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Abstract

Frequency weighted mean squared error (FWMSE) is often used for measuring image quality,
in generating halftones, and in considerations of lossy compression of halftones. We construct
examples to show the weakness of FWMSE when applied to halftones. Speci�cally, we show

that FWMSE does not directly re
ect the uniformity in the spatial distribution of halftone
dots. We then propose and examine a mixture distortion criterion that consists of FWMSE
and a dot distance term to explicitly account for the spatial arrangement of dots.
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1 Introduction

The goal of halftoning is to generate bi-level images from continuous tone images so that they

appear similar to the human visual system. To give an indication of the quality of halftones,

one often uses a distortion criterion d(xm;n; hm;n) to measure the di�erences between the

halftone hm;n and its continuous tone counterpart xm;n [1]. A distortion measure is essential

for optimization based halftoning algorithms, [2{8], where one �nds a halftone hm;n from

a continuous tone image xm;n so that the average distortion d(xm;n; hm;n) is minimized. In

lossy compression of halftones [9] as well as in designing entropy constrained halftoners [4,8],

a distortion measure is essential in the consideration of trade-o� between output quality and

bit rate.

Frequency weighted mean squared error (FWMSE) [1, 10, 11] is perhaps the most popular

distortion criterion that is used in practice, partly because of its simplicity and tractability.
The recently proposed S-CIELAB [12, 13], an extension of the color metric CIELAB, is
particularly useful for measuring the �delity of color halftones. In S-CIELAB, the input
color images are converted into the LAB color space, and then processed by a set of linear
�lters in the LAB space. Finally, a mean squared error (Euclidean distance in LAB) is
calculated using the �ltered components to give the distortion. Hence, S-CIELAB is a form

of FWMSE calculated in the CIELAB color space.

Let the pixel values of a size N by N continuous tone image xm;n to be real numbers between

0 (black) and 1 (white), and the bi-level halftone bm;n to take on values in f0; 1g. Let the
instantaneous frequency weighted squared error at pixel location (m;n) be

wm;n =
�
xm;n �

X
k;l

vk;lbm�k;n�l

�
2

(1)

where vk;l is an impulse response that approximates the characteristics of the human visual

system. The FWMSE is given by

W(x; b) =
N�1X
m=0

N�1X
n=0

wm;n (2)

where the sum is taken over all the pixels in the image. Since bm;n is a halftone rendition of
xm;n, the two images satisfy

1

N2

N�1X
m=0

N�1X
n=0

xm;n =
1

N2

N�1X
m=0

N�1X
n=0

bm;n; (3)

i.e., the halftone pattern has the same average graylevel as the continuous tone image. This
implies the DC components of xm;n and bm;n are identical, or equivalently X0;0 = B0;0 where

Xk;l and Bk;l are the discrete Fourier transforms (DFT) of xm;n and bm;n, respectively. Then
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Fig. 1. Two di�erent forms of frequency weighted mean squared error.

we can apply Parserval theorem on (2) to give

W(x; b) =
1

N2

X
(k;l)6=(0;0)

jVk;lj2jBk;lj2: (4)

This expression displays an explicit notion of weighting the halftone spectrum by the fre-

quency response of a �lter.

The operation of (1) can be represented by the block diagram in Fig. 1 (a). It makes good

intuitive sense as it suggests that we measure the di�erence between an original continuous
tone image and its corresponding halftone image as the halftone is perceived by the human
visual system. Another form of FWMSE that is also frequently used in the literature is
obtained by replacing wm;n with

~wm;n =
�X
k;l

vk;l(xm�k;n�l � bm�k;n�l)
�2
; (5)

which can be represented by Fig. 1 (b). In this form, both xm;n and bm;n are low pass �ltered
by vk;l. Both (1) and (5) are used in the literature, and have been shown to produce good

results in halftoning. For the rest of this paper, we will use the form given in (1). We note

that similar results and conclusions in the paper can be applied to both forms with suitable

modi�cation.

For a halftone to be perceived as high quality, it is essential that the spatial distribution of

halftone dots in smooth areas to be as uniformly distributed as possible. This is consistent

with the blue noise (high frequency noise) characteristic [14], meaning that the error spectra
between continuous tone and halftone images should preferably be concentrated in the high
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Fig. 2. A checker-board halftone rendition for a constant gray patch at mid-tone, i.e., xm;n = 0:5.

