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ABSTRACT

We have developed a highly e�cient, high �delity approach for parallel volume rendering that is called permutation
warping. Permutation warping may use any one pass �lter kernel, an example of which is trilinear reconstruction, an
advantage over the shear warp approach. This work discusses experiments in improving permutation warping using
data dependent optimizations to make it more competitive in speed with the shear warp algorithm. We use a linear
octree on each processor for collapsing homogeneous regions and eliminating empty space. Static load balancing is
also used to redistribute nodes from a processor's octree to achieve higher e�ciencies.

In studies on a 16384 processor MasPar MP-2, we have measured improvements of 3 to 5 times over our previous
results. Run times are 73 milliseconds, 29 Mvoxels/second, or 14 frames/second for 1283 volumes, the fastest MasPar
volume rendering numbers in the literature. Run times are 427 milliseconds, 39 Mvoxels/second, or 2 frames/second
for 2563 volumes. The performance numbers show that coherency adaptations are e�ective for permutation warping.
Because permutation warping has good scalability characteristics, it proves to be a superior approach for massively
parallel computers when image �delity is a required feature. We have provided further evidence for the utility of
permutation warping as a scalable, high �delity, and high performance approach to parallel volume visualization.

Keywords: parallel volume visualization, SIMD, algorithms, octree, ray tracing.

1. INTRODUCTION

Volume rendering1 algorithms calculate visualizations from sampled medical and simulation data, and researchers
have sought to speed up the algorithms to make them more useful. In the pursuit of the highest performance volume
rendering solutions, three approaches have been taken: parallel algorithms on general parallel machines, parallel
algorithms on special purpose graphics hardware, and special purpose volume rendering hardware. There is a place
for all three of these approaches, and the best approach di�ers depending on metric, state of the art, and price point.
We have done work on general parallel machines called permutation warping.2,3 Permutation warping has been
proven to be scalable. In fact, it has been shown to have superior scalability to all published results of algorithms
implemented on the MasPar MP-1. See Figure 2, Wz and Wt at left of plot. Our zero order hold algorithm (Wz)
also turns out to have the absolute highest performance, as shown in Figure 1, over 10 MVoxels/second on a MasPar
MP-1. We present in this paper, new results that are nearly 3 to 5 times faster than our prior results on the MasPar.
But demonstrate here, how our previous results compare to other researchers.

The zero-order hold (Wz), simply reads the voxel value needed through the general interconnection network,
which requires general communication, and results in supralinear scalability, Figure 2, and is also fast, Figure 1. The
closest competitor in speed is Hsu's algorithm (Hz),4 followed by Vezina et al. (Vz),5 Goel et al.(G� ),6 Vezina
et al.'s �rst order hold (Vf), and then permutation warping trilinear interpolation (Wt). And, even though the zero
order hold (Wz) provides the highest absolute performance, the trilinear permutation warping (Wt) shows linear
scalability, and uses superior �ltering to the other algorithms (Goel et al. use a trilinear �lter as well, but do not have
good scalability.) For example, on the MasPar MP-1, we have shown a speedup of 15.7 for a 16 k processor MP-1

Other author information: Partially supported by a grant from ISCR-LLNL B291836 and NSF IRI-9423881 (E-mail: craig@hpl.hp.com

ksk@cse.ucsc.edu)
�We scaled Goel et al.'s results on a 8192 processor machine which used 4096 PE's by 4X for the performance plotted.
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over a 1k processor MP-1 (16 is ideal), and two frames/second with a 1283 volume and trilinear view reconstruction.
Supra linear speedups of over 20 are achieved with near neighbor �ltering.3 We have also shown that run time is
constant across view angle, that the algorithm has tunable �lter quality, and that one may achieve e�cient memory
implementation.
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Figure 1. Volume rendering algorithms performance on
a 16k MasPar MP-1, rendering a 1283 volume.
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Figure 2. Volume rendering algorithms speedup, com-
paring performance of runtimes on a 1024 processor Mas-
Par MP-1 to a 16384 processor machine.

