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Abstract

Mathematical Morphology is a nonlinear image processing theory, which is currently

based on complete lattices. This work extends its scope to complete semilattices, which

are more general. Speci�c morphological operators de�ned in complete semilattices are

shown, by means of simulations, to be potentially useful in some video processing ap-

plications, like detection of fast motion, extraction of objects that appear in a sequence

frame but not in its predecessor, and segmentation-based compression of sequences.

In this report, we �rst rede�ne the basic morphological operators in complete semi-

lattices. Then, a few properties of morphological operators in complete lattices are

proven to apply also to their semilattice counterparts. Next, some examples of semi-

lattices and basic morphological operators de�ned on them are provided. Finally, the

above applications are briey described and demonstrated.
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1 Introduction

Mathematical Morphology is a well-founded non-linear theory for Image Processing [1, 2, 3].
Its geometry-oriented nature provides a strong framework for addressing shape characteris-
tics such as size, connectivity, and others, which are not easily accessed by the traditional
linear approach. Morphology has been used in applications such as nonlinear �ltering [4],
sharpening [5], compression [6], shape analysis [7], segmentation [8], and others.

Mathematical Morphology is theoretically founded on complete lattices. Lattices are par-
tially ordered sets in which every pair of elements have a least majorant (supremum) and a
greatest minorant (in�mum). For example, in the lattice of grayscale functions, a function f
is said to be bigger than another function g, if f(x) � g(x), for all x in their domain. Thus,
the in�mum and the supremum of two functions are the functions formed by the point-wise
in�mum and point-wise supremum of the original ones, respectively. The lattice is said com-
plete when it contains a least and a greatest elements. In the case of the complete lattice of
grayscale functions, for instance, the least and greatest elements are the all-(�1) and the
all-(+1) functions, respectively. The lattice of grayscale functions is traditionally used for
morphological image processing, where each image is a function in the lattice [2].

In many applications, the existence of a least and a greatest elements agrees with one's
intuition, in which case Mathematical Morphology on the corresponding complete lattice
proves to be very useful. The case where we consider bright (high grayscale valued) objects
in an image to form its foreground, and the dark (low grayscale valued) objects to form its
background, for example, agrees with the above choice of partial ordering, which leads to
the least and greatest grayscale functions de�ned above.

There are cases, however, that the existence of both a least and a greatest element is not
intuitive. For example, consider a real function, obtained by the di�erence between two
other real functions, which could represent the error of a prediction operation. In traditional
Mathematical Morphology, the di�erence function would be processed in the same way as
any other function, that is, in the framework of the above lattice grayscale of functions,
where the all-(�1) function is the least element. However, in our opinion, it would be more
useful to consider the null function to be the least di�erence-function, because it corresponds
to the case when the two original functions are identical. In this case, there does not seem
to exist one single greatest function, since both the all-(�1) and the all-(+1) functions
could be considered equally \big".

In such situations, using a complete semilattice could be more useful and intuitive than using
a complete lattice. An inf semilattice is a set where every pair of elements have an in�mum
(but not necessarily a supremum). It is complete when there exists a least element (but not
necessarily a greatest element). A sup semilattice is de�ned dually. Thus, a lattice is an
especial case of semilattices, where it is both an inf semilattice and a sup semilattice.

In this work, we propose the extension of many useful morphological image processing tools
for complete inf semilattices (the results are naturally extended to complete sup semilattices
too, by duality). These tools include erosion, opening, \top-hat" extraction, gradient, and
the skeleton. In addition, some potential applications of these tools on complete semilattices
for video processing are presented: Fast-motion detection, innovation extraction, and coding.
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2 Theoretical Background: Morphology on Complete

Lattices

This section provides a brief overview of Mathematical Morphology on complete lattices.
Additional information can be found in [2].

2.1 Complete Semilattices and Lattices

A partially ordered set A is a set associated with a binary operator �, satisfying the following
properties for any x; y; z 2 A: reexivity (x � x), anti-symmetry (x � y; y � x ) x = y),
and transitivity (x � y; y � z ) x � z).

In a partially ordered set A, the least majorant _X (also called supremum) of a subset
X � A is de�ned as an element a0 2 A, such that: i) x � a0; 8x 2 X, and ii) if there exists
y, such that x � y � a0 for all x 2 X, then y = a0. One de�nes the greatest minorant ^X
(also called in�mum) of X, dually.

A partially ordered set P is an inf semilattice (resp. sup semilattice) if every two-element
subset fX1; X2g in P has an in�mum X2 ^X2 (resp., a supremum X1 _ X2) in P. If P is
both an inf and a sup semilattice, then it is called a lattice.

