similar approach has also been proposed

in [CD97] for hierarchical work
ow processes. The compensation scope is determined in a

bottom-up fashion: �rst to the designated save point in the transaction containing the failed

activity, then to the designated save point of the higher level containing the transaction if

the current level transaction can not handle the failure.

An interesting issue is how to make use of runtime information to further avoid unnecessary

compensation. As we mentioned, the purpose of compensation is to undo the e�ects that

caused the failure so that the execution can resume. Thus, a work
ow activity needs com-

pensation if it contributed to the failure, and/or its re-execution is di�erent from the original

execution. Compensation scopes specify the activities thatmight a�ect the failed activities in

some execution environments. It is however possible that an activity in a statically speci�ed

compensation scope did not contribute to a particular failure. For example, an activity a1

a�ects a subsequent activity a2 if another concurrent activity a3 happened before a1. There

is no need to compensate a1 if a2 failed before a3 has even started. This information, how-

ever, will only be available at run time. Identifying unnecessary compensation and avoiding

it at run time is di�cult because other nodes may be a�ected. But it is worth the e�ort in

many cases where compensation and re-execution of work
ow activities are very expensive.

[DDSD97] presented some preliminary results along this line of research.

In general, we assume some kind of static relationship between the original execution and

its compensation. For example, the same compensation strategy will be used for a work
ow

activity independent of the cause of failures. A compensation activity is de�ned for each

activity or a group of activities that need compensation. This however may not be true in

real life. There can be many di�erent ways to recover a failed execution according to the

cause of the failure and the compensation process can be structurally independent of the

original execution. For example, the compensation to a person who committed a crime is to

go through the justice procedure, which has no structure relationship to the original crime

procedure. Little research has been done in the area.

The most fundamental issue of compensation is, perhaps, the correct criteria for work
ow

process execution and compensation. In database systems, a compensation is correct if ev-

erything between the save point and the failure point is compensated and in the exact reverse

order of the original execution. In work
ow systems, we need a more relaxed criterion for

optimization purposes. For example, the order requirement could be relaxed for compensa-

tions that are commutable. A good understanding of correct compensation is essential to

e�cient work
ow compensation and can even be application-dependent.

13

3.1.2 Concurrency Control

Concurrency control is a classical technique in databases, which ensures execution isola-

tion of a transaction from other con
icting transactions. Although concurrency control has

been considered either unnecessary or too costly for many work
ow applications, it can be

very important for some work
ow applications where mission-critical operation requires a

consistent view of the execution environment (see, e.g., [JLP+96]).

The problem of concurrency control in work
ow systems is however a little bit di�erent

from that in database systems. The purpose of concurrency control in database systems

is to ensure execution isolation of database transactions which consist entirely of atomic

read/write operations that are visible to the DBMS. In work
ow systems, the WFMS ensures

the execution isolation of work
ow activities which consist of atomic read/write operations

as well as external executions that are invisible to the WFMS. The WFMS is responsible

for the consistency of the overall execution environment which includes both the internal

database which is visible to the WFMS and external systems which are invisible to the

WFMS, as well as their cross consistency.

The fundamental issue of concurrency control in work
ow systems is correctness criteria.

Serializability, as used for database transactions, is too strict for most work
ow applica-

tions. The main reason for this is that work
ow activities are generally long-duration. It

is unacceptable in many work
ow applications to schedule con
icting activities sequentially

as for read/write operations in database transactions. Relaxed correctness criteria (which

might be application domain-speci�c) are essential in specifying and enforcing the correct

work
ow process executions. [KR96] discussed some of the existing research on the subject.

Some existing research addresses the problem by specifying and enforcing data and execution

dependencies among work
ow activities (see, e.g., [AARS93], [TV95a] and [GH94]). There is

also research that adopts database techniques but allows
exible speci�cation of consistency

requirements with respect to scope and granularity. For example, [TV95a] allows grouping

a collection of work
ow activities of a work
ow process into a consistency unit and uses

traditional concurrency control to ensure isolation of consistency units (in terms of serial-

izability). Correct execution of activities inside a consistency unit is ensured by enforcing

proper data and execution dependencies.