Recently, the sequential and parallel MIMD shear warp algorithms of Lacroute and Levoy7,8 have taken advantage
of data dependent optimizations to achieve the highest performance published on general purpose parallel machines.
The algorithm exploits runlength coding, image and object space bookkeeping, and bilinear �ltering. But, their
studies show that the speedup to higher numbers of processors is limited because of the screen space decomposition.
Our algorithm research investigates extensions to permutation warping to make it more competitive in speed, while
supporting its superior �ltering qualities. Permutation warping is highly scalable as we demonstrated on the SIMD
implementations2,3 (Figure 2), and it is also possible to use data dependent encoding and compression to further
improve e�ciencies of our algorithm. The focus of this paper are extensions and implementation results on the
MasPar MP-2. The ability to do load balancing and coherency adaptation are possible with scalable, e�cient
massively parallel MIMD and SIMD algorithms. We demonstrate the application of linear octrees9,10 to encode
volumetric data, and also demonstrate static load balancing techniques that provide a 3 to 5 times speedup over our
previous permutation warping run times. This result is achieved primarily through the skipping of empty voxels,
which are quite prevalent in datasets such as medical MRI and CT studies, but performance will vary with dataset and
classi�cation. We investigated alternatives using dynamic and static load balancing, compression, precompositing,
and adaptive sampling. We demonstrate through our performance timings, that it is possible to greatly speedup
permutation warping using data dependent optimizations; that on the MasPar this is most e�ciently done through
a preprocessing to create a statically balanced load; and, the �lter quality can be preserved with e�cient massively
parallel algorithms. On a 16,384 processor MasPar MP-2, we can achieve 14 frames/second for a 1283 volume or
2 frames/second for a 2563 volume. Scalability of a 16K MP-2 over a 4K MP-2 shows near linear scalability 3.6
(4 is linear). Figure 3 shows the performance of our new octree encoded volume rendering algorithm Wittenbrink
and Kim zero-order hold octree (WzO) and Wittenbrink and Kim trilinear octree (WtO). Performance is given for
a 16,384 processor MP-2, rendering a 2563 MRI brain dataset. The zero-order hold octree version (WzO) achieves
39.3 Mvoxels/second, the trilinear algorithm (WtO) achieves 36.8 Mvoxels/second, which is 2 times the performance
of our previously published permutation warping algorithm (Wz) which achieves 14.2 Mvoxels/second (zero-order
hold). Results are also shown for the 4K MP-2, where we render a 1283 dataset for closer comparison, and we showed
results superior to Hsu4 (Hz) who also provides MP-2 results. A current technology SIMD architecture would be
able to provide 30-60 frames/second with larger volumes, assuming the VLSI processors and interconnects could
be updated. The MasPar MP-2 was produced in 1992, 5 years ago. We give a short background on permutation
warping, Sect. 2, discuss octree encoding in Sect. 3, and then present our research results, Sect. 4.
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Figure 3. Octree encoded permutation warping performance (WzO and WtO) in Mvoxels/second versus the baseline
permutation warping algorithm (Wz and Wt) and Hsu (Hz).

2. BACKGROUND ON PERMUTATION WARPING

Permutation warping2,3 uses a one-to-one pairing for processor to processor communication to e�ciently resample a
data volume in the view transform. A permutation communication pattern can be optimally embedded into a variety
of interconnection networks used in massively parallel computers, such as the hypercube. Volume rendering is an
algorithm that computes the interaction of light in a volume of light scattering particles. The three steps are: (1) the
preprocessing stage (PPS), (2) the volume warping stage (VWS), and (3) the compositing stage (CS). The inputs
to the algorithm are a scalar valued volume, a set of light sources and their positions, a viewing transform matrix,
a classi�cation function, used to convert derived values to densities, and a shading function, which calculates the
lighting and illumination e�ects. The PPS calculates normals, opacities, and initial shaded intensities.1 The VWS
transforms the initial shading intensities and the opacities to the three dimensional screen space by resampling. The
CS evaluates the view ray line integrals to get the two dimensional screen space pixel intensities. The �nal output
is a two dimensional array of pixel values.

