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1 Introduction

A k-element subset D of a finite multiplicative group G of order v is called a (v, k, A, n)-
difference set in G provided that the multiset of “differences” {dyd;' | d1,d2 € D,d; #
dy} contains each nonidentity element of G' exactly A times; we write n = k — A. For
example, D = {z,z%,z} is a (7,3, 1,2)-difference set in Z; = (z | 27 = 1).

Difference sets arise in a wide variety of theoretical and applied contexts. They are
important in design theory because a (v,k, A, n)-difference set in G is equivalent to a
symmetric (v,k, A, n)-design with a regular automorphism group G [15]. The study of
difference sets is also deeply connected with coding theory because the code, over a field F’,
of the symmetric design corresponding to a (v, k, A, n)-difference set may be considered
as the right ideal generated by D in the group algebra F'G [12], [15]. Difference sets
in abelian groups are the natural solution to many problems of signal design in digital
communications [7]. For a recent survey of difference sets see the paper by Jungnickel
[12] and its update by Jungnickel and Schmidt [13], or see the difference sets chapter of
Beth, Jungnickel and Lenz [3].

The central problem is to determine, for each parameter set (v,k, A,n), which groups
of order v contain a difference set with these parameters. An extensive literature has
been devoted to this problem, exposing considerable interplay between difference sets
and such diverse branches of mathematics as algebraic number theory, character theory,
representation theory, finite geometry and graph theory. Nonetheless the central prob-
lem remains open, both for abelian and nonabelian groups, except for heavily restricted
parameter sets. One of the most popular techniques for constructing a difference set or
for ruling out its existence is to consider the image of a hypothetical difference set under
mappings from the group G to one or more quotient groups G/U (see Ma and Schmidt
[18] for a recent example).

By a counting argument the parameters (v,k, A, n) of a difference set are related by
k(k — 1) = AMv — 1). Besides this constraint, difference sets are classified into families
according to further relationships between the parameters. Jungnickel and Schmidt [13]
group the known families into three classes according to their methods of construction:

Singer difference sets. This class comprises the classical Singer family (known alter-
natively as the Projective Geometries family) and the Gordon-Mills-Welch family.
The difference sets in this class occur in cyclic groups, and are obtained from the
action of a cyclic group of linear transformations on the one-dimensional subspaces
of a finite field.

Cyclotomic difference sets. This class comprises the Paley family, the families involv-
ing residues of higher order than quadratic, and the Twin Prime Power family. The
difference sets in this class occur in elementary abelian groups, or the product of

two such groups, and are unions of cosets of multiplicative subgroups of a finite
field.

Difference sets with gcd(v,n) > 1. This class comprises the remaining five known
families of difference sets, namely Hadamard, McFarland, Spence, Davis-Jedwab,



and Chen. This class has attracted a great deal of research interest, and is the
subject of the rest of this paper.

The Hadamard family is given by
(vvka’\an) = (4N27 N(QN - 1)7 N(N - 1), N2) (1)

for integer N > 1 (see Davis and Jedwab [8] for a survey and Jungnickel and Schmidt
[13] for an update). The Hadamard family derives its name from the fact that D is
a Hadamard difference set if and only if the (+1,—1) incidence matrix of the design
corresponding to D is a regular Hadamard matrix [12], [22].

The McFarland family is given by

d+1 d+1 d
q -1 q -1 -1
(v,k,A,n) = (q"“ (—(}T + 1) ¢ (ﬁ) g (qq_ i ) : q“) (2)

for ¢ a prime power and integer d > 0 (see Ma and Schmidt [17] for a summary and new
results). The Hadamard and McFarland families intersect in 2-groups: the Hadamard
family with N = 2¢ corresponds to the McFarland family with ¢ = 2.

The Spence family is given by

d+1 _q d+1 d
wean= (0 () o (F) () ) @

for integer d > 0.
The Davis-Jedwab family, introduced in [7] and named in [3], is given by

(v k, A n) (22d ¢ < - —'—‘2 1) 2d+1 (_2‘13—1> 2d+1 ( 241 1) 24d+2)
sy vy Ay 3 ) 2 y 2 _—,

for integer d > 0.
The Chen family, introduced in [4], [5] and named in (3], is given by (v,k,A,n) =

d d d
(4q2d+2 (‘12 2 - 1) | g2+t (2(‘12 2 1) + 1) ’ qzd+1(q -1) (‘12 1+ 1) : q4d+2)

¢?-1 qg+1 q+1
(5)

for integer d > 0 and ¢ a prime power. The Chen family with d =0 corresponds to the
Hadamard family with N = g¢; the Chen family with ¢ = 2 corresponds to the Davis-
Jedwab family; and the Chen family with ¢ = 3 corresponds to the Spence family with
d replaced by 2d + 1. The Davis-Jedwab and Chen families are the first new families of
difference sets to be discovered since 1977. (We have followed [3] in naming these two
families separately because the known constructions for the family (4) deal with more
general groups than the known constructions for the family (5) when applied to the case
g=2.)

For each of these parameter families, the existence question has been solved for in-
finitely many values of the parameters, but not necessarily for all possible groups of a
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given order. The following two results, which give complete solutions to the central prob-
lem for certain classes of difference set, are notable exceptions. (The ezponent of a group
G with identity 1, written exp(G), is the smallest integer a for which g* = 15 for all
g€G.)

Theorem 1.1 A Hadamard difference set ezists in a group G of order 224+2 if and only
if exp(G) < 24%2,

Theorem 1.2 A McFarland difference set with ¢ = 4 ezists in a group G of order
22'“'3(22’“'1 + 1)/3 if and only if the Sylow 2-subgroup of G has ezponent at most 4.

The constructive part of Theorem 1.1 is due to Kraemer [14] and the nonexistence part
is due to Turyn [22]. The constructive part of Theorem 1.2 is due to Davis and Jedwab
[7] and the nonexistence part is due to Ma and Schmidt [16].

