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Abstract

A novel approach for shape preserving contrast enhancement is presented in this

paper. Contrast enhancement is achieved by means of a local histogram equalization

algorithm which preserves the level-sets of the image. This basic property is violated

by common local schemes, thereby introducing spurious objects and modifying the im-

age information. The scheme is based on equalizing the histogram in all the connected

components of the image, which are de�ned based both on the grey-values and spatial

relations between pixels in the image, and following mathematical morphology, consti-

tute the basic objects in the scene. We give examples for both grey-value and color

images.
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1 Introduction

Images are captured at low contrast in a number of di�erent scenarios. The main reason for

this problem is poor lighting conditions (e.g., pictures taken at night or against the sun rays).

As a result, the image is too dark or too bright, and is inappropriate for visual inspection or

simple observation. The most common way to improve the contrast of an image is to modify

its pixel value distribution, or histogram. A schematic example of the contrast enhancement

problem and its solution via histogram modi�cation is given in Figure 1. On the left, we see

a low contrast image with two di�erent squares, one inside the other, and its corresponding

histogram. We can observe that the image has low contrast, and the di�erent objects can

not be identi�ed, since the two regions have almost identical grey values. On the right

we see what happens when we modify the histogram in such a way that the grey values

corresponding to the two regions are separated. The contrast is improved immediately.

Figure 1: Schematic explanation of the use of histogram modi�cation to improve image

contrast.

Histogrammodi�cation, and in particular histogram equalization (uniform distributions),

is one of the basic and most useful operations in image processing, and its description can be

found in any book on image processing. This operation is a particular case of homomorphic

transformations: Let 
 � IR
2 be the image domain and u : 
 ! [a; b] the given (low

contrast) image. Let h : [a; b]! [c; d] be a given function which we assume to be increasing.

The image v := h(u) is called an homomorphic transformation of u. The particular case of

histogram equalization corresponds to selecting h to be the distribution function H of u:

H(�) :=
Areafx 2 
 : u(x) � �g

Area(
)
(1)

If we assume that H is strictly increasing, then the change of variables

v(x) = (b� a)H(u(x)) + a (2)

gives a new image whose distribution function is uniform in the interval [a; b], a; b 2 IR,

a < b. This useful and basic operation has an important property which, in spite of being

obvious, we would like to acknowledge: Neither it creates or destroys image information.
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As argued by theMathematical Morphology school [1, 6, 7], the basic operations on images

should be invariant with respect to contrast changes, i.e., homomorphic transformations. As

a consequence, it follows that the basic information of an image is contained in the family

of its binary shadows or level-sets, that is, in the family of sets

X�u := fx 2 
 : u(x) � �g; (3)

for all values of � in the range of u. Observe that, under fairly general conditions, an image

can be reconstructed from its level-sets by the formula u(x) = supf� : x 2 X�ug. If h is

a strictly increasing function, the transformation v = h(u) does not modify the family of

level-sets of u, it only changes its index in the sense that

Xh(�)v = X�u for all �: (4)

Although one can argue if all operations in image processing must hold this principle,

for the purposes of the present paper we shall stick here to this basic principle. There are

a number of reasons for this. First of all, a considerable large amount of the research in

image processing is based on assuming that regions with (almost) equal grey-values, which

are topologicaly connected (see below), belong to the same physical object in the 3D world.

Following this, it is natural to assume then that the \shapes" in an given image are repre-

sented by its level-sets (we will later see how we deal with noise that produces deviations

from the level-sets). Furthermore, this commonly assumed image processing principle will

permit to develop a theoretical and practical framework for shape preserving contrast en-

hancement. This can be extended to other de�nitions of shape, di�erent from the level-sets

morphological approach here assumed. We should note that the level-sets theory is also

applicable to a large number of problems beyond image processing [5, 9].

In this paper, we want to design local histogram modi�cation operations which preserve

the family of level-sets of the image, that is, following the morphology school, preserve

shape. Local contrast enhancement is mainly used to further improve the image contrast

and facilitate the visual inspection of the data. As we will see later in this paper, global

histogram modi�cation not always produces good contrast, and specially small regions, are

hardly visible after such a global operation. On the other hand, local histogram modi�cation

improves the contrast of small regions as well, but since the level-sets are not preserved,

arti�cial objects are created. The theory developed in this paper will enjoy the best of both

words: The shape-preservation property of global techniques and the contrast improvement

quality of local ones.