An inf semilattice (resp., sup semilattice) is complete when every non-empty subset B � P

has an in�mum ^B (resp. supremum _B). In this case, there exists in the semilattice an
unique element 0, called zero element, (resp., U , called universe), such that, for any X 2 P,
0 ^X = 0 (resp. U _X = U). A complete lattice is a lattice which is both a complete inf
and complete sup semilattice.

2.2 Basic Operations in Complete Lattices

2.2.1 Erosions and Dilations

In a complete lattice (P;�;_;^), any function " : P �! P which commutes with the
in�mum ^ and preserves the universe is called an erosion. In other words, "(�) is an erosion
i� for any collection fXig of elements in P:

"

 ^
i

Xi

!
=
^
i

" (Xi) ; (1)

and "(U) = U .

Dually, a dilation is any function that commutes with the supremum and preserves the zero
element, i.e., � is a dilation i�:

�

 _
i

Xi

!
=
_
i

� (Xi) ; (2)

and �(0) = 0.
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Both dilation and erosion are increasing operations in the complete lattice, that is:

8X; Y 2 P; X � Y )

(
�(X) � �(Y )

"(X) � "(Y )
(3)

For each dilation � in a complete lattice there is a single erosion ", satisfying:

8X; Y 2 P; �(X) � Y , X � "(Y ): (4)

Similarly, for each erosion there is a single dilation, such that (4) is satis�ed. The pairs (�; ")
satisfying the above duality are called adjoint or dual.

Given an erosion ", its adjoint dilation is given, for all X 2 P, by:

�(X) =
^
fY 2 P j X � "(Y )g (5)

Adjoint erosions and dilations satisfy the following property, for all X 2 P:

�"�(X) = �(X); "�"(X) = "(X): (6)

2.2.2 Openings and Closings

An algebraic opening (or, simply, opening)  in a complete lattice is an operator which is
idempotent ((X) = (X), 8X 2 P), increasing (X � Y ) (X) � (Y ), 8X; Y 2 P),
and anti-extensive ((X) � X, 8X 2 P).

Similarly, an algebraic closing (or just closing) � is an operator in P which is idempotent,
increasing, and extensive (�(X) � X, 8X 2 P).

Opening and closings are referred to as morphological �lters, which remove \parts" of X
that do not comply with a certain criterion. Often, this criterion is related to the notion of
size [1].

Important particular cases of openings and closings are, respectively, the operators " and
�", de�ned for X 2 P by:

"(X)
4
= �"(X); �"(X)

4
= "�(X); (7)

where (�; ") is an adjoint pair. These operators are called, respectively, the morphological
opening and the morphological closing, associated with the erosion ".

Given an erosion ", the morphological opening and closing associated with it are given, for
all X 2 P, by:

"(X) =
V
fY 2 P j "(X) � "(Y )g; (8)

�"(X) =
V
f"(Y ) j Y 2 P; X � "(Y )g: (9)

From this point on, the index " is removed from the notation of morphological openings and
closings, that is,  and � will denote morphological opening and closing, respectively.
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2.3 Some Image Processing Tools

2.3.1 The Lattice of Grayscale Images

The complete lattice of grayscale images Pf is the set of real-valued functions, with �, _,
and ^ de�ned as follows, for all f; g 2 Pf :

f � g , f(x) � g(x); 8x; (10)

(f _ g)(x) = maxff(x); g(x)g; 8x; (11)

(f ^ g)(x) = minff(x); g(x)g; 8x: (12)

In this lattice, the least element 0 is the function 0(x) � �1, and the universe U is the
function U(x) � 1.

The following adjoint pair of dilation and erosion is of special interest in function lattices:

["(f)] (x)
4
=

^
z2B

f(x+ z); (13)

[�(f)] (x)
4
=

_
z2B

f(x� z); (14)

where B is a set of points in the domain of f , called structuring element. These opera-
tions, which are translation-invariant (TI), can be seen as nonlinear convolutions, where
the structuring element B works as a moving window, and the traditional averaging of lin-
ear convolutions, performed inside the window for every x, is replaced by the in�mum and
supremum operations, respectively. They are called TI erosion/dilation by a at structuring
element (to di�erentiate them from the more general case, not reviewed here, where the
structuring element is a function instead of a set). The above erosion (resp. dilation) usually
causes object edges within images (functions) they operate upon to move, in such a way that
bright regions shrink (resp. expand), and dark regions expand (resp. shrink).

In the next sections, we review some important morphological tools in Pf . They are de�ned
using general erosions " and dilations �, but most applications use speci�cally the TI, at
operators.

2.3.2 Gradients

Gradients are used mainly for extracting information about object edges in an image. They
are useful for edge detection, segmentation [6], and sharpening [5].