The present authors showed in [7] that the Hadamard, McFarland, Spence and Davis-
Jedwab parameter families can be unified by means of a recursive construction which
depends on the existence of certain relative difference sets. The required relative difference
sets are themselves constructed by means of a second recursive construction. This method
deals with all abelian groups known to contain such difference sets (although certain
initial examples required for the Hadamard family must be constructed separately). In
this paper we show that by modifying these two recursive constructions to use divisible
difference sets in place of relative difference sets, we can bring the recent constructions
[4], [5] of Chen difference sets within the unifying framework, reinforcing Jungnickel
and Schmidt’s grouping [13] of difference set parameter families into the three classes
mentioned above. We believe this viewpoint may assist the construction of Chen difference
sets in new groups, although we emphasise that in terms of elegance and directness we
prefer Chen’s original constructions.

A k-element subset R of a finite multiplicative group G of order mu containing a
normal subgroup U of order u is called a (m,u,k, A1, Az) divisible difference set (DDS)
in G relative to U provided that the multiset {ryr; 1 | r1,72 € R,m1 # T2} contains each
nonidentity element of U exactly A; times and each element of G\ U exactly A, times. For
example, R = {1,z,y,zy,zy?,z%y*} is a (3,3,6,3,4) DDS in Z% = (z,y [ = ¢° = 1)
relative to (z) 2 Z3. A (m,u,k, A1, Az) DDS in G, relative to some normal subgroup U,
is equivalent to a square divisible (m,u,k, A1, A2)-design whose automorphism group G
acts regularly on points and blocks [11]. For a recent overview of DDSs see Pott [19].
The central problem is to determine, for each parameter set (m,u,k, A1, A2), the groups
G of order mu and the normal subgroups U of order u for which G contains a DDS
relative to U with these parameters. However the definition of DDS is so general that
the central problem is usually of interest only when its solution throws light on another
combinatorial problem, or when the parameters are further constrained.

In the important special case A; = 0 a divisible difference set is called a relative
difference set (RDS), the parameter list is abbreviated to (m,u,k, Az), and the subgroup
U is called the forbidden subgroup. For example, R = {l,z,y,zys,z,zyzz,xzysz, 332}
isa (8,4,8,2) RDS in Z2 x Z, = (z,y,z | 2* = y* = 2% = 1) relative to (z?,y%) = Z2. See



Pott [20] for a recent survey of RDSs, and (7], [9] for new constructions. In the special
case A\; = Ag a divisible difference set is equivalent to a (mu,k, A2,k — Az)-difference set
in G.

By a counting argument the parameters (m,u,k,A;,Az) of a DDS are related by
k(k—1) = A\(u—1)+ Agu(m —1). If k* — Ayum = 0 (which by the counting relationship
is equivalent to k— Ay +u(A; —A2) = 0) then the DDS is called semi-regular. In the special
case of a RDS the parameters are semi-regular if K — uAy = 0, and the RDS parameters
can then be written in the form (ulq,u,ulds,Az). Pott [19] suggests that semi-regular
divisible difference sets merit careful study, noting that the special case of semi-regular
relative difference sets is of particular interest. Indeed, the RDSs required in the recursive
constructions of [7] have semi-regular parameters, and the generalisation to DDSs of this
paper also requires semi-regular parameters.

Difference sets are usually studied in the context of the group ring Z[G] of the group
G over the ring of integers Z. The definition of a (v,k, A, n)-difference set D in G is
equivalent to the equation DD(-1 = nlg 4+ AG in Z[G], where by an abuse of notation
we have identified the sets D, D(-1) G with the respective group ring elements D =
Yaepd, DY = Tycpd™, G = Yyeq 9, and 1g is the identity of G. Similarly the
definition of a (m,u,k,A1,A2) DDS R in G relative to U is equivalent to the equation
RR(-1 = klg + M(U - 1g) + A2(G = U) in Z[G].

We now give some definitions and results which will be used freely throughout the
paper. We shall follow the practice (standard in the difference set literature) of abusing
notation by identifying sets with group ring elements, as described above. All groups
mentioned should be understood to be abelian even if this is not explicitly stated. We
write [[i_; Z,, for the direct product Z,, X Zy, X -+ X Z,. For w a positive integer and p
prime, we call p self-conjugate modulo w if p'=-1 (mod w,) for some integer 7, where
wp is the largest divisor of w coprime to p. In the abelian case, a character of the group G
is a homomorphism from G to the multiplicative group of complex roots of unity. Under
pointwise multiplication the set G* of characters of G forms a group isomorphic to G.
The identity of this group is the principal character that maps every element of G to 1.
The character sum of a character x over the group ring element C is x(C) = ¥ ¢c x(¢)-
It is well-known that the character sum x(C) is 0 for all nonprincipal characters x of G
if and only if C is a multiple of G (regarded as a group ring element). If a character x is
nonprincipal on G and principal on a subgroup U then x induces a nonprincipal character
¥ on G/U defined by ¥(gU) = x(g).

The use of character sums to study difference sets in abelian groups was introduced
by Turyn in his seminal paper [22] and subsequently extended to relative difference sets
and divisible difference sets:

Lemma 1.3

(i) The k-element subset D of an abelian group G of order v is a (v,k, A, n)-difference
set in G if and only if |x(D)| = v/n for every nonprincipal character x of G.

(ii) The k-element subset R of an abelian group G of order mu containing a subgroup U of
order u is a (m,u,k,\) RDS in G relative to U if and only if for every nonprincipal



character x of G

Ix(R)| = vk if x nonprincipal on U
X h k —uX if x principal on U.

(iii) The k-element subset R of an abelian group G of order mu containing a subgroup
U of order u is a (m,u,k,A1,A2) DDS in G relative to U if and only if for every
nonprincipal character x of G

Ix(R)| = vk —X\ if x nonprincipal on U
X 1 VE—=A1+u(M — Ag) if x principal on U.

Lemma 1.3 indicates a general strategy for constructing difference sets, relative dif-
ference sets and divisible difference sets, namely to choose a group subset for which all
nonprincipal character sums have the correct modulus. In [7] the authors showed that the
determination of character sums can be greatly facilitated by selecting the group subset
to be the union of cosets of “building blocks” whose character properties interact in a
simple way. By Lemma 1.3 (ii), a semi-regular RDS in G relative to U has the key prop-
erty that, for any nonprincipal character x of G, the character sum has fixed modulus
when Yy is nonprincipal on U and is zero when Y is principal on U. By Lemma 1.3 (iii) the
same property holds for a semi-regular divisible difference set in G relative to U. We shall
show that this allows the recursive constructions of [7] to be naturally generalised to use
divisible difference sets in place of relative difference sets. Although several of the gen-
eralisations require only minor modification of the constructions of 7], for completeness
we shall give full proofs.