The array of output pixel intensities can be calculated many di�erent ways indicated by the numerous input
variables: volume data, light sources, view transform, classi�cation function, and shading function. Existing parallel
algorithms may be grouped into two categories determined by their viewing transforms: backwards6,4 and multipass
forwards.7,8,5,1 Our permutation warping2,3 approach computes a backwards mapping algorithm. Figure 4 shows
pseudo-code for the permutation warping algorithm.

1.0) PPS, preprocessing stage, classify, compute opacity, shading

2.0) VWS, volume warping stage, processors in parallel:

2.1) Calculate processor assignments, pick screen space processor

2.2) Calculate reconstruction point, inverse view transform

2.3) Perform resampling of opacity and intensity

2.4) Send resampled opacity and intensity to screen space processors

3.0) CS, compositing stage, combine ray intensities and opacities with

parallel product

Figure 4. Permutation Warping Algorithm Pseudo-code

Figure 5 illustrates an example transform calculated by processors. The 3D object space and screen space are
separated, the object space on the left and the screen space on the right. A processor does permutation warping
by: 2.1) Calculating processor assignments; 2.2) Calculating the reconstruction point; 2.3) Performing resampling
and reading the values of its neighboring processors; (The number of neighbors used determines the �lter order.)
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And, 2.4) Sending resampled values to screen processors. In Step 3, a parallel binary tree combining computes ray
compositing.

The permutation is calculated using an isomorphic operator, M , whose form is covered in Wittenbrink and
Somani.3 Any neighborhood reconstruction �lter may be used such as trilinear, and cubic. The pattern given by
Fig. 5 is only one example, because for any equiareal transform, the mappingM is provably one-to-one. Virtualization
is performed by tiling the volume address, and dividing the volume in all three orthogonal dimensions. Each processor
gets a subvolume of data to work on, and run time is nearly constant across view angle because of this virtualization.3

3. LINEAR OCTREE PERMUTATION WARPING

We have applied linear octrees9,10 to compress and encode the volume data. The linear octree is a data structure
that can be traversed linearly and spatial locations can be computed by simple computations. Another advantage
of the linear octree is that it requires a small amount of storage. For each octree node, we store the octant code for
the spatial location and size in terms of the sub-volume, and we store the processor number for load balancing.

Each subvolume of the total volume is encoded into an octree. Figure 10 shows a simple example, where there
are four processors, and therefore four octrees (quadtrees) created. The tree structures to represent the necessary
data are shown. The octree is constructed for the sub-volume of each PE with a speci�ed threshold, for data to be
considered empty. If a node in the octree is less than or equal to the threshold, it will be considered an empty node
which does not contribute to the �nal rendering, and these nodes are not stored in the local octree. The use of an
octree within each processor allows for compression of the source data. We also use the octree to control adaptively,
the resampling process. Processor 0 has 12 bottom level (non-condensed) nodes and one 1 level condensed node
which means the region has 4 voxels (pixels) that have the same intensity. Condensation is the method used to build
octrees as all nodes are encoded, and then nodes that have all of the 8 octants for a higher level �lled are condensed
to one node. Processor 0 would have the following list of nodes 00green, 01yellow, 02blue, 03pink, 10yellow, 11green,
12blue, 13pink, 20blue, 21pink, 22green, 23yellow, and 3Xlime. The 3Xlime node represents the condensation of 4 other
nodes that will have the same value, lime. Processor 1 and 2 do not have any nodes because all voxels are below the
given threshold and compressed down to one node and removed. Processor 3 has one homogeneous region and thus
is compressed down to 1 node, XXlime. Each PE has its own sub-volume that is one quarter of the entire volume
(image). Therefore, some PEs will have highly homogeneous sub-volumes while others will have highly heterogeneous
sub-volumes.

Octrees nodes are shu�ed between processors, to adjust their work loads. The adaptation is done by preprocessing.
The total number of nodes for all PEs and the target number of nodes per PE is �rst determined. We simply �nd
PEs with maximum and minimum loads. We calculate a target load per PE, and balance processor's work. Figure
11 shows the load balancing scheme. PE 0 has the maximum number of nodes, 13, and PE1, has 0 nodes. We
attempt to achieve an average d14=4e nodes or 4 nodes per PE, and nodes are sent to neighbors. The result after
load balancing is processors PE0, PE1, and PE2 have 4 nodes, and PE3 has 2 nodes. Such an encoding is used for
permutation warping as shown in the following pseudo code, Fig. 6.