The recent formalization of multiscale analysis given in [1] leads to a formulation of

recursive, causal, local, morphological and geometric invariant �lters in terms of solutions

of certain partial di�erential equations of geometric type, providing a new view on many

of the basic mathematical morphology operations. One of their basic assumptions was the

locality assumption which aimed to translate into a mathematical language the fact that

we considered basic operations which were a kind of local average around each pixel or,

in other words, only a few pixels around a given sample in
uence the output value of the

operations. Obviously, this excluded the case of algorithms as histogram modi�cation. This

is why operations like those in [8] and the one described in this paper are not modeled by

these equations, and a novel framework must be developed.
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It is not the goal of this paper to review the extensive research performed in contrast en-

hancement. We should only note that basically, contrast enhancement techniques are divided

in the two groups mentioned above, local and global, and their most popular representatives

can be found in any basic book in image processing and computer vision. An early attempt

to introduce shape criteria in contrast enhancement was done in [3]. To the best of our

knowledge, non of the variations to histogram modi�cation reported in the literature have

formally approached the problem of shape preserving contrast enhancement as done in this

paper.

2 Global histogram modi�cation: A variational for-

mulation

We call representatives of u all images of the form v = h(u), where h is a strictly increasing

function. The question is which representative of u is the best for our purposes. That will

depend, of course, in what our purposes are. We have seen above which is the function h

we have to select if we want to normalize the contrast making the distribution function of u

uniform. In addition, it was shown in [8] that when equalizing an image u : 
 ! [a; b] on

the range [a; b] we are minimizing the functional

E(v) =
j
j

2(b� a)

Z



 
v(x)�

b� a

2

!2

dx �
1

4

Z



Z


jv(x)� v(z)jdxdz: (5)

The second term of the integral can be understood as a measure of the contrast of the

whole image. Thus when minimizing E(v) we are distributing the values of u so that we

maximize the contrast. The �rst term tries to keep the values of u as near as possible to

the mean (b � a)=2. When minimizing E on the class of functions with the same family of

binary shadows as u, we get the equalization of u. We will see below how to modify this

energy to obtain shape preserving local contrast enhancement.

3 Connected components

To be able to extend the global approach to a local setting we have to insist in our main

constraint: We have to keep the same topographic map, that is, we have to keep the same

family of level-sets of u but we have the freedom to assign them a \convenient" grey level.

To make this statement more precise, let us give some de�nitions (see [10]).

De�nition 1 Let X be a topological space. We say that X is connected if it cannot be

written as the union of two nonempty closed (open) disjoint sets. A subset C of X is called

a connected component if C is a maximal connected subset of X, i.e., C is connected and

for any connected subset C1 of X such that C � C1, then C1 = C.

4



This de�nition will be applied to subsets X of IR2 which are topological spaces with the

topology induced from IR
2, i.e., an open set of X is the intersection of an open set of IR2

with X. We shall need the following observation which follows from the de�nition above:

Two connected components of a topological space are either disjoint or they coincide; thus

the topological space can be considered as the disjoint union of its connected components.

Remark. There are several notions of connectivity for a topological space. One of the

most intuitive ones is the notion of arcwise connected (also called connected by arcs). A

topological space X is said to be connected by arcs if any two points x; y of X can be joined

by an arc, i.e., there exists a continuous function 
 : [0; 1]! X such that 
(0) = x; 
(1) = y.

In a similar way as above we de�ne the connected components (with respect to this notion

of connectivity) as the maximal connected sets. These notions could be used below instead

of the one given in De�nition 1.

De�nition 2 Let u : 
 ! [a; b] be a given image. A section of the topographic map of u is

a set of the form

X�1;�2
= [�2[�1;�2]C�; (6)

where C� is a connected component of [u = �] such that for each �
0
; �

00
2 [�1; �2], �

0
< �

00,

the set

X�0;�00 = [�2[�0;�00]C� (7)

is also connected.

De�nition 3 Let u : 
 ! [a; b] be a given image and let fX� : � 2 [a; b]g be the family of

its level-sets. We shall say that the mapping h : 
� IR! IR is a local contrast change if the

following properties hold:

P1: h is continuous in the following sense:

h(z; �0)! h(x; �) when z ! x; �
0
! �; z 2 X�0; x 2 C�;

C� being a connected component of [u = �].

