
H

Meld Scheduling: A Technique for
Relaxing Scheduling Constraints

Santosh G. Abraham, Vinod Kathail, Brian L. Deitrich*
Compiler and Architecture Research
HPL-97-39
Feburary, 1997

E-mail: [abraham, kathail]@hpl.hp.com
briand@crhc.uiuc,edu

instruction scheduling,
global scheduling,
meld scheduling,
latency constraint propagation,
instruction-level
parallel processors,
compiler optimization

Meld scheduling melds the schedules of neighboring
scheduling regions to respect latencies of operations issued
in one region but completing after control transfers to the
other. In contrast, conventional schedulers ignore latency
constraints from other regions leading to potentially
avoidable stalls in an interlocked (superscalar) machine or
incorrect schedules for non-interlocked (VLIW) machines.
Alternatively, schedulers that conservatively require all
operations to complete before the branch takes effect
produce inefficient schedules.

In this paper, we present general data structures for
maintaining latency constraint information at region
boundaries. We present a meld scheduling algorithm for
non-interlocked processors that generates latency
constraints at the boundaries of scheduled regions and
utilizes this information during the scheduling of other
regions. We present a range of design options and describe
the reasons behind our particular choices. We cover certain
pitfalls and discuss how to develop an algorithm that
addresses these issues. We extend the algorithm to take
advantage of interlocked processors by selectively
propagating latencies across region boundaries. We
evaluate the performance of meld scheduling on a range of
machine models on a set of SPEC 92 and Unix
benchmarks. We investigate the sensitivity of the
performance improvements due to changes in issue width
and instruction latencies.

*University of Illinois, Urbana, Illinois
An earlier version of this report was published in and presented at the 1996 Int. Symposium on Microarchitecture
(MICRO-29), Paris as "Meld scheduling: Relaxing scheduling constraints across region boundaries".
© Copyright Hewlett-Packard Company 1997

Internal Accession Date Only

2

1 Introduction
Scheduling algorithms are usually oblivious of

constraints coming in from blocks or regions that are
already scheduled and hence may make scheduling decisions
that lead to poor schedules. In a non-interlocked machine,
the processor does not interlock to ensure that the inputs
are available before issuing an operation. For such
machines, the compiler schedules code to guarantee that an
operation completes before a dependent operation issues.
Within a scheduling region, the scheduler delays the issue
of a dependent operation to ensure that its inputs are
available. Across scheduling regions, a scheduler must
ensure that certain constraints are satisfied on entry or exit
of a region. For instance, one convention is to assume that
on entry all operations have their inputs available. In this
case, the scheduler must guarantee that all operations
complete before control is transferred to another region. In
contrast, a meld scheduler generates latency constraints
imposed by scheduled regions, propagates constraints to
the boundaries of a region to be scheduled, and translates
these constraints to edge constraints recognized by the
local region scheduler.

The example in Figure 1 illustrates the benefits of meld
scheduling. Assume that load and arithmetic operations

take four and three cycles respectively. In Figure 1(a), the
conventional scheduler delays the branch to issue in cycle
7, in order to guarantee that the load operation e in block
B1 completes before the branch is taken. In this example,
there is an immediate use of r6 in cycle 0 of block B3,
but the conventional scheduler is oblivious of the schedule
in block B3 and always delays the branch. As illustrated in
Figure 1(b), meld scheduling relaxes the scheduling
constraint on the branch and schedules it in cycle 5 of
block B1 . When scheduling B3 , meld scheduling
recognizes the incoming constraint from the load e to its
use, and delays the issue of operation l to cycle 2. In this
example, meld scheduling is able to reduce the schedule
length of block B1 without increasing the schedule length
of block B3 . Eventually, the propagation of latency
constraints to successor blocks does increase the schedule
length of block B5 by 2 cycles. But the savings in the
schedule length in the more frequently executed blocks
more than makes up for the loss in the less frequently
executed blocks. The weights on the blocks represent the
profiled or estimated execution frequency of the block. In
this example, meld scheduling improves weighted schedule
length, a measure of overall execution time, by
approximately 10%.