Data are processed to create an octree within each processor's subvolume. The octree nodes are then thresholded
and condensed to higher level octree nodes. Empty nodes are eliminated. Load balancing is performed by exchanging
nodes and volume data among neighbors. We implemented a simple dynamic load balancing method, but the
communication time overwhelmed the performance savings through compression. We, therefore, implemented a
static load balancing scheme. The static load balancing process should be done only once for each data set in the
initialization process and when user changes volume classi�cation parameters. Then nodes are sorted by their level,
so as to process similar octree nodes in each processor. The number of virtual processors in screen space changes
depending on their level.

Each processor considers octree nodes assigned to them through the load balancing, and maintained on a local
list, octreeList. The while loop picks octree nodes o� of the list, and calculates the point and virtual processor,
�, represented by the node. The screen space processor is calculated by the permutation assignment �0 = M�.
The point location of that virtual processor is calculated p = T�1�0. An interpolation is performed at that point.
For SIMD processing we have found it to be most e�cient to keep a copy of the original voxels to simplify the
interpolation, though with obvious memory overhead. Then all virtual processor locations within that octree node
are selected, the for loop; their screen space partner computed, �0j = M�i; and the prior interpolated result, value,
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Figure 5. Volume transforms in parallel.

create octree in local subvolume

condense and threshold

load balance among near neighbors

sort nodes locally by octree level

currentNode = head(octreeList)

while(currentNode < endOfLocalList) f
� = pointRepresentedByNode(currentNode)

�0 = M� // permutation assignment

p = T�1�0

value = interpolateOctree(p)

for all 3D voxels �i to be affected f
�0j = M�i // permutation assignment

send(value, �0j)

g
g

Figure 6. Octree Accelerated Permutation Warping Al-
gorithm Pseudo-code

Table 1. Compared Performance (MVoxels/second) on MP-2 4K and 16K processors.
Algorithm

processors WzO WtO Hz Wz Wt

4096 8.04 7.45 6.97 3.44 1.92
16384 39.25 36.81 - 14.20 7.48

sent. Following this resampling, the data are aligned along view rays, and alpha compositing is e�ciently computed
by scan operators.

4. RESULTS

The algorithm in Sect. 2 was implemented in MPL on the MasPar MP-2. Performance timings were taken, and
features were evaluated. Various parameters including dataset size, number of processors, and �lter quality were
investigated. Performance timings were measured using the dpuTime() utilities that output a register timer for cycle
accurate timings. Multiple runs were taken for a particular view angle, and many view angles were taken. The
median run times are given in this paper. We cover the best results of our studies, the quality performance trade-o�s
, and implementation di�culties. Other detailed results are given in Sect. 5.

Figure 3 and Table 1 show the performance of the algorithm in comparison to related work. Variants are the
Wittenbrink and Kim zero-order hold Octree (WzO), Wittenbrink and Kim trilinear Octree (WtO), Hsu zero-
order hold (Hz), Wittenbrink et al. zero-order hold baseline (Wz), and Wittenbrink et al. trilinear permutation
warping (Wt). The octree accelerated parallel algorithm (WzO) outperforms other published volume renderers on
the MasPar.4,2,6,5 Mvoxels/second is not a good metric to compare data dependent algorithms, but gives a good
indication of the improvement over brute force processing of all voxels. In Table 1 results are computed from rendering
a 2563 volume except for Hsu's (Hz)4 and the 4096 processor octree results (WzO,WtO) which are from rendering a
1283 volume. We encountered memory limitations due to the creation of a linear octree, and storage of the original
volume. This storage was maintained to simplify the SIMD instructions in order to get the highest performance, and
only the 16,384 processor machine could process a 2563 volume with the octree algorithm variants (WzO, WtO).