P2: h(x; �) is an increasing function of � for all x 2 
.

P3: h(x; �) = h(y; �) for all x; y are in the same connected component of [u = �] , � 2 IR.

P4: Let � be a connected set with u(�) not reduced to a point. Let v(x) = h(x; u(x)). Then

v(�) is not reduced to a point.

P5: Let X�1;�2
= [�2[�1;�2]C� be a section of the topographic map of u and let x 2 C�1

; y 2

C�2
. Then h(x; �1) < h(x; �2).

De�nition 4 Let u : 
! [a; b] be a given image. We shall say that v is a local representative

of u if there exists some local contrast change h such that v(x) = h(x; u(x)), x 2 
.
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We collect in the next proposition some properties which follow immediately from the de�-

nitions above.

Proposition 1 Let u : 
! [a; b] and let v(x) = h(x; u(x)), x 2 
, be a local representative

of u. Then

1. v(x) = supfh(x; �) : x 2 X�u,x 2 
g. We have that x 2 X�u if and only if x 2

Xh(x;�)v, x 2 
, � 2 IR.

2. v is a continuous function.

3. Let � (�0) be a connected component of [v = �] (resp. [u = �]) containing x, � =

h(x; �). Then � = �0.

4. Let X�1;�2
be a section of the topographic map of u. Then X�1;�2

is also a section of

the topographic map of v.

Proof.

1. Is a simple consequence of P2 in De�nition 3. 2

2. Is a consequence of P1 in De�nition 3. 2

3. By P3 of De�nition 3, we have �0 � [v = �]. Since x 2 �0 and �0 is connected, then

�0 � �. Now, suppose that

u(y1) = inf
z2�

u(z) < sup
z2�

u(z) = u(y2); y1; y2 2 �

Thus, u(�) is not reduced to a point. By P4 of De�nition 3, v(�) is not reduced to

a point, a contradiction since v = � on �. It follows that � � [u = �]. Since � is

connected and x 2 �, then � � �0. 2

4. Let X�1;�2
= [�2[�1;�2]C� be a section of the topographic map of u. Let x� 2 C� and

�� = h(x�; �). By part 3, C� coincides with the connected component of [v = ��]

containing x which we denote by C��
(v). Let �1 = ��1

; �2 = ��2
. Since, using P5,

f�� : � 2 [�1; �2]g = [�1; �2], then we may write X�1;�2
= [�2[�1;�2]C�(v). Now it is

easy to see that X�1;�2
is a section of the topographic map of v. 2

Remarks.

1. The previous proposition can be phrased as saying that the set of \objects" contained

in u is the same as the set of \objects" contained in v, if we understand the \objects"

of u as the connected connected components of the level-sets [� � u < �], � < �, and

respectively for v.
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2. Our de�nition of local representative is contained in the notion of dilation as given

in [6, 7], Theorem 9.3. Let Un be a lattice of functions f : IRn
! IR

n. A mapping

� : Un ! Un is called a dilation of Un if and only if it can be written as

�(f)(x) = supfg(x; y; t) : y 2 IR
n
; t � f(y)g; x 2 IR

n
;

where g(x; y; t) is a function assigned to each point (y; t) 2 IR
n
� IR and is possibly

di�erent from point to point. Thus, let h be a local contrast change and let v(x) =

h(x; u(x)). Let us denote byXt(f; x) the connected component ofXtf which contains x

if x 2 Xtf , otherwise, letXt(f; x) = ;. Let g(x; y; t) := h(x; t) ifXt(f; x)\Xt(f; y) 6= ;;

and := 0 if Xt(f; x) \Xt(f; y) = ;. Then v = �(u).

3. Extending the de�nition of local contrast change to include more general functions

than continuous ones, i.e., to include measurable functions, we can state and prove a

converse of Proposition 1, saying that the topographic map contains all the information

of the image which is invariant by local contrast changes [2].

4 Shape preserving contrast enhancement

We can now state precisely the main question we want to address: what is the best local

representative v of u, when the goal is to perform local contrast enhancement while preserving

the connected components (and level-sets). For that we shall use the energy formulation given

in Section 2. Let A be a connected component of the set [� � u < �], �; � 2 IR, � < �.