There are three types of morphological gradients [3], associated to a given erosion ": i)
The internal gradient Gi, which returns the internal boundary of the bright objects and the
external boundary of the dark objects in f , ii) the external gradient Ge, which returns the
opposite result, and iii) the total gradient G, which returns both the internal and external
boundaries of the objects in f . They are de�ned, for any image f 2 Pf , by:

Gi(f)
4
= f � "(f); (15)

Ge(f)
4
= �(f)� f; (16)

G(f)
4
= �(f)� "(f): (17)
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2.3.3 Top-Hat Extraction

The Top-Hat transform or extraction is widely used for extracting �ne details in an image
(see [3]).

There are two kinds of Top-Hat transforms. The white Top-Hat transform Hw(f) (for ex-
tracting bright details), and the black Top-Hat transform Hb(f) (for extracting dark details),
are de�ned with respect to a given opening or a given closing, by:

Hw(f)
4
= f � (f); (18)

Hb(f)
4
= �(f)� f: (19)

2.3.4 Skeleton

In the case of binary images (which can be seen as a particular case of grayscale image)
the skeleton representation is usually used to produce a thin caricature of f , for analysis
purposes. The skeleton has also been used for image compression, where it is considered as
an e�cient, size-oriented, decomposition of the image [2, 10, 9].

There are several de�nitions and generalizations of the skeleton decomposition [9]. We review
in this section a grayscale version due to Maragos [10].

Given an erosion ", let for all natural n:

"n
4
=

(
I; n = 0;

""n�1; n > 0;
(20)

where I is the identity operator.

The skeleton subsets fsn(f)g of a given image f 2 Pf are de�ned by:

sn(f)
4
= "n(f)� "n(f); (21)

where  is the morphological opening associated to ".

If there exists N such that "N(f) � 0, then the original image f can be recovered from its
skeleton decomposition fsn(f)g by iteration, as follows:8>><

>>:
fN

4
= 0;

fn
4
= sn(f) + �(fn+1);

f = f0;

(22)

where � is the adjoint dilation of ".

3 Morphology on Semilattices

In this section, we extend most of the notions and tools from Section 2 for semilattices.
Without loss of generality, we restrict ourselves to inf semilattices, since all de�nitions and
results are valid in sup semilattices as well, by duality.
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3.1 Erosions and Openings

In this subsection we consider basic notions that are directly and naturally extendible from
complete lattices to complete inf semilattices, namely, erosions and openings.

De�nition 1 (Erosion): A binary operator " in an inf semilattice1 S is an erosion i�, for
all fXig � S:

"

 ^
i

Xi

!
=
^
i

" (Xi) : (23)

Notice that, since there is no universe U in an inf semilattice, erosions are not required to
preserve any element.

Proposition 1 Erosions in inf semilattices are increasing.

Proof

X � Y , X ^ Y = X

) "(X ^ Y ) = "(X), "(X) ^ "(Y ) = "(X)

, "(X) � "(Y ):

2

The extension of algebraic openings to semilattices is also straightforward:

De�nition 2 (Algebraic Opening): A binary operator  in an inf semilattice S is an
algebraic opening i� it is idempotent, increasing, and anti-extensive2.

Compared to the above extensions, that ofmorphological opening, presented below, is a little
less direct. This is because: i) In complete lattices, the morphological opening associated to
an erosion is de�ned using its adjoint dilation, and ii) since there is no general de�nition of
supremum in an inf semilattice, one cannot generally de�ne dilations there3. Nevertheless,
morphological opening can be completely extended to complete inf semilattices, by adapting
equation (8), which provides the morphological opening associated to an erosion in a complete
lattice, without the help of its adjoint dilation.

De�nition 3 (Morphological Opening): In a complete inf semilattice S, the morpho-
logical opening " associated to an erosion " is de�ned, for any X 2 S, by:

"(X)
4
=
^
fY 2 S j "(X) � "(Y )g: (24)

1See de�nition of inf semilattices in Section 2.1, on page 2.
2See de�nitions in Section 2.2.2, on page 3.
3However, we do de�ne limited versions of supremum and adjoint dilation in the sequel.
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Proposition 2 Given any erosion in a complete inf semilattice S, the associated morpho-
logical opening "(X) of any element X 2 S exists in S and is unique.

Proof In any complete inf semilattice, the in�mum ^B of any non-empty set B exists inside
the semilattice, and is unique. Therefore, all we have to prove is that the set

CX
4
= fY 2 S j "(X) � "(Y )g is not empty. This is trivial, since X 2 CX . 2

From this point on, we remove the subscript " from the morphological opening. That is,
the symbol  will represent the morphological opening associated to the erosion ", unless
otherwise stated.

Proposition 3 For any erosion " in a complete inf semilattice S, " = ".