0 a: load r2, (r1)
1 b: r4 <- r4 + 4
2 c: r3 <- r3 + 4
3 d: r5 <- r5 + 1
4 e: load r6, (r2)
5 	-
6 	-
7 f: branch

0 g: r9 <- r8 + r7
1 h: r10 <- r8 - r7
2 i: load r6, (r11)
3 j: r13 <- r9 + 12
4 	-
5 k: branch

0 l: r14 <- r6 + r13
1 m: r15 <- r15 + 4
2 n: r12 <- r12 + 4
3 o: load r16, (r14)
4 	-
5 	-
6 p: branch

0 q: r17 <- r15 + 8
1 r: r18 <- r14 + 8
2 	-
3 	-
4 s: jsr sub1

0 t: r19 <- r16 + 4
1 	-
2 	-
3 u: jsr sub2

Block B2 weight 150Block B1 weight 200

B3 weight 100

B4 weight 120 B5 weight 50

150

50
50

100

50 50

120 50

70

Weighted schedule length 	= 8*200 + 6*150 + 7*100 + 5*120 + 4*50
	 	 	 	= 4000 cycles

0 a: load r2, (r1)
1 b: r4 <- r4 + 4
2 c: r3 <- r3 + 4
3 d: r5 <- r5 + 1
4 e: load r6, (r2)
5 f: branch

0 g: r9 <- r8 + r7
1 h: r10 <- r8 - r7
2 i: load r6, (r11)
3 j: r13 <- r9 + 12
4 k: branch

Block B2 weight 150Block B1 weight 200

0 m: r15 <- r15 + 4
1 n: r12 <- r12 + 4
2 l: r14 <- r6 + r13
3 	-
4 	-
5 o: load r16, (r14)

6 p: branch

B3 weight 100
150 50

50 100

0 q: r17 <- r15 + 8
1 r: r18 <- r14 + 8
2 	-
3 	-
4 s: jsr sub1

0 	-
1 	-
2 t: r19 <- r16 + 4
3 	-
4 	-
5 u: jsr sub2

B4 weight 120 B5 weight 50
50 50

120

50

70

Weighted schedule length 	= 6*200 + 5*150 + 7*100 + 5*120 + 6*50
	 	 	 	= 3550 cycles

(a) (b)
Figure 1. Example illustrating the performance improvement of meld scheduling

(a) Conventional scheduler (b) Meld scheduler

3

 The utility of meld scheduling for interlocked machines
is less apparent. In an interlocked machine, the processor
detects that inputs to an operation are not yet available
using interlock hardware and delays the issue of the
operation dynamically through stall cycles. For such
machines, the scheduler assumes the inputs to be available
at the entry and furthermore, considers branches for
placement as soon as the operations generating live-out
values are scheduled. Thus, the scheduler for an interlocked
machine can schedule branches in cycles 5 and 4 of blocks
B1 and B2, optimistically assuming that there will not be
immediate uses of live-out values in successor blocks.
However, if there are immediate uses of the live-out
values, the processor stalls till completion of the live-out
generating operations. In the example in Figure 1, the use
of r6 in cycle 0 of block B3 causes stalls of 2 and 1
cycles, when the predecessor block was B1 and B 3
respectively. In contrast, with meld scheduling the
branches are scheduled early, but the uses of live-outs from
predecessor blocks B1 and B2 are delayed in block B3 to
cycle 2. Thus, an interlocking machine does not stall on
the meld-scheduled code in Figure 1b. Meld scheduling is
not necessary for correctness in interlocked machines, but
can lead to improved overall performance through
reductions in stall cycles. Meld scheduling as described in
this section does not produce a net improvement over
conventional scheduling for this example. We describe a
variant of meld scheduling for interlocked processor that
propagates latency constraints selectively to successor
blocks in section 3.10.