2 Constructions

Following [7], we define a building block in an abelian group G with modulus m to be a
subset of G such that all nonprincipal character sums over the subset have modulus either
0 or m. For integers @ > 1 and ¢t > 1 we define a (a,m,t) building set (BS) on a group
G relative to a subgroup U to be a collection of ¢ building blocks in G with modulus m,
each containing a elements, such that for every nonprincipal character x of G

(i) exactly one building block has nonzero character sum if x is nonprincipal on U and
(ii) no building block has nonzero character sum if x is principal on U.

Following [3], we call the BS covering in the case U = G, when exactly one building
block has nonzero character sum for every nonprincipal character of G. (The use of
“covering” refers not to the intersection or union of the building blocks. but to their
character properties.)

The (a,m,t) BSs studied in [7] satisfy the constraint m = +/at and give rise to semi-
regular RDSs. By removing this constraint we obtain semi-regular DDSs. We firstly
consider the case t = 1.



Lemma 2.1 Suppose B is a (a,m,1) BS on a group G relative to a subgroup U # G of
order u. Then B is a (a*/(u(a — m?) + m?),u,a,a — m%,a — m? + m?/u) semi-regular
DDS in G relative to U.

Proof: It follows immediately from Lemma 1.3 (iii) that B is a (|G|/«, u,a,a—m?,a—

m? + m?/u) semi-regular DDS in G relative to U. The relationship between divisible
difference set parameters then fixes |G| = a?/(u(a — m?) + m?). O

If U = G in Lemma 2.1 (so that the BS is covering) then B is equivalent to a
(|G|, a,a — m?, m?)-difference set in G, by Lemma 1.3 (i).

We next show that a BS on a group G relative to a subgroup U can be used to
construct a BS on larger groups containing G as a subgroup. In particular we shall
construct a semi-regular DDS as a single building block on a group containing G.

Lemma 2.2 Suppose there ezists a (a,m,t) BS on a group G relative to a subgroup U.
Then there ezists a (as,m,t/s) BS on G’ relative to U, where s divides t and G’ is any
group containing G as a subgroup of indez s.

Proof: Let {B;,Bs,...,B:} be a (a,m,t) BS on G relative to U. For each j =
1,2,...,t/s define the subset R; = U{_,g!B;;(j_1)s of G', where g1,95,...,9; € G are
coset representatives of G in G'. (Although the building blocks B; can have non-empty
intersection, by definition no set R; contains repeated elements.) Let x be a nonprincipal
character of G’ and consider the character sum x(R;) = -7, x(9))X(Bit(j-1)s)- We
distinguish three cases: x is principal on G and nonprincipal on G’; x is principal on U
and nonprincipal on G; and x is nonprincipal on U. In the first case, when x is principal
on G and nonprincipal on G’ (s0 s > 1), X(Bi}(j-1)s) = |Bit(j-1)s| = a for each ordered
pair (7,7) and so x(R;) = a) i-; x(g:) = 0 for each j. The last equality uses the fact
that x induces a nonprincipal character on G'/G, and the associated character sum over
this group is 0. In the second case, when x is principal on U and nonprincipal on G, by
assumption x(B;;(j_1)s) = 0 for each ordered pair (i,7) and so again x(R;) = 0 for each
J. In the third case, when x is nonprincipal on U, by assumption |x(Biy(j-1)s)| equals
m for exactly one ordered pair (¢,j) (say (I,J)) and equals 0 for all other ordered pairs
(i, ). Therefore [x(Ry)| = [x(4lix(Brs(s-1)s)| = m and |x(R;)] = 0 for each j # J.

The character sums for the three cases show that {R;, Ry,..., Ry} is a (as,m,t/s)
BS on G relative to U. O

Theorem 2.3 Suppose there ezists a (a,m,t) BS on a group G relative to a subgroup U
of order u, and let G' be any group containing G as a subgroup of index t. If U # G’
then there ezists a (a®t*/(u(at — m?) + m?),u,at, at — m?, at — m? + m?/u) semi-regular
DDS in G' relative to U.

Proof: Apply Lemma 2.2 with s = ¢ to obtain a (at,m,1) BS on G’ relative to U and
then use Lemma 2.1. O

The special case m = /at of Theorem 2.3 shows that a (a,+/at,t) BS gives rise to a
(at,u,at,at/u) semi-regular RDS.



For an example involving divisible difference sets with A; # 0, we can express the
DDS construction due to Davis [6] and Pott (reported in [6]) as follows. Denote by
EA(q d) the elementary abelian group of order g%, where ¢ is a prime power. Regard
G = EA(¢%*!) as a vector space P of dimension d+1 over GF(g). There are t+1 = 9L11-
subspaces Ho, Hy,..., H; of P of dimension d, called hyperplanes. The hyperplanes have
the crucial property that any nonprincipal character of G is principal on exactly one
of the hyperplanes. It follows that {H;, Ha,...,H;} is a (¢%,¢%,t) BS on G relative to
Hp = EA(¢%). Therefore by Theorem 2.3 there is a (qt,¢%,¢%,q* " (t — q),q* ') semi-
regular DDS in G’ relative to U, where G’ is any abelian group containing G as a subgroup
of index t.

For integers @ > 0, m > 1, and h > 1, we again follow [7] and define a (a,m,h,+)
estended building set (EBS) on a group G with respect to a subgroup U to be a collection
of h building blocks in G with modulus m, of which A — 1 contain a elements and one
contains a + m elements, such that for every nonprincipal character x of G

(1) exactly one building block has nonzero character sum if x is principal on U and
(ii) no building block has nonzero character sum if x is nonprincipal on U.