3.2 Distributed Work
ow Execution

Work
ow systems, by nature, are distributed systems. First, external applications that per-

form work
ow tasks are often geographically dispersed. The work
ow management system

itself can also be distributed. The most common form of distributed WFMS is function

distribution. In such a system, di�erent work
ow components that perform various work-

ow functions such as process de�nition, process execution, process monitoring, and resource

assignment run at di�erent sites. WFMS components interact with each other via messages

14

or remote procedure calls. Another form of distribution is to perform a work
ow func-

tion by multiple functionally equivalent WFMS components that share common storage (see

[KAGM96]). For example, the execution of a work
ow process can be collectively performed

by several work
ow engines sharing the same data storage for process de�nitions and exe-

cution states. Such a system provides better scalability and is resilient to work
ow engine

failure, but is still vulnerable to data storage failure.

The most di�cult form of distribution is for multiple independent WFMSs (sharing no

common data storage) to collectively execute a work
ow process. In such a distributed

system, each WFMS is itself a complete work
ow system with its own engine and data

storage. There is no centralized server keeping all information about a process execution.

Such a system may be preferred for performance or reliability reasons. The system is more

e�cient because work
ow activities can be executed by the WFMSs that are close to the

corresponding external applications (thus reducing communication cost between the WFMSs

and applications) and because the WFMSs access process de�nitions and execution states

locally (thus reducing communication cost between the WFMSs and the data storage). It is

also more reliable because the failure of one or more WFMSs (including the corresponding

data storage) does not stop work
ow process executions. The overall system is functional as

long as one of the WFMSs is still running.

There are two main issues in implementing such a distributed work
ow system: data repli-

cation and execution coordination. Data replication is necessary to ensure reliable process

execution. For example, the process execution can survive a single WFMS failure if the

process de�nitions and execution states are replicated at more than one independent (e.g.,

primary and backup) WFMSs. Data replication (especially that of process execution states),

however, can be very costly. Data replication can be provided by the WFMSs, or the un-

derlying systems. The advantage of the work
ow system level replication is
exibility. For

example, work
ow processes can be executed at di�erent levels of reliability from no repli-

cation (e�cient but vulnerable to single WFMS failure) to full replication (expensive but

resilient to single WFMS failure).

Execution coordination is needed when more than one WFMS collectively execute a work
ow

process. For example, execution of a work
ow activity by one WFMS may cause the entire

process execution to be suspended, a�ecting all other WFMSs. The key is to transfer process

information to a site when it is needed and in the right order. Static information such as

process de�nitions can be replicated at all relevant sites, but runtime information such as

process instance states has to be transferred at run time from site to site. This can be

done by either circulating all information pertaining to a process and its execution across

di�erent sites, or pre-compiling the process de�nition to determine at which sites the di�erent

activities are to be executed (see [MAG+95]). The advantage of the former approach is

exibility in the sense that the WFMS can choose to execute a work
ow activity at any site

according to the runtime execution environment. The disadvantage is high communication

cost as the information package can be very large. The latter approach, on the contrary,

15

can be e�ciently implemented, as only relevant information is transferred to the site, but is

in
exible. For example, if a work
ow activity is pre-assigned to a site which is not accessible

at the time, other sites cannot take over the execution as they do not have the information.

Another problem with the approach is that most work
ow products assign resources to a

work
ow activity at runtime. The site that is pre-assigned to execute a work
ow activity at

process speci�cation time can be far away from the resources (e.g., computer applications)

to be invoked.

Concurrency control and compensation may also be complicated when the WFMS is dis-

tributed. For example, executions of con
icting activities by di�erent sites have to be

coordinated to ensure the consistency of the overall execution. Locking is generally not

acceptable as work
ow activities are often long running. Serializability, on the other hand,

may not be needed for the execution. New correctness criteria and coordination algorithms

need to be developed to ensure correct and e�cient process execution.