Write

E(v;A) :=
jAj

2(� � �)

Z
A

 
v(x)�

�� �

2

!2

dx�
1

4

Z
A

Z
A
jv(x)� v(z)jdxdz: (8)

We then look for a local representative v of u which minimizes E(v;A) for all connected

components A of all sets of the form [� � u < �], �; � 2 IR, � < �, or, in other words, the

distribution function of v in all connected components of [� � v < �] is uniform in the range

[�; �], for all �; � 2 IR, � < �. We now show how to solve this problem.

Let us introduce some notation that will make our discussion easier. Without loss of

generality we assume that u : 
 ! [0; 1]. Let �k;j := j=2k, k = 0; 1; 2; :::, j = 0; :::; 2k. We

need to assume that H, the distribution function of u, is continuous and strictly increasing.

For that we assume that u is continuous and 1

Areafx 2 
 : u(x) = �g = 0; for all � 2 IR: (9)

We shall construct a sequence of functions converging to the solution of the problem.

Let w0 = H(u) be the histogram equalization of u. Suppose that we already constructed

w0; :::; wi�1. Let us construct wi. For each j = 0; 1; :::; 2i � 1, let

Oi;j := [�i;j � wi�1 < �i;j+1]; (10)

1This assumption is mainly theoretical and does not necessarily needs to hold for basic practical purposes.
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and let Oi;j;r be the connected components of Oi;j, r = 1; :::; ni;j (ni;j can be eventually1).

De�ne

hi;j;r(�) :=
j[wi�1 � �] \ Oi;j;rj

jOi;j;rj
(�i;j+1 � �i;j) + �i;j : (11)

By our assumption (9), hi;j;r is a continuous strictly increasing function and we can

equalize the histogram of wi�1 in Oi;j;r. Thus, we de�ne

wi;j;r := hi;j;r(wi�1)�Oi;j;r
; (12)

j = 0; 1; :::; 2i � 1,r = 1; :::; ni;j, and

wi :=
2i�1X
j=1

ni;jX
r=1

wi;j;r�Oi;j;r
: (13)

We will then prove:

Theorem 1 Under the assumption (9) the functions wi have a uniform histogram for all

connected components of all \dyadic" sets of the form [� � wi < �] where �; � 2 f�i;j : j =

0; :::; 2ig, � < �. Moreover, as i ! 1, wi converges to a function w which has a uniform

histogram for all connected components of all sets [� � w < �], for all �; � 2 [0; 1], � < �.

Theorem 2 Let w be the function constructed in Theorem 1. Then w is a local representa-

tive of u.

The proof of Theorem 1 is based in the next two simple lemmas.

Lemma 1 Let O1; O2 � 
 such that O1 \ O2 = ;. Let ui : Oi ! [a; b), i = 1; 2, be two

functions with uniform histogram in [a; b). Let u : O1 [O2 ! [a; b] be given by

u(x) =

�
u1(x) if x 2 O1;

u2(x) if x 2 O2:
(14)

Then u has a uniform histogram in [a; b].

Lemma 2 Let O1; O2 � 
 such that O1 \ O2 = ;. Let u1 : O1 ! [a; b), u2 : O2 ! [b; c) be

two functions with uniform histogram in [a; b), [b; c), respectively. Assume that

jO1j

jO1j+ jO2j
=

b� a

c� a
;

jO2j

jO1j+ jO2j
=

c� b

c� a
: (15)

Let u : O1 [O2 ! [a; c) be given by

u(x) =

�
u1(x) if x 2 O1;

u2(x) if x 2 O2:
(16)

Then u has a uniform histogram in [a; c).
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Proof of Theorem 1. The �rst part of the statement follows immediately from the two

lemmas above. Now, consider the sequence fwig. Observe that

jwi(x)� wi+1(x)j �
1

2i+1
for all x 2 
: (17)

Indeed, if wi(x) 2 [�i;j; �i+1;2j+1), then wi+1(x) 2 [�i+1;2j; �i+1;2j+1), while, if wi(x) 2

[�i+1;2j+1; �i;j+1) then wi+1(x) 2 [�i+1;2j+1; �i+1;2j+2). The estimate (17) follows. Now, since

wN =
NX
i=1

(wi � wi�1) + w0; (18)

and the series on the right hand side is absolutely convergent, then wN converges absolutely

and uniformly to some continuous function w : 
 ! [0; 1]. w satis�es the statement above.