Using a visual �lter with monotonically decreasing magnitude frequency response from low to

high frequency, this pattern results in the smallest possible FWMSE among all possible halftone

renditions of mid-tone.

frequency range. FWMSE, however, does not explicitly address the spatial distribution of
halftone dots.

In this paper we examine FWMSE in detail, and give examples to show that a low FWMSE
is not always consistent with a smooth spatial distribution of halftone dots. The idea of
considering the distances between halftone dots has been successfully used in error di�usion

to generate high quality results [15]. Using this idea, we propose a new distortion criterion
that explicitly takes the spatial uniformity of halftone dots into account. Such a distortion
criterion has been used in conjunction with a tree coding algorithm to generate halftones of
very high quality [7,8].

2 Pattern Uniformity and Frequency Weighted Mean

Squared Error

Digital halftoning, by its nature, relies on the spreading of black and white pixels to give a

perception of gray levels. For high visual quality, one prefers the spatial distribution of black
and white pixels to be as \uniform" as possible, since uniformly spaced dots generally gives

visually smooth renditions of graylevels. This is consistent with designing halftones that have
a blue noise (high frequency noise) characteristic [14], meaning that the energy in the error

spectra between continuous tone and halftone images should preferably be concentrated at
the high frequency region.

It is evident from (1) that the spatial distribution of the black and white pixels is not explicitly
re
ected by the FWMSE. In other words, a halftone where the black and white dots are
spatially distributed \more uniformly" can incur a larger FWMSE than a more irregularly

distributed dot array. In the following, we will consider four examples that illustrates the

spatial distribution of halftone dots may or may not be re
ected by the FWMSE. Example 1

illustrates a situation where FWMSE is appropriate, while Examples 2 to 4 demonstrates
situations where FWMSE is inappropriate.
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Example 1: Consider a constant gray patch at mid-tone with xm;n = 0:5, and a checker-

board halftone rendition cm;n as shown in Fig. 2. The two-dimensional DFT (size 8 by 8) of

cm;n has only two non-zero frequency components

jC0;0j = jC4;4j = 32:

For a size 8 by 8 DFT, C4;4 is the frequency component at the highest possible frequency.

We have from (4) that

W(x; c) = 16jV4;4j2:
Consider any other halftone rendition dm;n for the same gray patch xm;n = 0:5. Since both
cm;n and dm;n have the same number of black and white pixels, we have from (3) and Parserval
theorem that X

(k;l)6=(0;0)

jDk;lj2 = C4;4:

Hence

W(x; d) �W(x; c) =
1

N2

X
(k;l)6=(0;0)

jVk;lj2jDk;lj2 � 1

N2
jV4;4j2jC4;4j2

=
1

N2

X
(k;l)6=(0;0)

jVk;lj2jDk;lj2 � 1

N2
jV4;4j2

X
(k;l)6=(0;0)

jDk;lj2

=
1

N2

X
(k;l)6=(0;0)

(jVk;lj2 � jV4;4j2)jDk;lj2:

For any visual (low pass) �lter with a monotonically decreasing magnitude frequency response
from low to high frequency, and for any halftone pattern dm;n (6= cm;n) di�ering from the

checker board pattern, we have

W(x; d) >W(x; c):

In this case, the FWMSE says that the checker board pattern is the best possible for any
pattern that renders a gray patch at mid-tone. In other words, the FWMSE gives us what
we expected; the most regular pattern (checker board) for rendering mid-tone yields the

smallest error.