Scheduling techniques that schedule larger regions reduce
the potential for performance improvement due to meld
scheduling. For instance, superblocks are composed of a
linear trace of basic blocks [1]. In contrast to conventional
basic block scheduling which does not propagate latency
constraints to its successor blocks, superblock scheduling
automatically considers latency constraints imposed by
operations scheduled so far in basic blocks that are part of
the superblock. Thus, superblock scheduling can provide
much of the same benefits as meld scheduling in
conjunction with basic block scheduling. Other global
scheduling techniques [2-7] are cognizant of latencies over
larger regions. Since the number of dynamic scheduling
boundaries that are crossed decreases when larger
scheduling regions are employed, the additional
performance improvement due to meld scheduling decreases
as the scheduling regions get larger. As developed in this
report, meld scheduling can be applied in conjunction with
almost any choice of scheduling region short of the entire
function to provide additional performance improvements.
Meld scheduling is complementary to schedulers that
operate on individual regions, enabling higher performance
for a given scheduling region or enabling the use of
smaller scheduling regions for a desired level of
performance.

The rest of this report is organized as follows. The next
section presents the architectural model. Section 3
describes the meld scheduling algorithm. Section 4

presents experimental evaluation of meld scheduling.
Section 5 describes related work and the final section
summarizes the results of this work.

2 Architecture models
As we have discussed earlier, meld scheduling can

improve the performance of both VLIW and superscalar
processors. For most of this report, we use a family of
non-interlocked VLIW machines based on the HPL
PlayDoh architecture [8]. However, in Sections 3.10 and
4.3, we extend and evaluate meld scheduling algorithms on
in-order interlocked superscalar processors.

Each machine has a set of integer, floating point,
memory and branch units and is capable of issuing an
instruction containing several operations in each cycle.
Each instruction consists of a set of operations, where each
machine operation is a RISC-style operation with source
and destination operands.

We assume that functional units are fully-pipelined.
Thus, operations compete for resources in the issue cycle
only, and operations from different instructions
(necessarily issued in distinct cycles) do not compete for
resources. As a consequence, we need to maintain only
latency constraints and do not need to consider resource
usage constraints across region boundaries. This reduces
the amount of inter-region information and simplifies
constraint propagation during meld scheduling. The
technique presented in this report, however, can be
extended to handle resource-usage constraints for machines
which do not have flow-through pipelines.

In order to investigate the effects of varying issue width
and latencies, we consider a range of machine models
parameterized by width and latency. The four combinations
of widths labeled W1 through W4 are presented in Table 1
and the four combinations of latencies labeled L1 through

Table 1. Number of units in various
machine models

Integer
units

Floating
point
units

Memory
units

Branch
units

W1 1 1 1 1
W2 2 2 2 1
W3 4 2 2 1
W4 4 4 4 1

Table 2. Latencies of operations in various
machine models

Int
ALU

Float
Add

Int/
Float
Mpy

Int/
Float

Divide

Load Store Branch

L1 1 1 1 4 1 1 1
L2 1 3 3 8 2 1 1
L3 2 4 4 12 3 1 1
L4 5 6 10/12 15/16 5 3 3

4

L4 are presented in Table 2. A particular machine model,
W2L2, is a particular width choice (W2) and latency choice
(L2) from this table, capable of issuing up to seven
operations consisting of two integer, two floating-point,
two load/store operations and one branch operation.

3 Meld scheduling algorithm
In this section, we first present the data structures used

for representing inter-region constraints, then describe the
overall algorithm followed by more detailed descriptions of
various refinements. Figure 2 illustrates how block B3 in
Figure 1 is meld scheduled and we will use Figure 2 as the
running example in this section.

3.1 Data structures for inter-region constraints
The meld scheduler represents and transforms inter-

region constraints using a set of latency maps and a
distance map.

DEF: A distance map specifies the shortest distance in
cycles from each entry to each exit of a scheduled region.

In Figure 2 on the next page, the distance map for block
B1 specifies the distance from entry a to exit f to be 6
cycles. Since a basic block has only one entry and one
exit, its distance map contains only one value. In a single-
entry region, the distance map provides the distance from
the entry to each exit. In a superblock, the distance to each
exit is its exit time, the sum of the schedule time of the
exit (branch) operation and the branch latency.

DEF: A latency map is a table of operand and latency
dangle pairs; when queried with a particular operand, it
either returns the associated latency dangle (if present in
the table) or returns a default value.

 Entries can be created, modified, or removed from the
map and the default value of a map may be modified. The
latency dangle is one of two types.

DEF: A required dangle of an operand specifies the
number of cycles after control leaves a region through an
exit (or enters a region through an entry) that an operation
defining/using the operand completes.