We define a (a, m,h,—) EBS on G with respect to U in the same way, with a+m replaced
by @ — m. We can treat both cases simultaneously by referring to a (a,m,h,+) EBS.
Notice that the role of principal and nonprincipal characters on U is the reverse of that
used in the definition of a BS. We call the EBS covering in the case U = {1g}, when
exactly one building block has nonzero character sum for every nonprincipal character
of G.

The next two results are proved in a similar manner to Lemma 2.2 and Theorem 2.3.
They show that a covering EBS on a group G can be used to construct a covering EBS
on larger groups containing G as a subgroup, and that in particular a difference set can
be obtained as a single building block on a group containing G.

Lemma 2.4 Suppose there exists a (a,m,h,+) covering EBS on a group G. Then there
ezrists a (as,m,h/s,+) covering EBS on G', where s divides h and G' is any group
containing G as a subgroup of indez s.

Theorem 2.5 Suppose there ezists a (a,m,h,+) covering EBS on a group G. Then
there ezists a (h|G|,ah £ m,ah £ m — m? m?)-difference set in any group G’ containing
G as a subgroup of indez h.

All difference sets constructed in this paper will be obtained from covering EBSs by
means of Theorem 2.5. We next show that a covering EBS can be “lifted” to form an
EBS on a larger group.

Lemma 2.6 Suppose there exists a (am,m,h,+) covering EBS on a group G /U, where
U is a subgroup of G of order u. Then there ezists a (uam,um,h,+) EBS on G with
respect to U.



Proof: Let {B},B),...,B},} be a (am,m, h,+) covering EBS on G/U. For each j let
B; = {g € G| gU € B!} be the pre-image of B} under the quotient mapping from G to
G/U. Since Bj is the union of | B}| distinct cosets of U, it follows both that |B;| = u|B]]
and that for every nonprincipal character x of G

B = 0 if x nonprincipal on U
x(B;) = uy(B;) if x principal on U,

where 1 is the nonprincipal character induced by x on G/U. By the definition of cov-
ering EBS, 9(B}) is nonzero (having modulus m) for exactly one value of j. Therefore
{B1,Bz,...,B} is a (vam,um, h,+) EBS on G with respect to U. O

We are now ready to state the key construction of the paper, which uses a covering
EBS on a factor group G/U and a BS on G relative to U to produce a covering EBS on
G. By Theorems 2.3 and 2.5, we can view this as using a difference set and a semi-regular
divisible difference set to produce another difference set.

Theorem 2.7 Let G be a group containing a subgroup U of order u. Suppose there ezxists
a (am,m,h,t) covering EBS on G/U and there ezists a (uam,um,t) BS on G relative
to U. Then there ezists a (uam,um,h +t,+) covering EBS on G.

Proof: By Lemma 2.6 the existence of a (am, m, h, %) covering EBS on G/U implies
the existence of a (uam,um,h,+) EBS, say {B1,Ba,..., B}, on G with respect to U.
By the definition of EBS, the nonprincipal characters of G' giving a nonzero character
sum on this first collection of building blocks are precisely those which are principal on
U. By assumption there exists a (uam,um,t) BS, say {Bh+1,Bh+2,---,Bhtt}, on G
relative to U. By the definition of BS, the nonprincipal characters of G giving a nonzero
character sum on this second collection of building blocks are precisely those which are
nonprincipal on U. Moreover, since each building block of a BS or EBS has nonzero
character sum for at most one nonprincipal character, the multiset union of these two
collections {By, Ba,...,Bry:} is a (uam,um,h + t,£) covering EBS on G. O

The proof of Theorem 2.7 demonstrates why building sets and extended building sets
were introduced. The crucial property, that at most one building block has a nonzero
character sum, allows us to combine their favourable character properties simply by
taking the multiset union of the constituent building blocks. In the special case um = at
of Theorem 2.7 the BS ingredient gives rise to a relative difference set under Theorem 2.3,
rather than a divisible difference set with A\; # 0.

We can recursively construct covering EBSs using Theorem 2.7, and therefore differ-
ence sets by Theorem 2.5, provided the appropriate BSs are available. For this purpose
we now state some preliminary lemmas from [7] and then give a recursive construction
for BSs.

The following lemma shows that a BS on G relative to U can be “contracted” by a
subgroup W of U to give a BS on the factor group G/W relative to U/W.



Lemma 2.8 Suppose there exists a (a,\/cﬂ,t) BS {B;} on a group G relative to a sub-
group U. Let W be a subgroup of U. Then the image of the {B;} under the quotient
mapping from G to G/W is a (a,\/ﬂ,t) BS on G|/W relative to U/W.

Unlike many of the results developed here from [7], in Lemma 2.8 the condition
m = at on the BS parameters is necessary, so that the contraction of the BS has no
repeated elements. (Likewise, the method of contraction is known to apply to RDSs but
not to DDSs with A; # 0, for the same reason.)

The next lemma describes an important property of hyperplanes.

Lemma 2.9 Let P be a vector space of dimension 2 over GF(p®), where p is prime and
a > 1. Any nonprincipal character of P is principal on ezactly one of the hyperplanes
of P.

Corollary 2.10 There are .subgroups Ho, Hy, .. -, Hpe on;""i such that {H1,Ha, ..., Hpa}
is a (p*,p*,p*) BS on Z;“’" relative to Ho = Z;,, where p is prime and o > ¢ > 1.

Proof: Let Ko, Ki,...,Kps be the subgroups of Z?," of order p* corresponding to hyper-
planes of P under an isomorphism from ZZ"‘ to P. Label the subgroups so that Ko = Z;.
Then Lemma 2.9 implies that {K7, K,...,Kpa} is a (p®,p*,p*) BS on Zf,"‘ relative to
Ky. This proves the case 1 = a.

For i < a, apply Lemma 2.8 with W = Z;”"' to obtain a (p,p*,p*) BS on Zg‘*‘i
relative to Z;, such that each building block of the contracted building set is a subgroup
of Z3*'. O

We can now give the recursive construction for BSs.

Theorem 2.11 Let Hy, Hy,..., H; be subgroups of a group G which are each contained
in a subgroup Q of G (the case Q = G being allowed). Suppose that {Hy,H,,...,H,} is
a (w,w,s) BS on Q relative to Hy (when the H; are viewed as subgroups of Q). Suppose
also there ezists a (a,m,t) BS on G/H; relative to Q/H; for each i = 1,2,...,s. Then
there ezists a (wa, wm,st) BS on G relative to Hy.