Indeed, since

[wi � �k;j ] = [wk � �k;j ] for all i � k; j = 0; :::; 2k � 1; (19)

and w is the uniform limit of wN , then for all � > 0 there is some N0 such that

[wi � �k;j ] � [w � �k;j ] � [wN � �k;j + �] (20)

for all i � k; j = 0; :::; 2k � 1 and all N � N0. Letting �! 0 it follows that

j[w � �k;j ]j = �k;j for all k = 0; 1; :::; j = 0; :::; 2k � 1: (21)

If � 2 [0; 1] is not dyadic, let �k;j ; �k;j+1 be such that �k;j < � < �k;j+1. Then

�k;j = j[w � �k;j ]j � j[w � �]j � j[w � �k;j+1]j = �k;j+1: (22)

Thus by approaching � with dyadic numbers we prove that

j[w � �]j = �; for all � 2 [0; 1]: (23)

Let us mention in passing that the above proof also shows that

Area([w = �]) = 0; for all � 2 [0; 1]: (24)

Similarly, one proves that w has a uniform histogram in all connected components of all sets of

the form [� � w < �] for all dyadic numbers �; � 2 [0; 1], � < �. Now let �; � 2 [0; 1] and let

O be a connected component of [� � w < �]. Let �k;j ; �k;j0 be such that �k;j < � < � < �k;j0 .

Let O0 be a connected component of [�k;j � w < �k;j0 ] containing O. Then

j[w jO� �]j � j[w jO0� �]j =
� � �k;j

�k;j0 � �k;j

jO
0
j (25)
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for all � 2 [�; �]. By property (24), we may approach � and � by dyadic numbers while

jO
0
j ! jOj. It follows that

j[w jO� �]j

jOj
�

� � �

� � �
: (26)

The other inequality is proved in a similar way. It follows that w has a uniform histogram

for all connected components of all sets of the form [� � w < �] for all numbers �; � 2 [0; 1],

� < �. 2

Proof of Theorem 2. We shall use the notation introduced previously. First we de�ne

h0(x; �) = H(�) (H being the global histogram of u). Let i � 1. Let x 2 
; � 2 [0; 1]. Let

j; r be such that x 2 Oi;j;r. Then we de�ne

hi(x; �) =

8><
>:
� if � < �i;j;

hi;j;r(�) if � 2 [�i;j; �i;j+1);

� if � � �i;j+1:

It is clear that h0 is a local contrast change of u. Let us check that hi is a local contrast

change of wi�1, i � 1, i.e., it satis�es P1-P5, for all i. To simplify our notation, let us write

W instead of wi�1.

P1i : Let z ! x, �0 ! �, z 2 X�0(W ), W (x) = �. Suppose that � 2 [�i;j; �i;j+1) and

x 2 Oi;j;r. Then either z 2 Oi;j;r or z 2 Oi;j�1;s for some s. If z 2 Oi;j�1;s, then W (z) 2

[�i;j�1; �i;j) and W (z) ! W (x). Hence W (x) = �i;j and �
0
! �i;j, �

0
2 [�i;j�1; �i;j).

Then hi(z; �
0) = hi;j�1;s(�

0) ! hi;j�1;s(�i;j) = �i;j = hi;j;r(�) = hi(x; �). If z 2 Oi;j;r,

then one easily checks that hi(z; �
0)! hi(x; �).

P2i : Follows from the de�nition of hi(x; �).

P3i : Let x; y be in the same connected component of [W = �] , � 2 [0; 1]. Let j be such

that � 2 [�i;j; �i;j+1). Then x; y 2 Oi;j;r for some r. Then hi(x; �) = hi(y; �) = hi;j;r(�).

P4i : Let � be a connected set with W (�) not reduced to a point. Let �j;r = � \ Oi;j;r.

Since � = [j;r�j;r, for some j; r, W (�j;r) is not reduced to a point. Thus, there exist

x; y 2 �j;r with W (x) < W (y). Then hi(x;W (x)) = hi;j;r(W (x)) < hi;j;r(W (y)) =

hi(y;W (y)). The set fhi(z;W (z)) : z 2 �g is not reduced to a point.