DEF: An available dangle of an operand specifies the
number of cycles after control enters a region through an
entry (or leaves a region through an exit) that an operation
defines/uses the operand.

In order to ensure that the required dangles that a
scheduled region exports through its exits are honored by
its successors, each unscheduled region imports required
dangle constraints through its entries. In Figure 2, Block
B1 exports a required dangle of 2 on r6, indicating that
r6 is written two cycles into a successor block, by the
load operation in flight on exit from B1. The required
dangle on r6 is a constraint that unscheduled successor
blocks must satisfy when they are scheduled eventually.
Block B3 imports a required dangle of 2 in order to enforce
the constraint that r6 must not be referenced for the first
two cycles of the schedule for B3. Similarly, in order to
exploit the available dangles that a scheduled region
exports through its entries, each unscheduled region

imports available dangles through its exits. In Figure 2,
Block B4 exports an available dangle of 1 on r14 ,
indicating there is no use of r14 till cycle 1 by operation
r. The available dangles indicates the ability of a scheduled
region such as B4 to absorb some of the latencies from its
predecessors. Block B3 imports an available dangle of 1
on r14 , permitting operations that define r14 to
complete up to one cycle after control transfers out of
block B3. The available dangles relaxes constraints on
scheduling B3.

A particular latency map is characterized and named by
three independent attributes: export/import, entry/exit, and
def/use. Thus, Figure 2 shows the import entry def map,
one of the latency maps for Block B3, at the top left-hand
corner of Block B3. We describe these attributes next.

DEF: An export map of a region contains constraints
that this (necessarily) scheduled region imposes on other as
yet unscheduled regions.

DEF: An import map of a region contains constraints
that other neighboring scheduled regions impose on this
(necessarily) unscheduled region.

DEF: An entry map is at the entry of a region.
DEF: An exit map is at the exit of a region.
DEF: A def map contains constraints due to definitions

of variables/operands.
DEF: A use map contains constraints due to uses of

variables/operands.
Export maps are created after a region is scheduled and

are persistent throughout the scheduling process. Figure 2
shows the latency map structures just before B3 is
scheduled. Thus, blocks B1, B2, B4, which have been
scheduled, have export maps at their entries and exits, even
though only the export maps relevant to scheduling B3 are
shown. Import maps for a region are created just before a
region is scheduled and are destroyed immediately after the
region is scheduled. Thus, when B3 is scheduled, only the
import maps for B3 are live. B5 does not have any meld
data structures because it is as yet unscheduled.

The export maps are formed by inspecting the schedules
for a region. The required dangles from the export exit
maps are propagated to the import entry maps. Thus, the
export exit def maps of blocks B1 and B2 are used to form
the import entry def map for B3. The available dangles
from the export entry maps are propagated to the import
exit maps. Thus, the export entry use map for B4 is used
to form the import exit use map for B3. The import map
constraints are translated to constraints on dependence
edges that are recognized by the local scheduler. We will
discuss the dependence edge constraints shown in Figure 2
later in Sections 3.6 and 3.7. Note that the def and use
constraints are completely orthogonal; data flows from
export def maps to import def maps and from export use
maps to import use maps. Depending on the scheduling
discipline and machine model, some maps may be
unnecessary. For instance, in certain machine models
latencies of anti- and output dependencies are always zero
and consequently, required use dangles are always zero. For

5

Scheduled
Block B1

Distance map

a->f 6

Export exit
def map

r6 2

Export exit
use map

Scheduled
Block B2

Distance map

g->k 5

Export exit
use map

Export exit
def map

r6 1
r13 1

Unscheduled
Block B5

Scheduled
Block B4

Distance map

q->s 5

Export entry
def map

Export entry
use map

r14 1
r15 0

CM 	 	DM-d 	 	DM-d
	 	 r6 	 	 r13

l: r14 <- r6 + r13

o: load r16, (r14)

Branch 	DS-u 	 	DS-u
	 	 r14 	 	 r16

0
2

3 (4-1)
0

32 (3-1)
1 (2-1)

0
1

Import entry
def map

r6 2
r13 1

Import entry
use map

Import exit
use map

r14 1

Import exit
def map

r15 0

Figure 2. Propagation of latency constraints and conversion to edge constraints

6

such machines, the shaded maps in Figure 2, such as the
export exit use map, can be eliminated.