3.3 Dynamic Work
ow

One of the common assumptions most work
ow research makes is the availability of pre-

speci�ed work
ow de�nitions. Although there are research or even work
ow products allow-

ing modi�cation of process de�nition at run time (see, e.g., [CCPP96]), it is still considered

to be rare and costly.

Dynamic work
ow systems are special work
ow systems that have no pre-speci�ed process

speci�cations. They start with some initial activities. When an activity has completed, new

activities will be selected according to the execution status and results of the current activity.

In other words, the work
ow is speci�ed and executed at the same time, which is di�erent

from dynamic modi�cations of pre-speci�ed work
ow de�nitions.

Dynamic work
ow systems are suitable for work
ow applications where process speci�cations

are frequently modi�ed or cannot be pre-speci�ed. For example, most product designs do

not follow strict process. They start with initial tasks (e.g., collecting requirements) and

follow the general guidelines. Di�erent tasks are performed in di�erent orders according to

the status of the design.

Dynamic work
ow requires revisiting most research issues discussed before (as well as issues

not mentioned in the paper). For example, speci�cation of consistency requirements will

be di�erent, due to the lack of the whole picture of the processes. For the same reason,

coordination (especially in distributed environments) of activity executions is di�cult. There

has been very little research regarding dynamic work
ow. Recently, there are some research

e�orts trying to implement dynamic work
ow systems using mobile agents. But such e�orts

are still in their early stages and have not addressed the aforementioned issues.

16

4 Conclusions

Work
ow management systems, as a solution to address many shortcomings of monolithic

computer applications, have attracted interests from both industry and academia. On one

hand, there is a high demand for work
ow systems for all kinds of computer applications,

and on the other hand, work
ow is far from pervasive. This paper tries to understand the

situation from a technical point of view, focusing on the speci�cation and enactment of

work
ow processes.

Based on our knowledge and experience, we believe that the following factors have all con-

tributed to the current situation: (1) unavailability of proper infrastructure, (2) lack of

standards, (3) complexity of work
ow process development, and (4) immaturity of work
ow

technologies. Despite all the problems, great progress has been made in the last few years

with respect to infrastructure, standards, and technologies. In the paper, we discuss both

state of the products and state of the art of work
ow management systems. The purpose

of the paper is to inspire further research and development in some work
ow areas that are

important or essential to the pervasive of work
ow systems.

Acknowledgements

We would like to thank Mary Loomis for her help and support in this writing and for her

carefully reviewing the paper which greatly improves the quality and presentation. Thanks

also to other members of the OpenPM team, Jim Davis, Ying Huang, and Ming-Chien Shan,

for many fruitful discussions.

References

[AAE+96] Alonso, G., Agrawal, D., El Abbadi, A., Kamath, M., Gnthr, R., and Mohan,

C., \Advanced Transaction Models in Work
ow Contexts", Data Engineering,

1996.

[AAEM97] Alonso, G., Agrawal, D., El Abbadi, A., and Mohan, C., \Functionalities and

Limitations of Current Work
ow Management Systems", IEEE Expert (Special

Issue on Cooperative Information Systems), 1997.

[AGK+95] Alonso, G., Gnthr, R., Kamath, M., Agrawal, D., El Abbadi, A., and Mohan,

C., \Exotica/FMQM: A Persistent Message-Nased Architecture for Distributed

Work
ow Management", IFIP WG8.1 Working Conference on Information

Systems for Decentralized Organization, 1995.

[AGK+96] Alonso, G., Gnthr, R., Kamath, M., Agrawal, D., El Abbadi, A., and Mohan,

C., \Exotica/FMDC: A Work
ow Management System for Mobile and Discon-

nected Clients", Distributed and Parallel Databases, 4(3) 1996.

17

[AKG+96] Alonso, G., Kamath, M., Agrawal, D., El Abbadi, A., Gnthr, R., and Mohan,

C., \Failure Handling in Large Scale Work
ow Management Systems", IBM

Research Report, RJ9913, 1994.

[ARM97] Alonso, G., Reinwald, B., and Mohan, C., \Distributed Data Management in

Work
ow Environments", RIDE, 1997.