Proof For all X in the semilattice,

"(X) = "
�^

fY 2 S j "(X) � "(Y )g
�

=
^
f"(Y ) j "(X) � "(Y )g

= "(X):

2

Proposition 4 The morphological opening in an complete inf semilattice is an algebraic
opening.

Proof We have to prove that  is idempotent, increasing, and anti-extensive.

Idempotent:

(X) =
^
fY j "(X) � "(Y )g

=
^
fY j "(X) � "(Y )g = (X):

Increasing:

X � Y ) "(X) � "(Y )

) fZ j "(X) � "(Z)g � fZ j "(Y ) � "(Z)g

)
^
fZ j "(X) � "(Z)g �

^
fZ j "(Y ) � "(Z)g

) (X) � (Y ):

Anti-extensive:

fZ j "(X) � "(Z)g � fXg

)
V
fZ j "(X) � "(Z)g �

V
fXg

) (X) � X:

2
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3.2 Supremum and Dilations

We now relate to basic morphological notions that are not directly extendible to inf semilat-
tices, namely, supremum and dilation. Although impossible to de�ne the above operations
generally in inf semilattices, we provide limited versions of them.

Supremum

Unless it is a complete lattice, a complete inf semilattice does not have a well-de�ned supre-
mum for all its subsets. Nevertheless, a supremum does exist for some subsets of the semi-
lattice.

De�nition 4 Given a complete inf semilattice S, de�ne the set US of upper-bounded subsets
of S as follows:

US
4
= fS

0
� S j (9Y0 2 S j Y0 � X; 8X 2 S

0)g: (25)

In words, US contains all the subsets of S that have a majorant Y0. Supremum is de�ned
only over elements of US .

Proposition 5 The least majorant (supremum) _B of a set B � S exists i� B 2 US, in
which case it is equal to:

_B =
^
fY 2 S j Y � X; 8X 2 Bg: (26)

The above supremum is well de�ned over and only over US . This is because the set fY 2

S j Y � X; 8X 2 Bg is non-empty i� B 2 US .

In summary, if a subset of the complete inf semilattice has a majorant, then it has a least
majorant, and this is the supremum.

Corollary 1 Let X; Y 2 S. If X � Y , then X _ Y = Y .

Corollary 2 Let X; Y 2 S. (X ^ Y ) _ Y = Y always, and (X _ Y ) ^ X = X if X _ Y
exists.

Corollary 2 says that the pair of operations (^;_) partially satis�es the absorption laws
required by a pair (in�mum,supremum) in a lattice.

Dilation

We opt not to de�ne dilation generically (as an operator that commutes with the supremum),
but we do de�ne the adjoint dilation of a given erosion, restricted to a sub-domain of the
semilattice. We are now inspired by equation (5) for this de�nition. But before presenting
it, let us characterize the domain.
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De�nition 5 Given an erosion " in a complete inf semilattice S, we de�ne the set of
"-bounded elements of S, symbolized by ES("), as:

ES(")
4
= fY 2 S j [9Z 2 S j Y � "(Z)]g (27)

In words, ES(") contains the elements in S that are smaller or equal to the erosion of some
element in S. This is the domain for the adjoint dilation of the erosion, as de�ned below.

De�nition 6 (Adjoint Dilation): Let S be a complete inf semilattice, and " an erosion.
If X 2 ES("), then the adjoint dilation of ", denoted �", is de�ned as:

�"(X)
4
=
^
fY 2 S j X � "(Y )g: (28)

Note that �" is well-de�ned over (and only over) ES("), since fY 2 S j X � "(Y )g is
non-empty i� X 2 ES(").

We drop from now on the index " from the notation of its adjoint dilation, for simpli�cation.

Proposition 6 The adjoint dilation of " is increasing in ES(").

Proof For any X; Y 2 ES("):

X � Y ) fZ j X � "(Z)g � fZ j Y � "(Z)g

)
^
fZ j X � "(Z)g �

^
fZ j Y � "(Z)g

) �(X) � �(Y ):

2

In Subsection 3.1 above, we de�ne morphological opening in complete inf semilattices without
the notion of dilation, because it is not a natural concept in semilattices. On the other
hand, now that we have de�ned adjoint dilation, we are able to express the morphological
opening also as the composition of an erosion with its adjoint dilation, which is the way it
is traditionally de�ned in complete lattices:

Proposition 7 For all X 2 S, (X) = �"(X).

Proof �["(X)] =
V
fZ j "(X) � "(Z)g = (X): 2

Note that Proposition 7 holds for all the elements of the semilattice. This is because "(X)
is in the domain of �, 8X 2 S.

Proposition 8 For a given X, if there exists Z such that "(Z) = X, then �(X) = (Z).

Proof "(Z) = X ) �"(Z) = �(X)) (Z) = �(X). 2
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4 Examples of Semilattices

In this section, we present semilattices that are potentially useful for image processing, and
show examples of basic morphological operations de�ned in them. In Section 5, we present
a few applications of the operators de�ned in these semilattices.