The performance numbers presented are impressive, but come with some cost. The octree algorithm is accelerated
by eliminating or combining nodes. Figure 7 shows the results of �ve di�erent thresholds used for eliminating empty
regions. All voxels below the threshold were considered to be empty, and were eliminated. The thresholds were 0, 1,
5, 10, and 50. Figure 7 shows the histogram equalized errors di�erencing the baseline algorithm's results from that
of the trilinearly interpolating octree code (WtO). A 2563 volume was used.
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Table 2. Quality performance tradeo�s, Runtimes (milliseconds) RMS error (of images as shown in Fig. 7, and
percentage of the baseline permutation warping algorithm on a 16K processor MP-2.

threshold 0 1 5 10 50

RMS error 0.868 0.922 2.741 2.968 7.218
run time (milliseconds) 1,867 1,751 804 710 456
percentage of baseline 83% 78% 36% 32% 20%

Table 2 shows the percentage improvements over the baseline permutation warping algorithm as the threshold is
set higher and higher. Runtime goes from 83% of the baseline to 20% of the baseline. The root-mean-square (RMS)
error is given also in the table to provide magnitudes for the enhanced (histogram equalized) error shown in Fig. 7.
Improved performance comes with increased interpolation error.

0 1 5 10 50

Figure 7. Outputs from octree accelerated algorithm with di�erent thresholds from the left 0, 1, 5, 10, 50.

An interesting result is the scalability. We measured performance timings on a 16,384 processor MasPar and
a 4096 processor MasPar for all of the variants. Table 4 and Table 6 provide the speedup calculations, computed
from the runtime provided in Table 3 and 5. The speedup for octree accelerated algorithms is 3.6 versus an ideal
linear speedup of 4.0, Table 4. The speedup is reduced compared to the baseline's speedup of 3.85, Table 6. And for
smaller volumes using high thresholds may do worse, 2.9, because of the lack of virtualization. With datasets of at
least 1283, the scalability remains constant with threshold, and perhaps with larger datasets the scalability will be
improved. But, the scalability is high, and shows the e�ective parallelism of this approach. The baseline algorithm
achieves linear scalability with larger volumes, 3.90, and supralinear scalability with a nearest neighbor �lter, 4.12,
as was shown in Wittenbrink and Somani.3

5. OTHER RESULTS

We have analyzed the impact of the following algorithm techniques: non condensed linear octree processing, one level
condensed linear octrees, thresholding empty voxels, and load balancing. We collected timings for several variants.
We found that skipping empty voxels provided the opportunity for speedup, but e�ective load balancing, and sorting
of octree nodes was necessary to insure a speedup over the base algorithm. Condensation of octree nodes to higher
levels was a smaller impact than simply skipping empty space. In detailed examination of the load balancing we
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Table 3. Performance (milliseconds) of Octree accelerated algorithm on MP-2 4K and 16K processors
643 1283 2563

proc. int. 0 1 5 10 50 0 1 5 10 50 0 1 5 10 50

16K zoh 44 44 21 20 14 301 294 126 116 73 1686 1582 742 658 427
tril 49 48 22 22 14 335 327 137 126 78 1867 1751 804 710 456

4K zoh 145 139 66 61 40 1090 1055 461 421 261 -
tril 161 154 71 66 42 1214 1175 504 459 282 -

Table 4. Speedups of octree accelerated algorithm on MP-2 4K/16K
643 1283

interpolation 0 1 5 10 50 0 1 5 10 50

zoh 3.30 3.20 3.17 2.98 2.90 3.62 3.59 3.66 3.62 3.58
tril 3.32 3.21 3.22 3.01 2.95 3.63 3.60 3.68 3.65 3.60

found that the time to load balance was a function of the data and machine size. The load balancing took 10,000
to 16,000 iterations for all data sizes on a 16,384 processor MasPar and 2800 to 3600 iterations on a 4096 processor
Maspar. The number of linear octree nodes is nearly the same across all processors, and load varied only by 4 nodes
typically. Worst inbalances were 17 nodes for a 16K MP-2 and 13 nodes for a 4K MP-2 with the largest dataset and
the largest threshold.