Since the checker-board pattern is the most regular one for rendering the gray patch at

mid-tone (xm;n = 0:5), Example 1 shows that FWMSE is consistent with the regularity

of halftone patterns for this particular case. We will show next using one-dimensional and

two-dimensional examples that FWMSE is not always in agreement with the regularity of

patterns. The one-dimensional example (Example 2) and its spectral plots are very illu-
minating in revealing what can go wrong in FWMSE. The two-dimensional examples are

constructed in similar fashion and give realistic demonstrations of the problem.
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Example 2: Consider a one-dimensional constant gray \image" of length 64

xn = 0:25 n = 0; 1; : : : ; 63:

Two possible halftone representations for xn are

tn =

�
1 if n = 4k

0 otherwise
0 � n < 64

and

un =

�
1 if n = 8k or n = 8k + 3

0 otherwise
0 � n < 64;

as shown in Fig. 3. Note that the ratios of black pixels to white pixels for both tn and un are
3:1, giving an average intensity of 0.25. It is evident that the spatial distribution of black
and white pixels is more \uniform" in tn than in un. As a result, tn would appear to be

visually smoother than un, and hence tn is preferred over un as a halftone for the constant
graylevel 0:25. Plotted in Fig. 3 are the magnitude square of the 64-point discrete Fourier
Transforms of tn and un given by

jTmj2 =
�
256 if m = 0; 16; 32; 48
0 otherwise

0 � m < 64

and

jUmj2 =

8>>>>><
>>>>>:

256 m = 0
37:5 m = 8; 56
128 m = 16; 48

218:5 m = 24; 40
0 otherwise

0 � m < 64:

Consider the frequency weighted mean squared error between the halftone patterns and the

dc signal xn using a �lter with a frequency response (64-point DFT of an impulse response

hn)

Hm =

8>>>>>>>><
>>>>>>>>:

1 if m = 0
� if m = 8; 56
� if m = 16; 48


 if m = 24; 40

0 if m = 32

arbitrary otherwise.

0 � m < 64 (6)

Note that m = 32 corresponds to one half of the sampling frequency, and that we have only
speci�ed in this example the response of Hm at a small number of frequencies (5 frequencies

out of 32, taking the symmetry into account). We will choose the parameters of Hm to be

consistent with a typical low pass �lter that models the human visual response.

The frequency weighted mean squared errors are

W(x; t) = �2(jT16j2 + jT48j2) = 512�2
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Fig. 3. Plots of the two halftones tn and un, the magnitude squared spectra jTmj
2 and jUmj

2, and

a �lter response Hm that leads to the conclusion W(x; t) > W(x; u). Notice that the frequency

response of the �lter is not squared.
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pm;n qm;n

Fig. 4. Two possible halftone dot patterns for a constant gray patch at the graylevel g = 0:125.

This example leads to the conclusion that FWMSE can favor a less visually preferred pattern, i.e.,

W(x; p) >W(x; q).

and

W(x; u) = �2(jU8j2 + jU56j2) + �2(jU16j2 + jU48j2) + 
2(jU24j2 + jU40j2)

= 74:98�2 + 256�2 + 437:02
2:

We like to choose �; � and 
 so thatW(x; t) >W(x; u), i.e., we want to satisfy the inequality

256�2 > 74:98�2 + 437:02
2: (7)

There are in�nite number of choices of the parameters that corresponds to Hm being a low

pass �lter, and that (7) is satis�ed, implying W(x; t) > W(x; u). An example is plotted
in Fig. 3, with � = 0:95, � = 0:8, and 
 = 0:46. The speci�c values of Hm that we have
speci�ed are marked by crosses in Fig. 3. Any frequency response that passes through these
points will result in W(x; t) >W(x; u). The smooth curve drawn in Fig. 3 is an example of
such a response.

Example 2 shows that although tn is visually preferred over un as a halftone, tn incurs a
bigger FWMSE than un. If we examine the spectral plots in Fig. 3, we notice that by
shifting certain pixels with value \1" in tn to new locations in un (resulting in a less regular

pattern), we have also changed the spectra so that some energy in Tm (at m = 16; 48) has

been pushed to the high frequency region in Um (at m = 24; 40). These high frequency
components in Um are attenuated by the visual model in the calculation of the FWMSE,

resulting in W(x; t) >W(x; u).

In the following, we �rst construct a two-dimensional example (Example 3) in a similar
fashion, using a somewhat contrived �lter. Example 4 then illustrates the same problem

using a �lter derived from a well-known visual model in halftoning and printing.