The default value of an entry export map specifies the
maximum available dangle for all operands. For instance,
we do not allow latency dangles into procedure calls and
returns and require all operations to complete before a
procedure call or return. Thus, in order to ensure that all
operations complete before the procedure call in cycle 4 of
block B4, the incoming latency dangle must be limited to
4 or less. We enforce this constraint by setting the default
value of the export entry maps of block B4 to 4. The
default value of an export exit map is always set to zero.

Drawing an analogy to data-flow problems, the export
maps together with the distance maps specify the transfer
function for a scheduled region. Just before a region is
scheduled, the constraints at each exit (up-exposed
constraints) are determined by examining the entry export
maps and distance maps of scheduled successors.
Similarly, the constraints at each entry (down-exposed
constraints) are determined by examining the exit export
maps and distance maps of scheduled predecessors. The
latency maps themselves form the gen sets in the data-flow
problems. The distance maps indirectly form the kill
functions, reducing each operand-latency pair by the
distance and killing any pairs whose latency drops to zero
or less.

3.2 Overview of the algorithm
An overview of the meld scheduling algorithm is shown

in Figure 3. The scheduling regions tile the entire function
and we iterate over the scheduling regions in some priority
order. Once a region is picked for scheduling, we create the
meld data structures for this region. We propagate the
export maps from neighboring predecessor scheduled
regions and build the import entry maps. We transfer the
required dangles in the import entry maps to edge
constraints. We propagate the export maps from
neighboring successor scheduled regions and build the
import exit maps. We use the available dangles in the
import exit maps to relax the edge constraints to the exits.
Using these augmented edge constraints, we schedule the
region. After scheduling, we construct export maps for
each entry and exit. We calculate the minimum entry to

 Iterate over scheduling regions in some priority order {
• Propagate export exit maps from predecessors and

build import entry maps
• Transfer required dangles from import entry maps

to edge constraints
• Propagate export entry maps from successors and

build import exit maps
• Use available dangles from import exit maps to

relax edge constraints
• Schedule region
• Inspect schedule and build export maps and

distance maps for this region
 }
Figure 3. Meld scheduling algorithm overview

exit distance for each pair of entry and exit nodes and
construct the distance map for this region.

3.3 Lazy versus eager propagation
We have implicitly assumed lazy propagation of

constraints implicitly; just before a region is scheduled, we
propagate constraints to the region and construct its import
maps. Lazy propagation collects constraints from other
scheduled regions only when necessary. However, lazy
propagation may visit a scheduled region many times, each
time for constructing the import map for a different region.
In contrast, eager propagation always keeps the import
maps at the boundaries between scheduled and unscheduled
regions up to date. Thus, when the meld scheduler picks a
region for scheduling, it forms the region's import maps
by locally combining the import maps of immediate
predecessors/successors. However, after a region is
scheduled, eager propagation must update the import maps
of all scheduled regions reachable through other scheduled
regions. Eager propagation may update a particular import
map many times, each time after scheduling a different
region. Thus neither lazy nor eager propagation is
consistently better than the other. Lazy propagation has
the advantage that the import maps are transient data
structures. We believe that lazy propagation is easier to
debug and maintain, because the validity of persistent data
structures (export maps and distance maps) can be verified
by locally examining a scheduled region. We use lazy
propagation in our implementation and experiments.

3.4 Iteration order
In conventional scheduling, the order in which regions

are scheduled does not affect the schedule lengths because
the scheduler is oblivious of the schedules of other
regions. In meld scheduling, a region scheduled earlier in
the iteration order only needs to honor constraints from a
few already scheduled regions. Therefore, in comparison to
conventional scheduling, regions scheduled earlier have
relatively shorter schedule lengths and regions scheduled
later have longer schedule lengths. Therefore, we sort
regions in decreasing profiled or estimated execution
frequency order and schedule them in sorted order. In the
example in Figure 1, blocks B1 and B2 have the highest
execution frequency, are scheduled earlier by the meld
scheduler and have shorter schedule lengths than in the
conventional schedule. In contrast, block B5 has a lower
execution frequency, is scheduled last, and has a longer
schedule length than with the conventional scheduler.