[Arax97] Araxsys, \The Araxsys Solution", http://www.araxsys.com, 1997.

[AARS93] Attie, P., Aingh, M., Rusinkiewicz, M., and Sheth. A., \Speci�cation and

Enforcing Intertask Dependencies", VLDB, 1993.

[BDS+93] Breitbart, Y., Deacon, A., Schek, H., Sheth, A., and Weikum, G., \Merg-

ing Application-Centric and Data-Centric Approaches to Support Transaction-

Oriented Multi-System Work
ows", SIGMOD Record, 22(3), 1993.

[CCPP97] Casati, F., Ceri, S., Pernici, B., and Pozzi, G., \Semantic Work
ow Interoper-

ability", EDBT, 1996

[CGS97] Ceri, S., Grefen, P., and Sanchez, G., \WIDE: A Distributed Architecture for

Work
ow Management", RIDE, 1997

[CD96] Chen, Q. and Dayal, U., \A Transactional Nested Process Management Sys-

tem", Data Engineering, 1996.

[CD97] Chen, Q. and Dayal, U., \Failure Handling For Transaction Hierarchies", Data

Engineering, 1997.

[DKM+97] Das, S., Kochut, K., Miller, J., Sheth, A., and Worah, D., \ORBWork: A Reli-

able Distributed CORBA-based Work
ow Enactment System for METEOR2",

The University of Georgia, UGA-CS-TR-97-001.

[CR91] Chrysanthis, P. and Ramamritham, K., \A Formalism for Extended Transaction

Models", VLDB, 1991.

[DDS95] Davis, J., Du, W., and Shan, M., \OpenPM: An Enterprise Process Manage-

ment System", IEEE Data Engineering Bulletin, 1995.

[DHL91] Dayal, U., Hsu, M., and Ladim, R., \A Transactional Model for Long Running

Activities", VLDB, 1991.

[Delp97] Delphi Consulting Group, \Wide Area Work
ow", The Delphi Seminars &

Institutes, 1997.

[DDSD97] Du, W., Davis, J., Shan, M., and Dayal, U., \Flexible Compensation of Work-

ow Processes", Hewlett-Packard Laboritories, HPL-96-72, 1997.

18

[EL95] Eder, J. and Liebhart, W., \The Work
ow Activity Model WAMO", Coopis,

1995.

[EL96] Eder, J. and Liebhart, W., \Work
ow Recovery", CoopIS, Brussels, Belgium,

1996.

[ELLR90] Elmagarmid, A., Leu, Y., Litwin, W., and Rusinkiewicz, M., \A Multidatabase

Transactional Model for Interbase", VLDB, 1990.

[CCPP96] Casati, F., Ceri, S., Pernice, B., and Pozzi, G., \Work
ow Evolution", ER,

1996.

[GMS87] Garcia-Molina, H. and Salem, K., \Sagas", SIGMOD, 1987.

[GH94] Georgakopoulos, D. and Hornick, M., \A Framework for Enforceable Speci�ca-

tion of Extended Transaction Models and Transactional Work
ow", Journal of

Intelligent and Cooperative Information Systems, 3(3), 1994.

[Gray81] Gray, J., \The Transaction Concept: Virtues and Limitations", VLDB, 1981.

[HR87] Haerder, T. and Rothermel, K., \Concepts for Transaction Recovery in Nested

Transactions", SIGMOD, 1987.

[JLP+96] Juopperi, J., Lehtola, A., Pihlajamaa, O., Sladek, A., and Veijalainen, J., \Us-

ability of Some Work
ow Products in an Inter-organizational Setting", IFIP

WG8.1 Working Conference on Information Systems for Decentralized Organi-

zation, Norway, 1996.

[KAGM96] Kamath, M., Alonso, G., Gnthr, R., and Mohan, C., \Providing High Avail-

ability in Very Large Work
ow Management Systems", EDBT, 1996.

[KR96] Kamath, M. and Ramamritham, K., \Correctness Issues in Work
ow Manage-

ment", Distributed System Engineering, 3(4), 1996.