For the results presented in Sect. 4 static load balancing was used as demonstrated by the example in Fig. 11. If
load balancing is performed during rendering, it is called dynamic load balancing. Dynamic load balancing may be
done in many di�erent ways, but to taylor the algorithm to the more e�cient near neighbor processing mesh of the
MasPar, we evaluated the following approach. If a PE does not have any more nodes to process due to its coherency
while other PEs are still in the process of sampling octree nodes, it �nds the neighbor with the most octree nodes
and reads N nodes to process. If a PE doesn't have any neighbor with more than N nodes to process, it transfers
a smaller number. This approach has not demonstrated an improvement, because of overheads in communication,
and stalls due to SIMD conditionals. The primary di�culty is the inability to e�ciently migrate higher workloads
to processors with less work.

If we spread all nodes evenly over all PEs dynamically, it greatly increases communication cost at run time.
Figure 13 shows the distribution of the linear octree nodes over the 64 by 64 processor elements on a 4096 processor
MasPar. The MasPar is a 2D array architecture. The distribution is irregular because of the noisy and empty volume
regions. The octrees depend directly on the volume data.

The static load balancing used for our results was computed in a preprocess. In actual computations on the
MasPar, Figure 13 shows the number of octree nodes before and after load balancing with a simpli�ed test dataset.
Box64 data has 643 voxels of box shape data. The right �gure shows the load balancing. Some processors have fewer
nodes, but the balancing is optimal because the maximum among all processors can not be lowered further and only
the maximum counts for SIMD runtime. There are overheads to statically load balance. For our implementation the
load balancing took nearly 30 seconds on a 1283 volume and 1.9 minutes on a 2563 volume. The volume is unchanged
for recalculating new viewpoints.

Table 5. Performance of baseline (milliseconds) on MP-2 4K and 16K processors
proc. int. 643 1283 2563

16K zoh 24 153 1182
tril 41 288 2243

4K zoh 83 621 4874
tril 145 1107 8738
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Table 6. Speedups of baseline on MP-2 4K/16K
int. 643 1283 2563

zoh 3.54 4.05 4.12
tril 3.56 3.85 3.90

Table 7. Compositing time's percentage of total rendering time on 16K MP-2.
threshold

dataset 0 50

643 9.6% 32.3%
1263 4% 17.1%
2563 3.7% 15%

The algorithm was also broken up into the resampling and the compositing time. We resample to a complete
resolution screen space volume, therefore the compositing time is not dependent on threshold, only volume size.
The compositing stage's percentage of the total run time, therefore increases with higher thresholds because the
resampling time is reduced. Table 7 shows that the compositing time is a small fraction of the total time, typically
4%, and up to 15% for larger volumes.

Because the memory limit of the MasPar is 64Kbytes per SIMD processor, we were limited in the approaches we
could evaluate. Care was taken to encode the octree as e�ciently as possible, and our data structure uses 11 bytes per
octree node, 7 bytes for the code and 4 bytes for the spatial location and levels. Interpolation was also challenging to
implement, as octree nodes require neighboring values for proper interpolation. Such overlapped storage is expensive,
but can be replaced with additional communication. Additional storage can be recovered by not encoding the spatial
location of nodes, 3 bytes, and reconstructing the location from the octree code.

Each subvolume can be precomposited before communication to the screen space. Figure 8 shows three regions
within an object space processor that are composited to images before being sent to the three corresponding screen
space processors. We were unable to craft an e�cient precompositing method on the SIMD MasPar.

Processor

Screen Space
Processor

pre-compositing

Object Space

Figure 8. Pre-compositing voxel data for virtual proces-
sors.
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Figure 9. Nearly constant run time for all di�erent view-
ing angles for the octree accelerated algorithm (WtO).

Permutation warping has constant run time for di�erent view angles.2,3 Figure 9 shows that the octree algorithm
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(WtO), trilinear reconstruction, also has constant runtime over view angle, as di�erent view angles in rotation about
the 3 major axes, and about all 3 axes are shown.