P5i : Let X�1;�2
= [�2[�1;�2]C� be a section of the topographic map of W and let x 2

C�1
; y 2 C�2

. Let j be such that �1 2 [�i;j; �i;j+1), x 2 Oi;j;r. If �2 2 [�i;j; �i;j+1),

then X�1;�2
� Oi;j;r since X�1;�2

is connected and contains x. Thus y 2 Oi;j;r. Hence

hi(x; �1) = hi;j;r(�1) < hi;j;r(�2) = hi(x; �2). Let k � j + 1, s be such that �2 2

[�i;k; �i;k+1), y 2 Oi;k;s. Then hi(y; �2) = hi;k;s(�2) � �i;k � �i;j+1 > hi(x; �1).

Let H0(x; �) = h0(x; �), Hi(x; �) = hi(x;Hi�1(x; �)), i � 1. Observe that HN (x; u(x)) =

WN (x). Since

HN (x; �) =
N�1X
i=0

(Hi(x; �)�Hi�1(x; �)) +H0(x; �); (27)
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and

jHi+1(x; �)�Hi(x; �)j = jhi+1(x;Hi(x; �))�Hi(x; �)j �
1

2i+1
;

the series in (27) is absolutely and uniformly convergent. Hence HN (x; �) ! H(x; �) for

some function H(x; �). It follows that H(x; u(x)) = w(x). Let us now prove that H(x; �) is

a local contrast change for u.

P1: Let z! x, �0 ! �, z 2 X�0(u), u(x) = �. Since

H = HN +
1X
i=N

(Hi+1 �Hi); (28)

then

jH(z; �0)�H(x; �)j �
2

2N
+ jHN (z; �

0)�HN (x; �)j: (29)

Using the corresponding property H1i we see that H(z; �0) ! H(x; �) as z ! x,

�
0
! �.

P2: Follows from P2i and the de�nition of H.

P3: Let x; y be in the same connected component of [u = �] , � 2 [0; 1]. Then H0(x; �) =

H0(y; �) and x; y are in the same connected component of [W0 = H0(x; �)]. Then

H1(x; �) = H1(y; �). Proceeding iteratively and using P3i we get that HN (x; �) =

HN (y; �) for all N . Letting N !1 we get that H(x; �) = H(y; �).

P4: Let � be a connected set with u(�) not reduced to a point. For any x 2 �, let Cu(x)(x)

be the connected component of [u = u(x)] containing x. Let �� = [x2�Cu(x)(x). Since

u(�) not reduced to a point, it contains an interval. This implies that Area(��) > 0.

Now we observe that w(�) = w(��). Obviously, w(�) � w(��). Now, let y 2 Cu(x)(x)

for some x 2 �. Since, by P3, w(x) = w(y), we have that w(y) 2 w(�). It follows that

w(��) � w(�), hence the equality. If w(�) was reduced to a point �, then w(��) = f�g.

Hence Area(w = �) � Area(��) > 0, contradicting (24). Therefore w(�) cannot be

reduced to a point.

P5: Let X�1;�2
= [�2[�1;�2]C� be a section of the topographic map of u and let x 2 C�1

; y 2

C�2
. First, using P5i and the fact that each hi transforms X�1;�2

into a section of the

topographic map of wi (Proposition 1), it follows that HN (x; �1) � HN (y; �2) for all

N . Letting N ! 1 we get that H(x; �1) � H(y; �2). Now, let z 2 X�1;�2
. Since

X�1;u(z);Xu(z);�2
are also sections of the topographic map of u, then by the previous

observation we have H(x; �1) � H(z; u(z)) � H(y; �2). If H(x; �1) = H(y; �2), then

w(z) = H(z; u(z)) = � for all z 2 X�1;�2
and some constant �. Hence Area(w = �) �

Area(X�1;�2
) > 0, again a contradiction with (24). Thus H(x; �1) < H(y; �2).
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2

Proof of Lemma 1. Let � 2 [a; b]. Since

[u � �] = [u1 � �] [ [u2 � �];

it follows that

j[u � �]j

jO1j+ jO2j
=

j[u1 � �]j

jO1j

jO1j

jO1j+ jO2j
+
j[u2 � �]j

jO2j

jO2j

jO1j+ jO2j

=
� � a

b� a

jO1j

jO1j+ jO2j
+
� � a

b� a

jO2j

jO1j+ jO2j

=
� � a

b� a
:

Hence, u has a uniform histogram. 2

Proof of Lemma 2. Let � 2 [a; b[. Since [u � �] = [u1 � �]

j[u � �]j

jO1j+ jO2j
=
j[u1 � �]j

jO1j

jO1j

jO1j+ jO2j
=
� � a

b� a

b� a

c � a
=

�� a

c� a
:

Now, let � 2 [b; c). Since [u � �] = O1 [ [u2 � �],

j[u � �]j

jO1j+ jO2j
=

jO1j

jO1j+ jO2j
+
j[u2 � �]j

jO2j

jO2j

jO1j+ jO2j

=
b� a

c� a
+
�� b

c� b

c� b

c� a
=

� � a

c� a
:

We conclude that u has a uniform histogram. 2

5 The algorithm and numerical experiments

The algorithm has been described in the previous section. Let us summarize it here. Let

u : 
! [0;M ] be an image whose values have been normalized in [0;M ]. Let �k;j := jM=2k,

k = 0; 1; 2; ::; N , j = 0; :::; 2k

Step 1: Construct w0 = H(u) be the histogram equalization of u.

Step 2: Construction of wi, i = 1; :::; N .

Suppose that we already constructed w0; :::; wi�1. Let us construct wi. For each j =

0; 1; :::; 2i � 1, let

Oi;j := [�i;j � wi�1 < �i;j+1]; (30)

and let Oi;j;r be the connected components of Oi;j, r = 1; :::; ni;j. Let hi;j;r be the distribution

function of wi�1�Oi;j;r
with values in the range [�i;j; �i;j+1].

12



Then we de�ne

wi :=
2i�1X
j=1

ni;jX
r=1

hi;j;r(wi�1)�Oi;j;r
: (31)

Remark. An interesting variant in practice consists in using the mean of w0, denoted by

m0;1, as the value to subdivide the range of w0

O1;0 = [0 � w0 < m0;1]; O1;1 = [m0;1 � w0 �M ]: (32)

Then we equalizew0 in all connected components of O1;0 in the range [0;m0;1�1], respectively

in all connected components of O1;1 in the range [m0;1;M ]. In this way we construct w1. Then

we compute the mean values of w1 in O1;0, O1;1. Denote them by m1;1, m1;3 (m1;2 = m0;1).

Now we use these values to subdivide again w1 into four pieces and proceed to equalize the

histogram of w1 in all connected components of all these pieces. We may continue iteratively

in this way until desired.

In Figure 2 we compare the classical local histogram algorithm described in [4] with our

algorithm. In the classical algorithm the procedure is to de�ne an n � m neighborhood

and move the center of this area from pixel to pixel. At each location we compute the

histogram of the n � m points in the neighborhood and obtain a histogram equalization

(or histogram speci�cation) transformation function. This function is used to map the level

of the pixel centered in the neighborhood. The center of the n � m region is then moved

to an adjacent pixel location and the procedure is repeated. In practice one updates the

histogram obtained in the previous location with the new data introduced at each motion

step. Fig. 2a shows the original image whose level-lines are displayed in Fig. 2b. In Fig.

2c we show the result of the global histogram equalization of Fig. 2a. Its level-lines are

displayed in Fig. 2d. Note how the level-sets lines are preserved, while the contrast of small

objects is reduced. Fig. 2e shows the result of the classical local histogram equalization

described above (31 � 31 neighborhood), with level-lines displayed in Fig. 2f.2 We see that

new level-lines appear thus modifying the topographic map (the set of level-lines) of the

original image, introducing new objects. Fig. 2g shows the result of our algorithm for local

histogram equalization. Its corresponding level-lines are displayed in Fig. 2h. We see that

they coincide with the level-lines of the original image, Fig. 2b.

Figure 3 repeats the experiments in Figure 2 for another synthetic image. Fig. 3a has

been constructed by cutting half of the right side of Fig. 2a and putting it at the left side

of it. Fig. 3b shows the global histogram equalization of Fig. 3a. Fig. 3c shows the result

of the classical local histogram equalization described above. Fig. 3d presents the result of

our algorithm applied to Fig. 3a. The level-lines o� all the �gures are given in Fig. 3e-3h

respectively. We see how di�erent connected components do not interact in the proposed

scheme, and the contrast is improved while preserving the objects in the scene.