Example 3: Consider a constant gray patch of size 8 by 8 at graylevel g = 0:125

xm;n = 0:125 m = 0; 1; : : : ; 7;n = 0; 1; : : : ; 7:

The arrays pm;n and qm;n in Fig. 4 represent two possible halftone dot patterns for xm;n. Note

that the average graylevels for both pm;n and qm;n are 1/8, as they both contain 8 entries
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of 1's out of 64. The di�erence between pm;n and qm;n is that the 1's at locations (2; 2) and

(6; 6) in pm;n has been moved to locations (1; 1) and (7; 7) in qm;n
1. It is perhaps obvious

that the dot arrangement in pm;n is more \regular" compared to that in qm;n, and hence

pm;n is usually considered to be a better halftone rendition of xm;n. We demonstrate in the

following FWMSE can actually favors qm;n than pm;n.

We �rst calculate the magnitude squares of the DFT's of pm;n and qm;n as

jPk;lj2 =

64 0 0 0 64 0 0 0

0 0 0 0 0 0 0 0

0 0 64 0 0 0 64 0

0 0 0 0 0 0 0 0
64 0 0 0 64 0 0 0
0 0 0 0 0 0 0 0
0 0 64 0 0 0 64 0
0 0 0 0 0 0 0 0

jQk;lj2 =

64 2 4 2 16 2 4 2

2 4 2 16 2 4 2 0

4 2 16 2 4 2 64 2

2 16 2 4 2 0 2 4
16 2 4 2 64 2 4 2
2 4 2 0 2 4 2 16
4 2 64 2 4 2 16 2
2 0 2 4 2 16 2 4

Note again that jP0;0j2 = 64 and jQ0;0j2 = 64, each corresponds to the entry at the upper
left corner of the respective array.

For the sake of simplicity, let us assume that the �lter vk;l has a symmetric frequency response
of the form

Vk;l =

1 � � 
 0 
 � �

� � � 
 0 
 � �

� � � 
 0 
 � �


 
 
 
 0 
 
 


0 0 0 0 0 0 0 0

 
 
 
 0 
 
 


� � � 
 0 
 � �

� � � 
 0 
 � �

Note that the responses jPk;lj2, jQk;lj2 and Vk;l are all arranged in a typical DFT fashion.

For example, the value V0;0 = 1 at the upper left hand corner corresponds to dc, while the

row and column of zeros in Vk;l correspond to one half of the sampling frequencies in the
\vertical" and \horizontal" directions. The assumption here that Vk;l = 0 for k = 4 or l = 4

is not necessary but it simpli�es our calculations a little bit. Since we want the �lter to be
low pass, the parameters should satisfy 1 � � � � � 
 � 0.

Using (4), the FWMSE between xm;n and pm;n are

W(x; p) = 4�2 and W(x; q) = 0:25�2 + 3�2 + 1:75
2:

1
The coordinate system is de�ned such that the origin (0;0) is located at the upper left corner of the pattern.
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rm;n sm;n

Fig. 5. Two 8 by 8 halftone renditions, rm;n and sm;n, of a constant gray patch of graylevel

g = 1=16. Using a modi�ed Mannos-Sakrison visual model at 300 dpi and 12 inches viewing

distance, we have 0:6911 =W(x; r) >W(x; s) = 0:6764, illustrating a less visually pleasing pattern

can incur a smaller frequency weighted mean squared error.

We like to choose �; � and 
 subject to the constraint 1 � � � � � 
 � 0, so that
W(x; p) >W(x; q). That is, we like to satisfy the inequality

�2 > 0:25�2 + 1:75
2: (8)

There are in�nite number of choices of the parameters that are consistent with vk;l being a

low pass �lter and that (8) is satis�ed. The parameters

� = 0:8; � = 0:5; 
 = 0:2 (9)

give an example where we have W(x; p) >W(x; q).

We have shown that although pm;n is visually preferred over qm;n as a halftone, qm;n incurs a
smaller frequency weighted mean squared error than pm;n. We have used for simplicity an 8
by 8 example here, where the frequency response of the visual �lter Vk;l may appear to vary
rather abruptly from the pass band to the stop band. If we want an example where the visual
�lter would have a �ner frequency resolution, e.g., speci�ed by a 16 by 16 point or bigger

DFT, we can replicate the dot patterns pm;n and qm;n to the desired size before we take the

DFT. The conclusion will remain unchanged. Finally, we demonstrate in the next example
the problem with FWMSE using a well-known visual model with realistic parameters for
printing at 300 dpi.