A restriction of the MasPar is the slow �le access if parallel I/O has not been installed. We had access times
for the 1283 dataset of 39 seconds to read the volume, 15 seconds to build condensed octrees. The 2563 volume
required 148 seconds to read and 4 minutes to condense. While these parts of the program were not optimized,
writing compressed images using GIF encoding was examined to support a world wide web client (WWW).11 The
initial compression results were slower than sending the image to an R8000 based SGI for compression, highlighting
the relative age of the MasPar and DEC front end.

6. CONCLUSIONS AND FUTURE RESEARCH

We have shown that performance of our permutation warping algorithm has been improved 3 to 5 times using
linear octree encodings with static load balancing. The savings result from collapsing of homogeneous regions into
octree nodes and elimination of empty space. Many other alternatives were investigated for achieving performance
improvements as well. We investigated dynamic load balancing, precompositing, and memory conservation. We were
surprised by the large increase in e�ciency available on our implementation, but it was not without considerable
e�ort. The SIMD implementation on the MasPar MP-2 is limited by the small amount of memory per processor, 64 K
Bytes, and by the SIMD execution stream, where the worst case dominates performance. Schemes that have provided
coherency acceleration on single processors or MIMD processors are very di�cult to adapt to SIMD machines. For
this reason, the dynamic load balancing, and precompositing were di�cult to implement and achieve a performance
improvement. Precompositing has many conditions which add to the SIMD instruction stream, while dynamic load
balancing drove the communication costs higher than the improved e�ciences in redistributed work.

The most encouraging result of the research is that coherency adaptations are e�ective for permutation warping.
We have shown this through our implementation on a SIMD and massively parallel computer. It is important to
compare our approach to the state of the art, and other existing work. The �lter di�erences between permutation
warping and shear warp are important for image �delity, a feature some users are not willing to give up. A direct
comparison of shear warp and permutation warping is not easy, as a trilinear resampling �lter takes more work than
the shear warp multipass bilinear �ltering, hence the improved image quality. Shear warp resampling is inferior to
direct resampling, but may be compensated for somewhat by oversampling of the original dataset, and restriction
of classi�cation functions allowed to those that do not introduce high frequency features. We have shown that data
dependent optimizations are useful for permutation warping. Because permutation warping has good scalability
characteristics, it may prove to be a superior approach for massively parallel computers when image �delity is a
required feature. We achieved a performance of 427 milliseconds per frame, 39 Mvoxels/second, or 2 frames/second
on the MRI brain 2563 volume dataset on a 16,384 processor MasPar MP-2. We achieved a performance of 73
milliseconds per frame, 29 Mvoxels/second, or 14 frames/second on the 1283 dataset. A scalability of 3.6 over the
4,096 processor MP-2 was shown. Constant run time across view angle was shown, and performance quality trade-o�s
were evaluated.

Future work is necessary to evaluate other algorithm variants, such as MIMD implementations. We are also
working on di�erent variations for volume shading and compositing. A fast shading method like lookup table based
shading might be di�cult to implement because of the memory limitations on MasPar hardware. Improved gradient
operators may also be a direct advantage of permutation warping because of the overlapped storage and slice and
dice virtualization. Scanline operating algorithms have di�culty operating on large 3D neighborhoods e�ciently.
The key limitations of the implementation are the use of orthographic projection, a limit of 2563 sized volumes,
simpli�ed shading, preprocessing, and only MasPar implementation. None of these are limitations of the algorithm,
and the demonstrated improvements, even on a single architecture, provide evidence for the utility of permutation
warping as a scalable, high �delity, and high performance approach to parallel volume visualization.
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Figure 10. Octree per virtual subvolume (image) in
a four processor machine. The 2 dimensional quadtree
is shown for convenience. The voxels and corresponding
trees are shown as an example of our octree based com-
pression.
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Figure 11. Precomputed static load balancing for ad-
justing octrees in each processor. The load is balanced
in terms of number of nodes per PE and thus the max-
imum number of interpolation is minimized on a SIMD
architecture.

Figure 12. Distributions of number of box64 octree
nodes before load balancing.

Figure 13. Distributions of number of octree nodes after
static load balancing.

11