4.1 Di�erence Semilattice

We say that a set S is a di�erence semilattice if: i) it is composed of functions f : E ! R,
where E is an Euclidean space or a subset of it, and R is either IR [ f�1;1g (continuous
case) or ZZ [ f�1;1g (discrete case), and ii) it is associated with the the partial ordering
� given, for all f; g in the semilattice, by:

f � g , 8x;

(
g(x) � f(x) � 0; if g(x) � 0;

g(x) � f(x) � 0; if g(x) < 0:
(29)

In a di�erence semilattice, the least element 0 is the function 0(x) � 0, and the in�mum
operator ^, is given by:

(f ^ g)(x) =

8><
>:

minff(x); g(x)g; if f(x); g(x) � 0;

maxff(x); g(x)g; if f(x); g(x) � 0;

0; otherwise:

(30)

Figure 1(a) shows an example of applying the in�mum operator ^ in a 1-D continuous
di�erence semilattice. Notice that the in�mum result is smaller (with respect to the above
partial ordering �) than both its operands.

Let us consider the following operator, de�ned in a di�erence semilattice:

["(f)] (x)
�
=
^
z2B

f(x+ z); (31)

where B (which we call structuring element) is a pre-de�ned set of points in the Euclidean
space E, i.e., B � E. It is easy to show that " is an erosion, and also that it is translation
invariant. This erosion is the di�erence-semilattice counterpart of the erosion by a at
structuring element, de�ned in grayscale lattices. Figure 1(b) shows the result of applying "
to a 1-D function.

It is easy to show that the erosions in di�erence semilattices as de�ned above are self-dual,
in the sense that they satisfy: "(�f) = �"(f). I.e., negative and positive components are
dealt with in the same way. This property is also extended to all the other operators in a
di�erence semilattice (openings, dilations, gradients, skeletons, etc).

As any morphological opening in a complete inf semilattice, the one associated with the
above erosion is well de�ned by equation (24), and can be calculated as the composition of
the erosion with its adjoint dilation. In this case, the adjoint dilation is given by:

[�(f)] (x) =
_
z2B

f(x� z); (32)
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f
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(f)
f

γ

B

(f)
f

(a) (b) (c)

gradient(f)
f

Top-Hat(f)
f

(d) (e)

Figure 1: Operations in a di�erence semilattice. (a) In�mum, (b) erosion by a at structuring

element, (c) opening, (d) gradient, and (e) Top-Hat transform.

where supremum _ assumes here the following format:

(f _ g)(x) =

8><
>:

maxff(x); g(x)g; if f(x); g(x) � 0;

minff(x); g(x)g; if f(x); g(x) � 0;

Non existent; otherwise:

(33)

Figure 1(c) shows an example of morphological opening. Let us remark, once again, that
only functions that are bounded by the erosion of some other function can be dilated. For
example, the original function f in the example of Figures 1(b)-(e) cannot be dilated by the
above adjoint dilation.

Usually, the morphological opening in lattices is used for �ltering, from images, elements
that are bright and either smaller or thinner than the structuring element. Similarly, the
morphological opening in inf semilattices can be used for �ltering small and thin elements
of di�erence images, only that, due to the self-dual nature of the di�erence semilattice, it
removes both positive (bright) and negative (dark) such elements.

Gradients, Top-Hat transforms and skeletons can also be de�ned in di�erence semilattices.
However, only operators de�ned in terms of erosions and openings (and not dilations and
closings) can be de�ned here. Therefore, from the three morphological gradients (see sec-
tion 2.3.2 on page 4) and the two Top-Hat transforms (see section 2.3.3) de�ned in lattices,
only the internal gradient and the white Top-Hat transform can be de�ned in the di�erence
semilattice. The de�nition formul�, on the other hand, remain the same, i.e., the gradient,
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Figure 2: Operations in a reference semilattice. (a) In�mum, (b) translation by the operator Tz(�),

(c) erosion by a at structuring element, (d) opening, (e) gradient, and (f) Top-Hat transform.

Top-Hat, and skeleton are de�ned in the di�erence semilattice also by (15), (18), and (20)-
(21), respectively, where now the symbols represent operators in the di�erence semilattice
(not in the lattice). Figures 1(f) and (g) show examples of gradient operation and Top-Hat
extraction.