Proof: For each i > 1, let {B/}, Bl,,...,Bl} be a (a,m,t) BS on G/H; relative to
Q/H;. Following the proof of Lemma 2.6, for each 7 > 1 and for each j let B;; = {g €
G | gH; € B(;}. Since B;; is the union of |B;| = a distinct cosets of H;, |Bij| = wa and
for every nonprincipal character x of G and for each ¢ > 1 and for each j

if x nonprincipal on H;

0
x(Bij) = { wip(B];) if x principal on H;, (6)

where %(B/;) is the nonprincipal character induced by x on G/H;. By the definition of
BS, for each i > 1, 9(Bj;) is nonzero (having modulus m) for exactly one value of j if ¢
is nonprincipal on Q/H;, and is nonzero for no value of j if ¢ is principal on Q/H;.

We claim that {Bi; | 1 <17 < 5,1 < j < t}, comprising st subsets B;; of G, is a
(wa,wm, st) BS on G relative to Hy. To establish this, firstly let x be a nonprincipal
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character of Q. Since {Hy,H,,...,H} is a (w,w,s) BS on @ relative to Hp, we have
Ix(Hr)| = w for some I and x(H;) = 0 for each 7 # I. But then |x(H)| = |H/| (since
|H|| = w), which implies that x is principal on H;. Therefore if x is nonprincipal on @
then it is principal on one of the subgroups H; and nonprincipal on all the others. We
therefore take x to be a nonprincipal character of G and distinguish three cases: x is
principal on Hj for some I # 0 and nonprincipal on H; for each ¢ # I; x is principal on
Hy and nonprincipal on H; for each ¢ # 0; and x is principal on @ and nonprincipal on
G. (We can deal with the possibility @ = G by ignoring the last of these three cases.)

In the first case, where x is principal on H for some I # 0 and nonprincipal on
H; for each 1 # I, x(Bi;) = 0 for each i # I and x(Br;) = wy(B];), from (6). Since
x is nonprincipal on @, % is nonprincipal on Q/H; and so ¥(Bz;) is nonzero (having
modulus m) for exactly one value of j. Therefore x(B;;) is nonzero (having modulus
wm) for exactly one ordered pair (¢,7). In the second case, where x is principal on Hy
and nonprincipal on H; for each ¢ # 0, x(B;;) = 0 for each ordered pair (¢, ), from (6).
In the third case, where x is principal on @ and nonprincipal on G, x is principal on H;
for each i > 0. Therefore x(B;;) = wy(B];) for each 1 > 1, from (6). Since % is principal
on Q/H;, ¥(B;;) = 0 for each ordered pair (¢,7).

The results for the three cases establish the claim. O

In applying Theorem 2.11 recursively we shall always take the { H;} to be the (g,q,9)
BS of Corollary 2.10, derived from the hyperplanes of EA(q%) (where ¢ = p®). An
alternative direct approach, closer to Chen’s original constructions [4], [5], is to make

use of the more general (¢¢,¢?, 9% — 1) BS mentioned after Theorem 2.3, based on

hyperplanes of EA(q%t!). We believe our recursive method may assist the construction
of Chen difference sets in new groups.

3 McFarland, Spence, Davis-Jedwab, Hadamard families

In this section we summarise the recursive construction of difference sets in the McFar-
land, Spence, Davis-Jedwab and Hadamard families from covering EBSs using Theo-
rems 2.7 and 2.11 (see [7] for details). The method will be illustrated in more detail when
we discuss the construction of Chen difference sets in Section 4.

Recursive application of Theorem 2.11 yields the following families of BSs. All of
the initial BSs needed to begin the recursions can be derived from Corollary 2.10 and
Lemma 2.2, with two exceptions: a (4,2,1) BS on Z2 relative to Z3, and a (8,4,2) BS
on 22 x Z; = (z,y,2 | z* = y* = 2% = 1) relative to (z%,y?) = Z%. These BSs can be
obtained from the work of Jungnickel [11] and Arasu and Sehgal [2] respectively.

Theorem 3.1 For each d > 1, the following ezist:
(i) A (p?,p?,p?) BS on z§,"’+‘)' relative to Z7,, where p is prime and v > 1.

(i) A (2%+1)2%d 22¢-1) BS on any group G4 of order 2*+3 and ezponent at most 4
relative to a subgroup Uy = Z2% contained within two of the largest direct factors of

Gq.
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iii) A (22442 92d+1 22d) BG on any group Gy of order 234t* and ezponent at most 4
) ) Yy group
relative to a subgroup Uy = Z% contained within two of the largest direct factors of
G, except possibly Gy = Z3.

Using Theorem 2.7 and the BSs of Theorem 3.1 we can recursively construct the
following families of covering EBSs. The only non-trivial initial covering EBSs required,
for case (iii), are equivalent to well-known (16, 6,2, 4)-difference sets.

Theorem 3.2 For each d > 0, the following exist:

(i) A (p*r,p™, }% +1,-) covering EBS on Z§,“'+1)’, where p is prime and T > 1.
(ii) A (22441224 &?"-’l, —) covering EBS on any group of order 22¢+3 and ezponent at

most 4.
iii) 4 (34,34, &,—}- covering EBS on Z3+1,
2 3

(iv) A (22442 22d+1 %, +) covering EBS on any group of order 2%*** and ezponent
at most 4, except possibly Z3 in the case d = 1.

By applying Theorem 2.5 to the covering EBSs of Theorem 3.2 we deduce the existence
of the following families of difference sets.

Corollary 3.3 For each d > 0, the following ezist:

(i) A McFarland difference set with ¢ = p” in any group of order q‘“’l(g% +1)
containing a subgroup isomorphic to Z§,d+l)r, where p is prime and r > 1.

(i) A McFarland difference set with ¢ = 4 in any group of order 22‘“'3(2—2:%1—*'—1) contain-
ing a subgroup of order 22%t3 and ezponent at most 4.

(iii) A Spence difference set in any group of order 3‘1“(3“2#) containing a subgroup

isomorphic to Zg"'l .