Example 4: Consider the two 8 by 8 bit patterns rm;n and sm;n of Fig. 5, that are possible
renditions of a constant grayscale patch of graylevel g = 1=16. The Mannos-Sakrison's visual

model [11] is
~A(fr) = 2:6(0:0192 + 0:114fr) exp[�(0:114fr)1:1]

where fr is the number of cycles of a sinusoid subtended per degree angle at the retina. This

response peaks at fr = 7:891 with a peak value 0.9809. As is usually done, we use a modi�ed
Mannos-Sakrison response given by

A(fr) =

(
~A(fr) if fr � 7:891

L(fr) if 0 � fr < 7:891

9



where L(fr) is a straight line segment joining the points A(0) = 1 and A(7:891) = 0:9809.

Using 8 by 8 point discrete Fourier transform, the frequency response of the visual �lter is

Vk;l = A(
q
f2k + f2l ) k = 0; 1; : : : 4; l = 0; 1; : : : 4

and by symmetry

V8�k;l = Vk;8�l = V8�k;8�l = Vk;l k = 0; 1; : : : ; 4; l = 0; 1; : : : ; 4

where

fi = 2DR tan(0:5�)i=8 i = k; l;

D is the viewing distance in inches, andR is the resolution in dots per inch. ForD = 12 inches
and R = 300 dots per inch, the magnitude squared response of the visual �lter jVk;lj2 is2

66666666666664

1 0:962 0:497 0:132 0:026 0:132 0:497 0:962
0:962 0:836 0:378 0:103 0:021 0:103 0:378 0:836
0:497 0:378 0:170 0:050 0:011 0:050 0:170 0:378
0:132 0:103 0:050 0:017 0:004 0:017 0:050 0:103
0:026 0:021 0:011 0:004 0:001 0:004 0:011 0:021
0:132 0:103 0:050 0:017 0:004 0:017 0:050 0:103

0:497 0:378 0:170 0:050 0:011 0:050 0:170 0:378
0:962 0:836 0:378 0:103 0:021 0:103 0:378 0:836

3
77777777777775

The matrix is organized in the typical DFT fashion where the dc energy jV0;0j2 is at the
upper left hand corner, and the highest frequency corresponds to the �fth column (k = 4)
from the top and the �fth row (l = 4) from the left. For this example, we have

W(x; r) = 0:6911 and W(x; s) = 0:6764:

Once again this illustrates that a less regular pattern sm;n can incur a smaller frequency

weighted mean squared error than a more regular pattern rm;n.

We emphasize that it is not true that we always have a smaller frequency mean squared error
with a less regular halftone pattern than with a more regular one. It is true, however, that

there are many examples that can lead to the same conclusion as in Examples 2 to 4. Hence
it is correct to say that frequency weighted mean squared error does not generally re
ect the

uniformity in the distribution of black and white dots in a halftone.

3 A Mixture Distortion Criterion

The example in the previous section demonstrates a shortcoming of FWMSE in that it

does not always re
ects the spatial distribution of the halftone dots. Hence if we use the
FWMSE with an optimization based halftoning algorithm, we can obtain suboptimal results
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in the sense that the dot patterns in the output halftones may not be the most subjectively

pleasing. One way to improve on the output halftone quality is to use an adaptive FWMSE

where we allow the spatial width of the visual �lter (hence also the frequency response)

to change according to the local graylevel [16{18], i.e., use a �lter with a larger width for

highlight and shadow regions where the dots are spaced far apart, and use a �lter with a

smaller width for mid-tone regions. In error di�usion one can also explicitly spread out the

halftone dots according to the optimum distance using an output feedback mechanism [15].

Here we consider a new distortion criterion that explicitly incorporates information on the

spatial distribution of halftone dots. This distortion criterion has been used with a tree

coding algorithm [7,8] and an entropy constrained error di�usion algorithm [19] to generate

high quality halftones.