4.2 Reference Semilattice

Another example of complete inf semilattice, which we call reference semilattice, consists
of real functions, as the di�erence semilattice, but its partial ordering depends on a given
function r(x), called reference function. In a reference semilattice Sr, the partial ordering �
is de�ned by:

f � g , 8x;

(
g(x) � f(x) � r(x); if g(x) � r(x);

g(x) � f(x) � r(x); if g(x) < r(x):
(34)

The least element in Sr is the reference function r(x), and the in�mum is given by:

(f ^ g)(x) =

8><
>:

minff(x); g(x)g; if f(x); g(x) > r(x);

maxff(x); g(x)g; if f(x); g(x) < r(x);

r(x); otherwise:

(35)

Figure 2(a) shows an example of applying the in�mum operation in a 1-D reference semilat-
tice.
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The in�mum in a reference lattice is identical to a morphological operation called center [2];
speci�cally, f ^ g in Sr is equal to the center of f(x); g(x); r(x). The center is usually very
useful for designing self-dual morphological �lters [11].

Notice that, if we set r(x) � 0, then the resulting reference semilattice is identical to a
di�erence semilattice, which makes the latter a special case of the former.

Unfortunately, the operator given by eq. (31) is not an erosion in a reference semilattice
(unless r(x) is constant). This is because translation does not commute with the in�mum
operation in Sr. To correct this, we de�ne the following translation-like operator, which does
commute with the in�mum:

[Tz(f)] (x)
4
=

8><
>:

max[f(x+ z); r(x + z)]; max[f(x+ z); r(x + z)] > r(x) and f(x) > r(x);

min[f(x+ z); r(x + z)]; min[f(x+ z); r(x + z)] < r(x) and f(x) < r(x);

r(x); otherwise:

(36)
This permits us to de�ne the following erosion in Sr:

"(f)
�
=
^
z2B

Tz(f); (37)

Note that the translation Tz(f) is itself an erosion, since it commutes with the in�mum.

The adjoint dilation of the above erosion is given by:

�(f) =
_
z2B

~Tz(f); (38)

where ~Tz(f) is the adjoint dilation of Tz(f), and is de�ned as follows:

h
~Tz(f)

i
(x)

4
=

8><
>:

f(x� z); [f(x� z) > r(x) and f(x� z) > r(x� z)] or

[f(x� z) < r(x) and f(x� z) < r(x� z)]

r(x); otherwise:

(39)

Here, the supremum _ assumes the format:

(f _ g)(x) =

8><
>:

maxff(x); g(x)g; if f(x); g(x) � r(x);

minff(x); g(x)g; if f(x); g(x) � r(x);

Non existent; otherwise:

(40)

As usual, the morphological opening associated with the above erosion " is obtained according
to:  = �".

Figures 2(b)-(d) show examples of applying the above operations in a 1-D reference semi-
lattice. Notice that, now, self-duality (in the strict sense of "(�f) = �"(f)) is lost. More
insight regarding the characteristics and uses of the above operators is given in Section 5
below.

The de�nitions of gradient, Top-Hat transform, and skeleton, remain conceptually the same
in reference semilattices. Figures 2(e),(f) show examples related to the erosion de�ned above.
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Figure 3: Schematic example of fast-motion detection. (a) Two adjacent frames of a schematic 1-D

sequence, (b) di�erence image, (d) result of the di�erence-semilattice scheme.

5 Applications

In this section, we refer to a few possible applications of the semilattices de�ned in Section 4.
A more thorough examination of these applications (and others) is still required.

5.1 Fast-Motion Detection

Suppose we wish to detect fast motion in a video sequence, i.e., given 2 frames from a
video sequence, we wish to detect the regions of the second frame that undertook a spatial
displacement greater than a �xed number of pixels. This could be required for surveillance
purposes, for instance.

We propose here two schemes that provide approximations to the desired result, one using
a di�erence semilattice, and the other using a reference semilattice.

The �rst scheme consists of �ltering the di�erence images (given by the pixel-by-pixel dif-
ference between adjacent frames) by means of an opening in the corresponding di�erence
semilattice. In di�erence images, regions with high absolute value usually indicate motion or
innovation (objects or regions that appear in only one of the two frames), and, in the former
case, the width of the region is usually related to the amount of displacement (i.e., speed of
motion). See a simple schematic example in Figures 3(a),(b). By �ltering components with
width smaller than a certain threshold out of the di�erence image, one gets an image which
retain mainly innovation and fast motion (displacement higher than the �ltering threshold).
This kind of di�erence image �ltering can be easily performed in a di�erence semilattice,
by means of the opening by a disc-like at structuring element, with diameter equal to the
�ltering threshold. The result of such an operation for the above schematic example is given
in Figured 3(c). As another example, consider the two adjacent frames of the \Table tennis"
sequence, shown in Figures 4(a) and (b). The di�erence image is shown in Figure 4(c). The
opening of the di�erence image by a 3�3 square is given in Figure 4(d). The components of
the opening result can be roughly interpreted as those image components with displacement
greater than 3 pixels, or innovation.