(iv) A Davis-Jedwab difference set in any group of order 22‘”4(23%) containing a

subgroup of order 22%+4 and ezponent at most 4, except possibly when the subgroup
is Z3 in the case d = 1.

Schmidt [21] has recently proved the following exponent bound. Together with Corol-
lary 3.3 (iv), this bound gives a necessary and sufficient condition for the existence of
Davis-Jedwab difference sets, provided that 2 is self-conjugate modulo the group expo-
nent, with the possible exception of the group Z3 x Zs.

Theorem 3.4 The Sylow 2-subgroup of a group containing a Davis-Jedwab difference

set with d > 1 has ezponent at most 4 provided that 2 is self-conjugate modulo the group
ezponent.
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The key initial object required for the recursive construction of Hadamard difference
sets is a (m(™51),m,4,+) covering EBS on a group of odd order m?. The following
examples are currently known.

Theorem 3.5 There erists a (m(mz;l),m,tl,-}-) covering EBS on the following groups
M of order m?:

(i) M is the trivial group.
(i) M = Z3., where o > 1.
(iii) M = Z}, where p is an odd prime.

Case (i) of Theorem 3.5 is trivial, but the other two cases are definitely not! Case (ii)
is due to Arasu, Davis, Jedwab and Sehgal [1]. Case (iii) is due to Chen [4], who built
on a succession of papers by Xia [25], Xiang and Chen [26], van Eupen and Tonchev [10],
and Wilson and Xiang [24].

The following result, based on a construction of Turyn [23], allows us to compose the
(m(™251),m,4,+) covering EBSs of Theorem 3.5 to produce examples in more general
groups.

Theorem 3.6 Suppose there ezists a (mi(ﬂ‘{—l),mi,4, +) covering EBS on a group M;
of odd order m? for i = 1,2. Then there ezists a (mlmg(@ﬂzx—l),mlmg,4,+) covering

EBS on M; x M,.

We can use the covering EBSs described above to find appropriate initial BSs and
covering EBSs. Recursive application of Theorems 2.7 and 2.11, followed by Theorem 2.5,
leads us to the following conclusion.

Corollary 3.7 Let M be either the trivial group or the group []; Z3a, x [I; Zg]., where
a; > 1 and where p; is an odd prime, and let |[M| = m®. Then the following ezist:

(i) A (m(=51),m,4,+) covering EBS on M.

(ii) A (2%-'m?,2¢m,2) BS on G4 x M relative to any subgroup of order 2, where d > 1
and G4 is any group of order 22¢ and exponent at most 2¢.

(iii) A (22¢-'m?,2¢m,4,-) covering EBS on G4 x M, where d > 1 and G4 is any group
of order 22¢ and ezponent at most 2¢.

(iv) A Hadamard difference set with N = 2%m in G4 x M, where d > 0 and G4 is any
group of order 224+2 and exponent at most 24+2,

In [7] it was noted that the special case m = Vat of Theorems 2.7 and 2.11 necessarily
leads to difference sets with parameters from the McFarland, Spence, Davis-Jedwab or
Hadamard family via Theorem 2.5, assuming the BSs are defined on p-groups. The
conclusion drawn in [7] was that new parameter families of difference sets might be
constructed via these theorems by finding new (a, \/Ei,t) BSs on groups whose order is
not a prime power. Such BSs were indeed found by Davis, Jedwab and Mowbray [9,
although they do not appear to lead to new difference sets. On the other hand, by
removing the condition m = +/at from Theorems 2.7 and 2.11 we can obtain the new
Chen parameter family, as we now show.
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4 Chen family

In this section we illustrate the use of the recursive method in detail by constructing
Chen difference sets. We begin by recursively constructing an infinite family of BSs. The
initial BS is obtained from a (m(mT_l),m,él,—{—) covering EBS on a group of odd order
m? (which was also the initial object for the construction of Hadamard difference sets in
Section 3).

Theorem 4.1 For each d > 0 there ezists a (¢***1(152), ¢%¢*1,4¢%%) BS on EA(¢**?)
relative to EA(q?), where ¢ = 3" or ¢ = p*" for p an odd prime, and r > 1.

Proof: The proof is by induction on d. We know from Corollary 3.7 (i) that there
exists a (q(tz'—!-),q,4,+) covering EBS {Bj, Bz, B3, B4} on EA(q?), where |B| = q(%’—l)
and |By| = |Bs| = |B4| = q(qg—l) The key idea of the construction, due to Chen [4], is
to note that by taking the complement of the building block B; in EA(g?) the character
properties of the building set are retained but each building block now has equal size:
{B:1,B2,B3,B4} isa (q(“'%l-),q,4) covering BS on EA(g?). This establishes the case d = 0
of the induction.

Now assume the case d— 1 to be true, so that there exists a (¢24~1(%5%), ¢2¢1,4¢%¢~?)
BS on EA(¢?%) relative to EA(¢q?). By Corollary 2.10, with p* = ¢? and i = a, there
are subgroups {H;} of EA(g*) such that {Hy,Hs,..., Hp} is a (¢%,4%,¢%) BS on EA(¢*)
relative to Hy = EA(g?). Apply Theorem 2.11 with G = EA(¢?%*?) and Q = EA(¢%)
to establish the case d and complete the induction, noting that G/H; = EA(¢q?*®) and
Q/H; ¥ EA(g?) foreach 1 > 1. O

We next use Theorem 2.7 and the BSs of Theorem 4.1 to construct recursively an
infinite family of covering EBSs. The initial covering EBS is the same as that used in
Theorem 4.1.

Theorem 4.2 For each d > 0 there exists a (q2d+1(1§‘1'),f12d+1,4(9%),+) covering

EBS on EA(q%**?), where ¢ = 3" or ¢ = p*" for p an odd prime, and r > 1.