We use the concept of minority pixels as de�ned by Ulichney [14]. Speci�cally, if the gray
scale of a local smooth region in an image is between 0 and 0.5, then the number of black

pixels in a halftone must be larger than the number of white pixels in the corresponding
region. In such case the white pixels are called minority pixels. Similarly, the black pixels
are minority pixels when the local graylevel has a value between 0:5 and 1. Let

�m;n =

�
1 if 0 � xm;n < 0:5
0 if 0:5 � xm;n � 1

be the value of the minority pixel at location (m;n). Based on an approximation using

square packing, one can de�ne the principal distance dp [14] as the average distance between
minority pixels in a halftone. Speci�cally,

dp(g) =

8<
:
q
1=g if 0 � g < 0:5q
1=(1 � g) if 0:5 � g � 1,

where g is the local gray level. Note that dp(g) is in�nite for g = 0 or g = 1, as it should

because no minority pixel should be inserted for complete black or white gray values. Let
�m;n be the distance from the position (m;n) to the nearest minority pixel. We can de�ne a

distortion measure using the distances between minority pixels by

�m;n =

8>>>>>>>><
>>>>>>>>:

0 if �m;n � dp(xm;n)
and bm;n = �m;n

0 if �m;n < dp(xm;n)

and bm;n 6= �m;n 
dp(xm;n)� �m;n

dp(xm;n)

!2

otherwise.

(10)

Note that �m;n favors putting a majority pixel at (m;n) if the distance from the nearest

minority pixel is less than dp(xm;n), while it favors a minority pixel at (m;n) if the distance

from the nearest minority pixel is larger than dp(xm;n).
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no penalty, �m;n = 0

(a)

penalty, �m;n > 0

(b)

penalty, �m;n > 0

(c)

no penalty, �m;n = 0

(d)

decide on putting black pixel at location

decide on putting white pixel at location

Fig. 6. Examples showing the four di�erent situations in the dot distance based distortion measure

of (10). In these examples, we have g = 0:75, � = 0 (minority pixel is black) and dp(g) = 2. The

circle in each case is of radius 2, which equals the principal distance dp(g) at the graylevel used in

this example.
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Consider an example with g = 0:75. Hence we have � = 0, i.e., the minority pixels are black

pixels, and dp(g) = 2. In the two cases shown in Fig. 6 (a) and (b), all the existing minority

pixels in the halftone are more than a distance of 2 away from the location being considered.

It would have be desirable if we could put a black pixel at some \past" locations so that the

distance between minority pixels could be kept to dp(g). Since we cannot change the pixels

that are already on the page, we would want to put a black pixel at the current location.

Consequently we assign a penalty to case (b), and no penalty to case (a). On the other hand,

the distance from (m;n) to the nearest minority pixel is only
p
2 in the cases (c) and (d),

which is smaller than the principal distance. In such a situation, we would want to put a

white pixel at position (m;n). Consequently, we put a penalty to case (c), and no penalty

to case (d). The speci�c penalty as de�ned in (10) is given by the relative error between
the principal distance and the actual distance to the nearest minority pixel. The criterion
in (10), when incorporated into a distortion measure for an optimization based halftoning
algorithm, explicitly encourages the minority pixels in a halftone to be located apart by the
principal distance. As a result, this allows a smooth rendition of the continuous tone image,
which leads to good subjective halftone quality.

Using the frequency weighted mean squared error and the distance from the nearest minority
pixel, we de�ne a mixture distortion measure as

em;n = wm;n + ��m;n (11)

where � is an experimentally determined parameter that controls the weighting between wm;n

and �m;n. Previously, we have found the value of 0.03 to be good in a halftoning algorithm

based on tree coding [7,8]. The overall mixture distortion is then given by

D(x; b) =
X
m;n

(wm;n + ��m;n):

The mixture distortion criterion has been applied in a tree coding halftoning algorithm [7,8]
and an entropy constrained error di�usion algorithm [19], that have shown to be e�ective in

generating halftones with good quality.

4 Conclusion

We have considered in this paper a de�ciency of the frequency weighted mean squared error

(FWMSE) for describing the quality of halftones, because it does not explicitly take into

account the distance between halftone dots. Examples are given using halftone renditions of
a constant gray patch that shows a FWMSE can give preference to a halftone rendition that

is considered to be less visually favorable than another rendition. We have also proposed

a mixture distortion criterion, that is a weighted combination of FWMSE and a measure

that re
ects the distance between halftone dots. Such a distortion criterion has been used

elsewhere to generate high quality halftones.
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