As mentioned above, this scheme does not provide an exact solution to the proposed problem,
i.e., there is not necessarily a one-to-one correspondence between the components in the
�ltered image and the fast-motion features in the sequence. This is because factors other
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(c) (d)

(e) (f)

Figure 4: Example of fast-motion detection for a real sequence. (a) and (b) Two adjacent frames

of the sequence \Table-Tennis", (c) di�erence image, (d) �nal result of the di�erence-semilattice

scheme: Opening of (c) in a di�erence semilattice, (e) Opening of (a) in the reference-semilattice

de�ned by (b), (f) �nal result of the reference-semilattice scheme: Di�erence between (b) and (e).
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Figure 5: (a) Two adjacent frames of a schematic 1-D sequence, showing a blur and a sharp objects

displaced by the same amount, and a thin object displaced by a greater amount, (b) di�erence

image, showing that the width of the blur edge is greater than that of the sharp edges, and that

the elements corresponding to the fast-moving thin object are thin.

than motion a�ect the width of the elements in the original di�erence image as well. For
instance, a blur edge may produce a large component in the di�erence image even if it
undertakes a small displacement, and thin objects usually produce thin components in the
di�erence image even if they move fast (see schematic example in Figure 5). Therefore the
above scheme sometimes erroneously retains slow-moving blur elements, and is usually not
able to detect fast motion of thin objects.

The second scheme for fast-motion detection that we present is based on a reference semilat-
tice. It usually overcomes the �rst of the above two disadvantages of the di�erence-semilattice
scheme; i.e., it is robust to blurring. As for the second disadvantage, this is often manifested
in the opposite way; the scheme usually detects fast moving-thin objects, but sometimes it
also erroneously retains slow-moving ones as well.

The reference-semilattice scheme consists of the following steps (depicted schematically in
Figure 6):

1. Given two adjacent frames f1 and f2, in this chronological order, create a reference
semilattice where f2 is the reference image4.

2. In the above semilattice, calculate:

e
4
= "n(f1) = " � � � "| {z }

n times

(f1); (41)

where the structuring element B is now a unitary disc-like element, and n is the
�ltering threshold. Each iteration of the above series of erosions causes the edges in
f1 to \migrate" one pixel in the direction of the edges in f2. The overall operation
is also an erosion, causing a total displacement of up to n pixels. Some edges in f2
are reached by the migrating edges of f1; these are considered to correspond to slow-
moving objects (with respect to the threshold n). Thus, the edges of f2 that are not
reached correspond to fast-moving objects.

4Note that, in many applications, including MPEG, the term \reference image" refers to f1, but this situation is inverted

here.
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Figure 6: Schematic example of fast-motion detection using a reference semilattice. (a) Two

adjacent frames of a schematic 1-D sequence, (b) three iterations of erosion, causing migration of

the edges in f1 towards f2, (c) opening obtained after three iterations of dilations on (b). This

causes the edges if f1 that did not reach those in f2 in the previous step to return to their original

position, (d) the �nal result: f2 � opening3(f1), containing those edges in f2 corresponding to

fast-moving objects.
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3. Calculate: �n(e). This inverts the direction of the migration. The edges of f1 that
did not reach an edge in f2 return to their original position. On the other hand, those
edges of f1 that did reach an edge in f2 are retained and do not move back. The overall
operation �n(e) = �n"n(f1) consists of a morphological opening, which we denote by
n(f1). According to the above explanation, this opening causes slow-moving objects
to \move" to their corresponding positions in f2, while fast-moving objects remain
still.

4. Subtract the result from the reference image, i.e., calculate: g
4
= f2 � n(f1). The

resulting image is expected to approximately retain the elements in f2 which are related
to fast-moving objects, while slow-moving objects are removed.

Figure 4(d) shows the result of the above operation on the \Table-Tennis" sequence. The
structuring element used here is a 3 � 3 square, and the number of iterations is n = 3,
so that, approximately, edges displaced less than 3 pixels are removed, leaving fast-moving
edges and innovation.

In order to the edges of an object in f1 to migrate to the edges of the corresponding object
in f2, there must exist an overlapping between these objects. In this case, the intersection
between an object in f1 and its counterpart in f2 serves as a \source," which expands by
means of the above series of erosions. For n su�ciently large, "n will then cause this source
to ultimately \�ll" the whole object in f2. On the other hand, if the motion of an object
is such that there is no intersection between its versions in the two frames, then there will
be no source to �ll it in f2. This is many times the case with moving thin objects, in which
case they are retained in the �nal result, even if the motion is relatively small.

5.2 Innovation Extraction

Suppose now that we are interested in retaining innovation only. This could be required in
applications such as inspection.

