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Abstract

Spectral based color image editing systems include methods for generating spectral representations of surfaces and
illuminants from input signals of image capture devices (such as digital cameras and scanners), edi/illg spectral
representations of surfaces and illuminants in a scene, and transforming spectral representations of surfaces and
illuminants to output signals of image devices (such as CRT and LCD displays and color printers).

Introduction

Computer-assisted color image editing systems include methods for image capture, manipulation and reproduction.
Until recently, color image editing systems were commercially available only as part of large graphics systems.
Today, such systems are widely available in desktop publishing software or embedded in drivers for digital
cameras, scanners and printers, providing users with the means to 1) generate digital representations of color
images. 2) edit digital representations to make the image look visually appealing, and 3) reproduce digital
representations on different media. Whether they are part of an elaborate publishing system or a software driver for
imaging peripherals. all color image editing systems are dependent on and limited by devices that either capture or
generate color images.

Most image capture devices have only three color sensors and therefore compress a multidimensional spectral
signal into the output of three color channels -- usually, R. 0 and B. Most color image editing systems convert the
device ROB signals into a human-based representation, such as eIE XYZ, and operate on this representation. For
example, Neugebauer [1] and Schreiber [2] described color image editing systems based on converting device
dependent image representations. such as scanner or display ROB values, into human-based tristimulus signals,
such as XYZ. These color image editing systems provide a means of changing and displaying the human-based
tristimulus signals to enable interactive editorial color corrections. The objective of these systems is to visualize or
simulate enhancements to the printed output before the actual image is printed.

This paper presents a different approach to color image editing. Rather than convert device-dependent signals or
vectors into human-based vectors based on the CIE XYZ color matching functions, as is traditionally perfonned in
today's color image editing systems, it is possible to use device-dependent sensor responses to estimate device
independent spectral reflectances of surfaces and illuminants in the captured andlor rendered scene. To illustrate
this approach, I describe several methods for generating spectral representations of surfaces and illuminants in a
scene. I introduce the concept of spectral-based color image editing (SBCIE) systems that embody methods to
generate, edit and reproduce spectral representations of surfaces and illuminants based on the analysis of digital
images generated by scanners, digital cameras and displays.

Background

In this section, I introduce the linear algebraic notation for spectral representations of illuminants and surfaces used
throughout this paper. Then 1 describe the more practical low-dimensional linear spectral representations that can
be used to approximate spectral representations. These low-dimensional linear models arc necessary because most
often we do not have complete spectral infonnation about the illuminants and surfaces in a scene. I describe how
the accuracy of spectral representations are limited by the dimensionality of our image capture data and by our
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apriori knowledge of scene illumination.

The spectral power distribution of il1uminants and the spectral reflectances of surfaces are represented as functions
of wavelengths. For example, the spectral power distribution (SPD) of an illuminant can be described by a single
vector, e, with II entries representing the :Jmount of energy emitted over a range ofw:Jvelengths (e.g. /1 = 81 when
the w:Jvelengths range from 380 nm to 780 nm in 5 nm steps).

The spectr:J1 radi:Jnce f:JclOr of a surface [4] is the wavelength composition of the light reflected and/or emitted
from the surface. The spectral radi:Jnce factor of:J surface can be represented by a IIX/l matrix, S. If the surface is
diffuse and does not fluoresce, S has values between 0 and 1 along the diagonal and no values in off-diagonal
positions in the matrix. (A glossy or specular surface may have values that exceed 1.0.) When surfaces do not
fluoresce, their spectral radiance factor cun be represented by a vector, S, correspol1ding to the diagonal component
ofS. A fluorescem surface, however, will absorb light in one wavelength and emit light in a longer wavelength.
Thus the spectral radiance factor of fluorescent surfaces cannot be described by a single vector because it will have
entries in the off-diagonal positions in the matrix S. The complete characterization of the spectral radiance factor of
a surface tImt has both diffuse and fluorescent component requires the full/IX/! matrix S.

Low-dimellsionallinear spectral represelltaliOIlS ofWI/minallts and suifaces

The spectral representations of many illuminants, e, can be approximated by a linear combination of a smaller set
of spectral basis functions, Bir.s]:

N
,~ L wiBi

i = 1

where Wi are the weights chosen to minimize the error between the illuminant SPD and its linear model

approximation, and N is the dimensionality of the spectral representation.

The spectral representations of diffuse surfaces, s, can also be described by a linear combination of a smaller set of
spectral basis functions [6-9].

N

,~ L wiBi

i '" 1

These low-dimensional linear models of illuminant spectra and surface reflectances are obviously more efficient
and serve to reduce the amount of data that must be stored to reconstruct the spectral representations. Moreover, we
often generate the spectral representations of illuminants and surfaces from low-dimensional spectral data, such as
camera and scanner ROB values. In this case, the dimensionality of the image capture data will limit the
dimensionality of our spectral reflectances for reconstruction purposes.