3.5 Propagating latency constraints to import
maps

The concept of distance is important in propagating
latency constraints. The distance from a region exit to
another region entry is the minimum number of cycles
before control can transfer from the exit to the entry along
any path of scheduled regions. The length of a path
consisting of scheduled regions is the sum of the schedule

7

lengths of the individual region segments. The distance
from a region exit to another region entry is the minimum
length along all such paths. The distance determines how
much a required dangle from an exit is reduced when seen
at a region entry. For instance, the required dangle from a
region exit of, say 10 cycles, is reduced to 4 cycles from
the viewpoint of a region entry that is at a distance of 6
cycles from the exit. Similarly, the available dangle at a
region exit is the sum of the dangle for the corresponding
operand at a successor region entry and the distance to that
entry.

Consider the computation of import entry maps at an
entry of a region being scheduled. We separate this
computation into two steps: first, calculating the distance
from the exits of regions reachable through scheduled
regions to this entry and second, composing the maps at
these exits to form the import entry maps. We calculate
the distance using a modified version of Dijkstra's shortest
path computation algorithm (see [9]). We form a unique
region exit identifier by combining the region and exit
operation identifiers. In the distance table, we associate
two pieces of information with each exit identifier: the
current shortest path length from this exit and whether this
exit has been expanded. An exit first enters the distance
table in the unexpanded state. Subsequently, when we
inspect the predecessors of this exit, we mark the exit as
expanded.

 We start the process by considering the immediate
predecessor exits associated with the control-flow edges
incident on the entry of the region being scheduled. Since

unscheduled regions do not export constraints, we filter
out exits that belong to unscheduled regions. We enter the
remaining exits in the distance table as unexpanded with
the distance component set to zero. In each iteration, we
pick an exit with the minimum distance component
among all unexpanded exits and expand it. This process
terminates when there are no more unexpanded exits in the
distance table.

We expand each exit by first determining the region
entry for this exit. The constant max_dangle is set to
the maximum expected dangle, typically the latency of the
longest operation. The distance of this entry to the entry
of the region being scheduled is the sum of the schedule
length from the region entry to the exit and the distance
component of the exit. If this computed distance exceeds
max_dangle, any dangles propagated through this entry-
exit pair will be absorbed before it reaches the entry of the
region being scheduled. Therefore, we move on to the next
unexpanded exit. Otherwise, we include the immediate
predecessor exits of the entry in the distance table. If the
distance table already contains the exit, the associated
distance is set to the minimum of the current distance
value and the computed distance through the expanded exit.
On termination, the distance components in the table are
the desired distances from each of the exits to the entry of
the region being scheduled.

The example in Figure 4 illustrates the distance
calculation scheme. The left-hand side of Figure 4 shows
the control flow graph, with scheduled regions shaded and
marked with an S and unscheduled regions not shaded and

R1
S
R1
S
R1
S

R2
S

R5
S

R4
U

R3
S

Region
being
scheduled

R3->E4=5

E6

E5

E4

E3

E2

E1

R4->E5=?

R5->E6=5 R2->E3=14

R1->E2=4

R1->E1=2

Step 	Action 	
	Map Dist. Expanded

Step1 Expand entry
	R2E3 	 0 	N
	R5E6 	 0 	N

Step2 	Expand R2E3
	R2E3 	 0 	Y
	R5E6 	 0 	N

Step3 	Expand R5E6
	R2E3 	 0 	Y
	R5E6 	 0 	Y
	R1E1 	 5 	N

Step4 Expand R1E1
	R2E3 	 0 	Y
	R5E6 	 0 	Y
	R1E1 	 5 	Y
	 	 	

Figure 4. Example illustrating distance calculation

8

marked with an U. The right hand side of Figure 4 shows
the exit that is expanded in each step and the updated
distance table after each step.