Results for a real image are presented in Figure 4. Fig. 4a is the typical \Bureau de

l'INRIA image." Fig. 4b is the global histogram equalization of Fig. 4a. Fig. 4c shows an

2All the level sets for grey-level images are displayed at intervals of 20 grey-values.
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a b

c d

e f

g h

Figure 2: Example of the level-sets preservation. The top row shows the original image

and its level-sets. The second row shows the result of global histogram modi�cation and the

corresponding level-sets. Results of classical local contrast enhancement and its corresponding

level-sets are shown in the third row. The last row shows the result of our algorithm. Note

how the level-sets are preserved, in contrast with the result on the 3rd row, while the contrast

is much better than the global modi�cation.
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a b c d

e f g h

Figure 3: Additional example of the level-sets preservation. The �rst row show the original

image, global histogram modi�cation, classical local modi�cation, and the proposed shape

preserving local histogram modi�cation. The second row shows the corresponding level-sets.

intermediate step of the proposed algorithm, while Fig. 4d is the steady state solution. Note

how objects that are not visible in the global modi�cation, like those trough the window,

are now visible with the new local scheme.

An additional example is given in Figure 5. Fig. 5a is the original image. Fig. 5b-5d are

the results of global histogram equalization, classical local scheme (61 � 61 neighborhood),

and our algorithm, respectively.

Experiments with a color image are given in Figure 6, working on the YIQ (luminance

and chrominance) color space. In Fig. 6a we present the original image. In Fig. 6b, our

algorithm has been applied to the luminance image Y (maintaining IQ) and then we re-

composed the RGB color system. In Fig. 6c, again, we apply the proposed local histogram

modi�cation to the color Y channel only, but re-scaling the chrominance vector to maintain

the same color point on the Maxwell triangle.

In the last example, Figure 7, we compare the classical local histogram modi�cation

scheme with the new one proposed in this paper for a color image, following the same

procedure as in Figure 6. Fig. 7a shows the original image, Fig. 7b the one obtained with

the classical technique, and Fig. 7c the result of applying our scheme. Note the spurious

objects introduced by the classical local scheme.
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a b

c d

Figure 4: Example of shape preserving local histogram modi�cation for real data. The �rst

row shows the original image (a) and the result of global histogram modi�cation (b). An

intermediate state (c), together with the steady state of the proposed algorithm (d) are shown

in the second row.
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a b

c d

Figure 5: Additional example of shape preserving local histogram modi�cation for real data.

Fig. 5a is the original image. Fig. 5b-5d are the results of global histogram equalization,

classical local scheme (61 � 61 neighborhood), and our algorithm, respectively.
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a

b c

Figure 6: Example of local histogram modi�cation of a color image. The original image is

shown on the top. The bottom left is the result of applying our algorithm to the Y channel in

the YIQ color space. On the right, the algorithm is applied again only to the Y channel, but

re-scaling the chrominance vector to maintain the same color point on the Maxwell triangle.

a b c

Figure 7: Comparison between the classical local histogram modi�cation scheme with the new

one proposed in this paper for a color image. Fig. 7a shows the original image, Fig. 7b

the one obtained with the classical technique, and Fig. 7c the result of applying our scheme.

Note the spurious objects introduced by the classical local scheme.
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6 Concluding remarks

This paper presented a novel algorithm for the most basic and (probably) most important

operation in image processing: Contrast enhancement. The algorithm is motivated by ideas

from the mathematical morphology school, and it holds the main properties of both global

and local schemes: It preserves the level-sets of the image, that is, its basic morphological

structure, as global histogram modi�cation does, while achieving high contrast results as in

local histogram modi�cations.

A number of problems remain open in this area, and we believe they can be approached

with the framework presented in this paper, which complements the results in [8]. One of the

open problems is to extend the algorithm to other de�nitions of connected components, that

is, other de�nitions of objects. In this paper, we de�ne objects as done by the mathematical

morphology school, via level-sets, and since this is not the only possible de�nition, it remains

to be shown that a similar approach can be used for other relevant object descriptions. Note

that objects can be de�ned also via optical 
ow components in video data, or with a concept

of connected components in multi-valued images. A general framework for shape preserving

contrast enhancement should include these possible de�nitions as well.

From the energy formulation shown in this paper, equation (5), it is clear that histogram

modi�cation is using a measurement of contrast that it is not appropriate at least for human

vision. This is because absolute value is not a good model for how humans measure contrast

(this value should be at least normalized by the average brightness of the pixel region). The

extension of the approach presented in this paper to other models of image contrast is an

interesting open area as well. We expect to address these issues elsewhere.
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