Consider, for example, the following speci�c application: A physician wishes to obtain an
image showing the blood vessels in a certain region of the body of a patient. For this purpose,
two X-ray images (f1 and f2) of the corresponding region are taken, respectively before and
after a contrasting agent is injected and spread in the blood vessels (see Figures 7(a),(b)).
The desired image consists of the innovation only. Notice that a simple di�erence between
the images does not provide a good solution, because it contains not only the desired vessels,
but also artifacts related to slight movements of the patient (see Figure 7(c)).

Similarly to before, we propose a reference semilattice as framework, with f2 as the reference
image, and an opening n associated to a series of n erosions, "n, by a unitary disc-like struc-
turing element. Now, we choose n larger than the larger expected (or assumed) displacement,
so that the above opening causes all (or most) edges in f1 to stick to their counterpart f2.
The above process can be roughly seen as an image registration process. As before, we
subtract the result from f2, obtaining the innovation only (see Figure 7(d)).

5.3 Compression of Segmented Sequences

Recently, segmentation-based coding has been emerging as an e�cient approach to very
high compression of video sequences [6]. It consists of, �rst, partitioning each frame into
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(a) (b)

(c) (d)

Figure 7: Innovation extraction. (a),(b) X-ray pictures, taken respectively before and after injection

of a contrasting agent, (c) di�erence image, containing the desired blood vessels, and undesired edge

artifacts, (d) �nal result of the proposed scheme: Di�erence between (b) and the opening of (a) in

the reference semilattice de�ned by (b).

uniform segments (segmentation), where uniformity means that each segment contains only
smooth transitions, or texture of a �xed pattern. Then, the segments of each frame are
labeled, in such a way that the same label is assigned to segments corresponding to the
same region in two adjacent frames. Finally, the segment contents and borders of each
frame are coded separately. For instance, the contents of smooth segments are lossy coded
using some linear approach, like parametric function matching, and texture is coded by some
statistical method, whereas the segment borders are coded by chain code or morphological
skeleton decomposition. The coding procedure takes into account the correlation between
corresponding segments in adjacent frames (see [6] for details).

We propose here a skeleton decomposition in a reference semilattice, aimed as a �rst step for
coding segment borders. This decomposition seems (in synthetic simulations) to e�ciently
represent the borders, taking into consideration correlation between frames.

We assume that we are given two frames of a sequence of images, f1 and f2, contained labeled
segments only, without their texture or slow-transition contents (see Figures 8(a),(b)).
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All one needs to fully characterize a skeleton decomposition is a semilattice, and an erosion
de�ned in it. The erosion determines its associated opening, and the decomposition family
(see eq. (20)), which are used in the recursive formula (21). This procedure provides the
skeleton representation fsng.

In the present case, we choose as semilattice the reference semilattice de�ned by f1 (di�er-
ently from before, where we choose f2 as the reference image). In this semilattice, we use the
same erosion as in the previous applications, i.e., the one de�ned by eq. (37). The resulting
skeleton decomposition is then applied to f2. Figure 8(c) shows the positions of the skeleton
points, related to the representation of Figure 8(b) in the reference semilattice de�ned by
Figure 8(a). For simplicity, the radii of the skeleton points are not indicated, but they are
needed for (perfect) reconstruction of 8(b). As one can observe in Figure 8(d), most of the
skeleton points are attached to edges of f1. For this reason, and because we assume a coding
procedure where both the coder and the decoder already know f1 when coding f2, we expect
to be able to e�ciently code the positions of most of the skeleton points of f2 (for instance,
by an adapted version of the algorithm in [9]).

6 Conclusion

The basic operators of Mathematical Morphology are extended from complete lattices to
complete semilattices. We prove that many of the properties enjoyed by these operators in
the traditional lattice theory are also enjoyed by their semilattice counterparts.

Two examples of semilattices, which are potentially useful for image processing, are provided,
namely, di�erence and reference semilattices, where the former is a special case of the latter.
In each of these semilattices, a set of morphological basic operators (erosion, adjoint dilation,
and opening) is de�ned.

Finally, three applications are briey described, in which the above semilattices (the reference
semilattice especially) seem to be useful, according to preliminary simulations. Namely,
the applications are \fast-motion detection," \innovation extraction," and \compression of
sequences."

Future work will follow two directions: Theoretical { broadening of operator properties in
general complete semilattices, study of reference semilattices, and de�nition and analysis of
morphological operators in them, { and practical { thorough investigation of the applications
presented here, and search for other relevant applications.
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(a) (b)

(c) (d)

(e)

Figure 8: Skeleton representation in a reference semilattice. (a),(b) Two frames of a synthetic

sequence of labeled segments, (c) the skeleton decomposition (skeleton position only, radii omitted)

of (b) in the reference semilattice de�ned by (a), (d) the skeleton superposed to (a), (e) the skeleton

superposed to (b).
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