Proof: The proof is by induction on d. There exists a (q(-q—;—l),q,él, +) covering EBS
on EA(¢?) by Corollary 3.7 (i), which gives the case d = 0. Assume the case d — 1 to be
true, so that by hypothesis there exists a (qu‘l(g—;l),qzd‘l,4(%2ﬁi;ll),+) covering EBS
on EA(¢??). We know from Theorem 4.1 that there exists a (¢**t1(252), ¢?¢*1,4¢%) BS
on EA(g%**?) relative to EA(¢?). Apply Theorem 2.7 with G = EA(¢q***+?), U = EA(¢?)
and a = 9;—1, m= ¢l t =4¢% h = 4(9;:_;:) to establish the case d. O

By applying Theorem 2.5 to the covering EBSs of Theorem 4.2 we obtain a family of
Chen difference sets with ¢ odd.

Corollary 4.3 For each d > 0 there ezists a Chen difference set with ¢ = 3" or q¢ = p*"
) d . . .
in any group of order 4q2d+2(92—q£2-fi) containing a subgroup isomorphic to EA(q?41?),

where p is an odd prime and r > 1.
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All of the difference set constructions described in this paper use BSs constructed from
Theorem 2.11. Up to this point we have required only the case ¢ = a of Corollary 2.10
to provide suitable subgroups H; in Theorem 2.11. We will now use the case ¢ < a,
which will allow us to obtain Chen difference sets with ¢ even. This important idea, of
applying contraction before hyperplane lifting, is due to Chen [5]. As before we begin
by constructing an infinite family of BSs. The initial BS is obtained from a Hadamard
difference set.

Theorem 4.4 For each d > 1 there exists a (¢**t1(q—1),¢%?*1,2¢%?) BS on EA(2¢*4+?)
relative to EA(q?), where ¢ =27 and r > 1.

Proof: The proof is by induction on d. By Corollary 2.10, with p = 2, o = 2r 4+ 1
and i = 2r, there are subgroups {H;} of EA(2¢*) such that {Hy, Hs,...,Hyp2} is a
(2¢%,24¢%,2¢%) BS on EA(2¢*) relative to Hyp = EA(g?). By Corollary 3.7 (iv) there exists
a Hadamard difference set with N = ¢/2 in EA(g?), which by the comment following
Lemma 2.1 is equivalent to a ((¢—1),%,1) covering BS on EA(q?). Apply Theorem 2.11
with G = Q = EA(2¢*) to obtain a (¢*(¢ — 1), ¢%,2¢%) BS on EA(2¢*) relative to EA(¢?),
noting that G/H; = Q/H; = EA(¢?) for each i > 1. This establishes the case d = 1.

Now assume the case d — 1 to be true, so that by hypothesis there exists a (¢2¢~!(q —
1),¢%4"1,2¢%?-2) BS on EA(2¢%?) relative to EA(q?). By Corollary 2.10, with p = 2
and i = o = 2r, there are subgroups {H;} of EA(¢*) such that {Hy, Ha,...,Hp} is
a (¢%,¢%,4¢%) BS on EA(g*) relative to Hy = EA(q?). Apply Theorem 2.11 with G =
EA(2¢%4*2) and Q = EA(q*) to establish the case d, noting that G/H; = EA(2¢*%) and
Q/H; 2 EA(g?) for each : > 1. O

Note that we have not established whether the case d = 0 of Theorem 4.4, namely a
(q(qg — 1),q,2) BS on EA(2¢?) relative to EA(q?) for ¢ = 27, exists. However the cases
d > 1 are sufficient to construct recursively an infinite family of covering EBSs. The initial
covering EBS is again one of those previously used to construct Hadamard difference sets.

Theorem 4.5 For each d > 0 there ezists a (q**1(g — 1),¢**1,2(L=L), +) covering

7’1
EBS on EA(2¢%#*?), where ¢ = 2" and r > 1.

Proof: The proof is by induction on d. By Corollary 3.7 (iii) with m = 1 there
exists a (¢%/2,q,4,—) covering EBS on EA(q?). Apply Lemma 2.4 with s = 2 to obtain
a (¢%,¢,2,—) covering EBS on EA(2¢%). This can be equivalently written as a (g(q -
1),q,2,+) covering EBS on EA(2g¢?), which establishes the case d = 0.

Now assume the case d — 1 to be true, so that by hypothesis there exists a (g q-
1),¢% 1, 2(9::%11), +) covering EBS on EA(2¢??). We know from Theorem 4.4 that there
exists a (¢23t1(q — 1),¢?%t!,2¢%?) BS on EA(2¢?**+?) relative to EA(q?). Apply The-
orem 2.7 with G = EA(2¢**?), U = EA(¢?) and @ = ¢ — 1, m = ¢*~1, ¢t = 2¢%,
h=2( 9;21_—_'—11-) to establish the case d. O

2d—1(

Finally we apply Theorem 2.5 to the covering EBSs of Theorem 4.5 to obtain a family
of Chen difference sets with g a power of 2.
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Corollary 4.6 For each d > 0 there ezists a Chen difference set with ¢ = 2" in any
d

group of order 4q2d+2(92?+_2—1_1) containing a subgroup isomorphic to EA(2¢*+?), where

r>1.

In Corollary 4.6, the Sylow 2-subgroup of the group containing the Chen difference
set is isomorphic to EA(4¢?t?) or Z, x EA(¢%#+2).

Schmidt [21] has recently obtained the following exponent bound for Chen difference
sets.

Theorem 4.7 The Sylow p-subgroup of a group containing a Chen difference set with
g=7p" odd, d>1 and r > 2 has exponent at most p"~! provided that p is self-conjugate
modulo the group ezponent.

5 Recursive construction of building sets

We have seen that the building sets required for the construction of difference sets in this
paper can be obtained recursively from Theorem 2.11. In fact we can obtain many further
families of BSs by recursive application of Theorem 2.11, which by Theorem 2.3 gives
families of semi-regular relative difference sets or divisible difference sets. In this section
we show by means of an extended example how to apply Theorem 2.11 systematically in
this way. The result we obtain occurs as a special case of a more general result proved in
[7]

Let p be prime and let G; be any group of order p*" and exponent at most p?
containing a subgroup Uy = Z;. We wish to find conditions under which there exists a
(p4=1)7 pr pT) BS on Gy relative to Uy, especially for groups G4 with small rank. We
shall recursively apply Theorem 2.11, in each case taking ¢} to be isomorphic to Z;‘;’ and
the subgroups {H;} to be the uncontracted hyperplanes of Q (given by the case 7 = a of
Corollary 2.10).