The accuracy of our spectral representations of surfaces and illuminants will be limited by 1) the inherent
dimensionality of the illumimmt spectra and surfacc reflectances, 2) the dimensionality of the im:Jge capture dat:J,
and 3) our apriori knowledge about surfaces and illuminant spectra. If we have enough spectral ch:Jnnels in our
image capture device and knowledge of the illuminant, we can build an accurate representation of surfaces and
illuminants. In practice, most applications do not have enough sensor data and apriori knowledge to build complete
representations of surfaces and iIluminants. In these cases, we are forced to make low-dimensional estimates of the
surface reflectance matrices and illuminant vectors [3, 1O~ 12] which approximate the complete representations.
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Spectral-Based Color Image Editing Systems

Spectral-based color image editing (SBCIE) systems are based on methods for generating, editing and reproducing
spectral representations of surfaces and illuminants. To illustrate these methods, r give several examples of how to
generate spectral representations of surfaces and illuminants based on the analysis of digital representations of
scenes generated by scanners, digital cameras and displays.

Scanners
It is possible 10 use scanner RGB values to estimate the first three principal components or basis functions of
surface spectral reflectances. Rather than map the scanner RGB values into tristimulus values (as traditional
colorimetric approaches have done [13,14]), the scanner RGB values are used to estimate the weight factors of three
reflectance basis functions. The estimated weights and the corresponding spectral basis functions are then used to
build three-dimensional linear representations of surface spectral reflectances.

To illustrate how to generate spectral representations of scanned surfaces from scanner data, 1 introduce the
following notation. Let R be a 3xM matrix of scanner responses to M spectral surfaces, T be a 3x/1 matrix
describing the spectral responsivities of a three-channel scanner where /1 defines the range of wavelength samples,
B be a /I.d matrix defining three spectral basis functions for surface reflectances and W be a 3xM matrix of basis
weights.

Then,

R=TBW

Note that T and B can be combined to fonn a 3x3 matrix, C, arid W can then be solved by the regression equation:

W=C-1R

Having solved for W, our estimates of the spectral reflectances of the scanned surfaces are calculated by:

S=BW

This example is based on 3-channel output - the more the channels, the better one will do. For example, we get
significant improvement with increasing to 4 spectral channels[ 15, 16]. We can also, improve our estimates of the
surface reflectances by judicious selection of spectral basis functions. For a review of methods for selecting the
appropriate basis functions, see Sherman and Farrell [17]. For a description of a method for increasing the number
of channels in a scanner see Farrell, Shennan and Wandell [18J.

Digital Cameras
If we know both the spectral sensitivities of the color sensors in a digital camera and the spectral power distribution
(SPD) of the illuminant, we can use the method described above to estimate the spectral reflectances of the surfaces
in the scene captured by the digital camera:
Let R be a 3xM matrix of camera responses 10 M spectral surfaces, T be a 3xIl matrix describing the spectral
responsivities of a three-channel camera (illuminant ineluded), and B be a Ilx3 matrix defining three spectral basis
functions for surface refleclances, We then solve for the weights on the spectral basis functions, W, and estimate
the spectral reflectances, S, by BW.

There are many instances in which the illumimmt SPD is not known, however. In fact, it is most often the case that
we do not know what part of the color signal recorded by a digital camera reflects the scene iJIuminants and what
part reflects the surface reflcctances. If we knew the illuminanl, we could solve for the surfaces [10]. If we knew
the surfaces, we could solve for the illuminant [3J. When we cannot measure the illuminanl SPD, we are forced to
estimate it from the distribution of color pixel values in the captured image.

Page 3



l1luminant estimation is an important problem that is beyond the scope of this paper. I refer the reader to the
"subspace algorithm" by Maloney and Wandell [11 J and the "gray world algorithm" by Buchsbaum [to]. Other
algorithms which are based on formal statistical theories include the "maximum likelihood estimation algorithm"
and the "covariance matching algorithm" by Trussell and Vrhel [22], and the "Bayesian color-constancy algorithm"
by Brainard and Freeman [24]. All these methods rely in one way or another on restricting the dimensionality of
linear vector space for representing the illuminant spd. The performance of these algorithms for estimating the
illuminant $PD depends greatly on the number of classes of color sensors. The accuracy of the iJIumillallt $PD
estimations increases with the number of color sensor classes.

Displays
Color images of scenes are often rendered on emissive (e.g. CRT) or reflective (e.g. LCD) displays. Even though
we may not know how the images were generated, we nonetheless have the perception that the displayed images are
realistic depictions of actual scenes. In fact, one of the key areas in computer graphics is devoted to developing
realistic spectral representations of surfaces and i1uminants to be rendered on the display. If we begin with a known
spectral representation, the rendering'is straightforward and our work is done. The real problem is in generating the
spectral representations of surfaces and illuminants, either from sensor data (as illustrated above) or from rendered
images.

Let's assume that we know nothing about how a displayed image was generated but nonetheless wish to generate a
spectral representation of the surfaces and illuminants that is consistent with our perception of the scene. One
method for doing this is to have the operator select a region of the scene that corresponds to a white surface. Since
a white surface has known spectral reflectance, we can estimate an il1uminant spectral power distribution that
would be consistent with the displayed tristimulus values for the white surface. Let Y be a 3xl vector containing
the displayed tristimulus values for the rendered white surface. Let R be a 3xN matrix containing the linear RGB
values for the white surface. And let T be a 3x3 matrix that maps R int~ Y.