[KYH95] Karlapalem, K., Yeung, H., and Hung, C., \CapBasED-AMS: A Framework

for Capability-based and Event-driven Activity Management System", CoopIS,

1995.

[KTW96] Klingemann, J., Tesch, T., and Walch, J., \Semantics-Based Transaction Man-

agement for Cooperative Applications", International Workshop on Advanced

Transaction Models and Architectures, India, 1996.

[KLS94] Korth, H., Levy, E., and Silberschatz, A., \A Formal Approach to Recovery by

Compensation Transactions", VLDB, 1990.

[KS94] Krishnakumar, N. and Sheth, A., \Speci�cation of Work
ow with Heteroge-

neous Tasks in Meteor", VLDB, 1994.

19

[Leym95] Leymann, F., \Supporting Business Transactions Via Partial Backward Recov-

ery In Work
ow Management Systems", BTW, 1995.

[LR94] Leymann, F. and Roller, D., \Business Process Management with Flowmark",

COMPCON, 1994.

[MB91] McCarthy, D. and Bluestein, M., \Work
ow's Progress", The Computing Strat-

egy Report, 8(12), Forrester Research, Inc., 1991.

[MS93] McCarthy, D. and Sarin, S., \Work
ow and Transactions in InConcert", Data

Engineering Bulletin, 1993.

[MPSK97] Miller, J., Palaniswami, D., Sheth, A., and Kochut, K., \WebWork: Meteor2's

Web-based Work
ow Management System", The University of Georgia, UGA-

CS-97-002, 1997.

[MAG+95] Mohan, C., Alonso, G., Gnthr, R., and Kamath, M., \Exotica: A Research

Perspective of Work
ow Management Systems", Data Engineering Bulletin,

18(1) 1995.

[RKT+95] Rusinkiewicz, M., Klas, W., Tesch, T., Walch, J., and Muth, P., \Towards a

Cooperative Transaction Model - The Cooperative Activity Model", VLDB,

1995.

[RS94] Rusinkiewicz, M. and Sheth, A., \Speci�cation and Execution of Transactional

Work
ows", Modern Database Systems: The Object Model, Interoperability, and

Beyond (W. Kim, Ed.), Addison-Wesley, 1994.

[SDDC96] Shan, M., Davis, J., Du, W., and Chen, Q., \Business Process Flow Manage-

ment and Its Application in the Telecommunication Management Network",

Hewlett-Packard Journal, 47(5) 1996.

[SR93] Sheth, A. and Rusinkiewicz, M., \On Transactional Work
ow", IEEE Data

Engineering Bulletin, 1993.

[Silv95] Silver, M., \BIS Guide to Work
ow Software", BIS Strategy Decisions, 1995.

[TV95a] Tang, J. and Veijalainen, J., \Transaction-oriented Work-
ow Concepts in

Inter-organization Environments", International Conference on Information

and Knowledge Management, Baltimore, 1995.

[TV95b] Tang, J. and Veijalainen, J., \Enforcing Inter-Task Dependencies in Transac-

tional Work
ows", CoopIS, 1995.

[VLP95] Veijalainen, J., Lehtola, A., and Pihlajamaa, O., \Research Issues in Work
ow

Systems", ERCIM Database Research Group Workshop on Database Issues and

Infrastructure in Cooperaive Information System, Norway, 1995.

20

[WR92] Wachter, H. and Reuter, A., \The ConTract Model", Elmagarmid, A. (ed)

Transaction Model for Advanced Database Applications, Morgan-Kaufmann,

1992.

[WfMC94a] Work
ow Management Coalition, \Work
ow Reference Model", Work
ow

Management Coalition Standard, WfMC-TC-1003, 1994.

[WfMC94b] Work
ow Management Coalition, \Glossary: A Work
ow Management Coali-

tion Speci�cation", Work
ow Management Coalition Standard, WfMC-TC-

1011, 1994.

[WS97] Worah, D. and Sheth, A., \Transactions in Transactional Work
ows", Ad-

vanced Transaction Models and Architectures (S. Jajodia and L. Kerschberg

eds.), Kluwer Academic Publisher, 1997.

21