We begin with a (p”,p",p") BS on G relative to Uy, which exists by Corollary 2.10.
Put s = p” in Lemma 2.2 to obtain a (p?",p",1) BS on any group G of order p*", relative
to any subgroup U = Z, subject to the condition: G contains a subgroup S of index p”
and exponent p.

We now wish to apply Theorem 2.11 to obtain a (p®",p?",p") BS on G; relative to Us.
We can do this provided there exists a subgroup Q = Z2" of G; whose hyperplanes { H,}
satisfy the conditions: Hy = U, and, for each ¢ # 0, G3/H; contains a subgroup S2/H;
(containing @4/ H;) of index p” and exponent p. In fact we can show that this condition
on each of the factor groups G2/ H; is implied by the single condition that G/U; contains
a subgroup of index p” and exponent p, and so:

2dr

Proposition 5.1 There ezists a (p>",p?",p") BS on G, relative to Uy provided G3/Us
contains a subgroup of indez p” and exponent p.

For example, if G; = Z2~2 x Z'}' (where 7 > 1) and we write the subgroup U; = 7},
as being contained within 7 direct factors of G, then all choices of U, are allowed, except
possibly U, being contained within the subgroup Zg"2. This demonstrates that the
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position of the subgroup U, within G4 is important. In particular, in the case r = 2,
Proposition 5.1 deals with all groups G and subgroups U; except possibly G = Uz X Z;z.

We now repeat the above procedure. Put s = p” in Lemma 2.2 to obtain from
Proposition 5.1 a (p*",p?", 1) BS on any group G of order p°", relative to any subgroup
U = 77, subject to the condition: G contains a subgroup S of index p” and exponent at
most p? such that §/U contains a subgroup of index p” and exponent p.

We next wish to apply Theorem 2.11 to obtain a (p°",p>", p") BS on Gj relative to Us.
This can be done provided there exists a subgroup ()3 = Zf,’ of G3 whose hyperplanes { H;}
satisfy the conditions: Ho = Us and, for each : # 0, G3/H; contains a subgroup S3/H;
(containing Q3/H;) of index p” and exponent at most p? such that (S3/H:)/(Qas/H:)
contains a subgroup of index p” and exponent p. We can likewise show that this condition
on each of the G3/H; is implied by the condition that G3/Us contains a subgroup of index
p" and exponent at most p? and contains a subgroup of index p> and exponent p, and
so:

Proposition 5.2 There ezists a (p°7,p>",p") BS on Gj3 relative to Us provided G3/Us
contains a subgroup of indez p” and ezponent at most p® and contains a subgroup of index
p>" and ezponent p.

This procedure can be repeated, resulting in the following accumulation of conditions
on the factor group Gy4/U,.

Theorem 5.3 Let p be prime. For each d > 1 there ezists a (p(*¢=1)7 p?" p") BS on any
group Gy of order p*¥" and ezponent at most p? relative to any subgroup Uy = Z;,, where,
ford > 1, G4/Uy contains a subgroup of indez p(24=21=17 gnd exponent at most p’ for
j=1,2,...d 1.

We note here that the substitution of conditions on the factor groups Gg4/H; by
conditions on G4/U,, mentioned in the examples above, depends on the following lemma

(proved in [7]).

Lemma 5.4 Let p be prime, let a > 1, and let G be a group of order p**"a and exponent
at most p® containing a subgroup U = Z;,. Suppose that G/U contains a subgroup of indez

2dr

p(34=2-1r gnd exponent at most p’ for j = 1,2,...,d — 1. Then G contains a subgroup
Q= Zf,’ whose hyperplanes Hg, Hy, ..., Hyr, when viewed as subgroups of G, satisfy the
following:

() Ho=U

(ii) For each i # 0, G/H; contains a subgroup S/H; (containing Q/H;) of index p”
and ezponent at most p%~1 such that (S/H;)/(Q/H;) contains a subgroup of indez
p(24=23-3)" gnd ezponent at most p’ for j =1,2,...,d — 2.

By inspection, some of the conditions on G4/U,; in Theorem 5.3 are redundant. In
fact it is straightforward to see that the conditions for j = 1,2,...,d — 2 are all implied
by the condition for j = d — 1. Therefore we can rewrite Theorem 5.3 as follows.
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Corollary 5.5 Let p be prime. For each d > 1 there ezists a (p(2d'l)’,pd',p’) BS on
any group G4 of order p*¥" and ezponent at most p® relative to any subgroup Uy = Z,

where, for d > 1, G4/Uy contains a subgroup of indezx p” and exponent at most p¢ L

For example, take Gy = Z;Z in Corollary 5.5 (so that the condition on G4/Uy is always
satisfied) and let P(r) be the number of partitions of the positive integer 7. Then Theo-
rem 2.3 shows that for each d > 1 and for any prime p there exists a (p2%", p", p*%", p(2¢-1)7)
semi-regular RDS in P(r) nonisomorphic groups of rank 2r relative to any subgroup Z7.
Two such groups are 27 .., X Z;d and Z,a+r X Z>77!. This shows that the group rank of
the underlying BS, andp also of the resulting RDSs, can remain fixed at 2r as the group
order grows without bound.

For further results similar to Corollary 5.5 we refer the reader to [7].

6 Open questions
We conclude with some open questions.

1. We have seen that (a,m,t) building sets can be used to recursively construct Chen
difference sets. We remark that the construction of Chen difference sets with ¢ = 27
given in Corollary 4.6, when applied to the case ¢ = 2, does not deal with all the
groups covered by Corollary 3.3 (iv) even though the parameters then coincide.
Does this point to the construction of Chen difference sets in new groups with
g=2">2?

2. The construction of Hadamard difference sets in Section 3 for which n = N2 is not a
prime power depends on Theorem 3.6. Is there an analogous composition theorem
for McFarland difference sets or for Chen difference sets?

3. In view of Theorem 2.3 and some examples given in this paper, can semi-regular
divisible difference sets be systematically studied from the point of view of (a,m,t)
building sets with m # Vvat? Unwieldy parameter sets for DDSs might appear more
straightforward in this notation.
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