Y=TR

Tis detennined by the multiplication of two matrices: a 3:(/1 matrix containing the CIE XYZ color matching
functions, H, and a I/x3 matrix cOlltaining the spectral power distribution of the three display phosphors, P.

T=HP

Our first task is to find an illuminant that when reflected from a white (Lambenian) surface would generate X. In
other words, we wish to solve for the illuminant spd, E, where the surface reflectance (S), human color matching
functions (H), and tristimulus values (Y) are known:

Y=HSE

The method of solving for E, given S, Hand Y was first introduced by Buchsbaum [10]. In his algorithm,
however, he used what is commonly referred to as the "grayworld assumption". This assumption states that the
sensor response to a gray surface can be approximated by the sensor responses averaged over an entire image or
scene. In this example, the average sensor response corresponds to the tristimulus values, X, averaged across the
entire image, It is not difficult to demonstrate that this assumption does not hold for many images. And when this
assumption is not valid, this method for color correction will faii. When the assumption is valid, however, the
method works quite well. Thus, by asking observers to identify a known surface (be it white, gray, or pU'llle) we
can circumvent the grayworld assumption and use the tristimulus values for this known surface, Y, to solve for E.

When E is generated by daylight illumination, we can solve for E given Y, H, Sand 0 where Y is a 3xl vector
containing the tristimulus values for a known surface, S, and 0 is a Il.d matrix containing three spectral basis
functions for daylight [5], Equation 8 can be rewritten as

Y= HSDF
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where F is a 3x1 veclor containing the eigenvalues or weights for D. Since E is estimated by DF, and D is known,
our computational task is to estimate F. To simplify the calculation, combine H, Sand D into a 3x3 matrix, G.
Then, we estimate F by

Scene illuminanls are often generated by some combinatioo of fluorescent, tungsten and daylight illuminations,
however, and we need more than three spectral basis functions to describe these more complex illuminations. One
way to solve for E in this case is to provide users with a database of illurninant SPDs and to iteratively search
through the database to find E that minimizes the difference between the predicted tristimulus values, y', and the
actual displayed tristimulus values, Y.

Now, having estimated E, our task is to estimate the spectral reflectances of surfaces, S, that are consistent with E
and X, where X is a 3xM matrix containing the tristirnulus values for all surfaces depicted in the scene. We select
three spectral basis functions, B, with which 10 represent S, and use the three tristimulus values for each surface to
estimate the weights, W for B. Again, we can simplify the calculation by combining H, E and B into a 3x3 matrix,
A. Then, we estimate W by:

Again, as in the previous examples, the spectral refleclances of the M surfaces are estimated by:
S=BW

Transforming and rendering spectral representations

Once we have generated the spectral representations, we can transform (edit) and render (prim or display) them.
The subsequent transformation and rendering of spectral representations of surfaces and illuminants in a scene
completes the color reproduction system.

All transformations in SBCIE are essentially either changes in the entries of surface matrices, S, and/or i1luminanl
vectors, c. This can be achieved most simply by providing a database of surface matrices and illuminant vectors
from which the user can select. Alternatively, based on low-dimeosionallinear models, we can change the
weights and basis vectors that are used to generate the surface matrices and illuminant vectors (see the discussion of
Low-dimensional Ii/lear models above)

Surface transformations are the easiest to comprehend and visualize. We often want to change the skin tone of a
person, the color of a dress, the saturation of grass, the color of drapes or paint, and so on. IIluminant
transformations are difficult to visualize but are nonetheless powerful tools in SBCIE systems. For example, the
perceived color bahmce in an image can be altered by rendering the surfaces under different illuminants [23].
Display operators can perform such illuminant transfonnations ullIil the image appears to look visually appealing.

Other applications include image compositing and splining. Here the goal is to render different surfaces under the
same illuminanl. This is a challenge for any color image editing system that attempts to merge images based on
surfaces from the same physical object but captured or rendered under different illuminants.

Once we have spectral reflectances of surfaces and illuminants, it is a straight forward process to render these
representations on calibrated display devices.[19,20]. To render spectral representations on printers, one typically
uses a device calibration look-up table (LUT) [21].

Conclusions

In this paper, I introduce the concept of spectral-based color image editing (SBClE) systems as a general framework
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for image correction, composition, and enhancement. These systems are feasible because 1) surface reflectances are

low-dimensional, 2) illuminants are often known or measured, and 3) image capture devices are linear. SBeIE
systems enable operators to correct images that were captured under bad illumination, combine images captured

under different illumination, select illuminants that make the surfaces in an image look more visually appealing, and

create realistic effects simulating how a scene will look like under a desired lighting. Because the image

manipulations and adjustments correspond to changes that we are all familiar with, such as changes in lighting and

surface propenies, the image manipulations are intuitive to the user.
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