In Step 1, the entry of the region being scheduled is
expanded and its immediate predecessor exits are entered in
the table, viz. E3 and E6, with distance of 0. In Step 2,
we choose the exit E3 for expansion. We consider the
immediate predecessor scheduled exits for inclusion in the
table; in this case, E2. We use the available entry-exit
distance map to calculate the distance of the minimum
path from such exits to the entry through the exit being
expanded. For exit E2, this distance is 14+0=14. In this
example, we assume that max_dangle is 10. Since the
distance from E2 exceeds 10, we know that no dangle
through this exit can reach the entry and so we do not
include E2 in the table. After marking E3 as expanded, in
Step 3 the algorithm expands E6. The distance from E1 to
the entry through E6 is 5 and we enter this information in
the table. Exit E5 is also an immediate predecessor exit of
region R5. However, since R4 is unscheduled, we ignore
this exit and all reachable predecessor exits through E5,
viz. E4. We do not need to consider required dangles
through E4 because region R4 will eventually absorb
those dangles. Once all the exits in the table are expanded,
the algorithm terminates and the table contains the
minimum distances to all relevant exits.

Once the distances are available, we iterate over all the
exits in the distance table and apply the composition
procedure shown in Figure 5 to each of the export exit
maps and distances associated with the exits. As described
in Figure 5, in each composition step, we iterate over the
constraints in an export exit map. For each such
constraint, we look up the import entry map for a
corresponding constraint and update it.

 After computing the import entry maps, we use a
similar procedure to calculate the distances from an exit to
all relevant entries and compose the export entry maps to
determine the import exit maps.

 procedure compose_import_entry_map (export_exit_map,
 distance, import_entry_map) {

 Iterate over pairs in export_exit_map {
 Set dangle_operand and required_dangle from pair;
 req_dangle_at_entry = required_dangle - distance;
 if (req_dangle_at_entry > 0 AND

 (dangle_operand is not in import_entry_map OR
 req_dangle_at_entry > current_dangle in

 import_entry_map)) {
 enter (dangle_operand, req_dangle_at_entry) in

 import_entry_map;
}

 }
 }

Figure 5. Computing import entry map from
export exit maps

3.6 Latency map to dependence edge constraints
In this step, we transfer the constraints in the import

maps into constraints that are recognized by the local
scheduler. The entry import maps contain required dangles
that place additional constraints on scheduling operations
relative to the entry. Typically, these constraints are
enforced by placing edges from the entry node to individual
operations with latency markings indicating the minimum
amount by which an operation should be delayed relative
to the entry. The exit import maps relax constraints on
scheduling operations relative to the exit. To begin with,
each operation is constrained so that it completes before
control leaves a scheduling region through an exit. If a
particular operation's operands are not present in the
import maps, then the constraint can be relaxed so as to
merely guarantee that the operation is issued before control
leaves the region. Otherwise, the constraint can be relaxed
by the available dangle specified in the import maps.

For concreteness, we describe the details of transferring
the import map constraints to edge constraints in the
intermediate representation of the HP Labs research
compiler, Elcor. In Elcor, each entry has a start node called
a Control-Merge pseudo-operation (shown as CM in the
example in Figure 2). Each CM may have associated Data-
Merge (DM) pseudo-operations that define (DM-d) or use
(DM-u) operands. An exit or branch operation, may have
Data-Switches (DS) that define (DS-d) or use (DS-u)
operands. The Data-Merges and Data-Switches are
scheduled implicitly with the associated CM or Branch
operation.

For each operand in the import entry maps, we ensure
that there is a DM-d and a DM-u that define and use the
associated operand respectively. In the example in Figure
2, the operands r6 and r13 appear in the import entry def
map and therefore, we create DM-d operations that define
the operands r6 and r13. The DM-u operations are not
shown but are created. Similarly, we create DS-u
operations for r14 and r15. In addition to dependence
edges between real operations, we draw edges from DM
operations and from/to the DS operations. Initially, the
latencies on edges from the DM operations are set to zero
and the latencies of edges to the DS operations are set to
(latency of the operation - branch latency) to ensure that
the operation completes before control leaves the region.
For each constraint in the entry import maps, we set the
latencies of the outgoing edges from the corresponding
DM operations to the latency specified in the import
maps. In the example in Figure 2, we set the latencies on
edges originating from the DM associated with r6 to 2.
For each constraint in the import exit maps, we reduce the
latencies of the incoming edges to the corresponding DS
operations by the latency in the import maps. In Figure 2,
we reduce the latency on the edge from operation l to the
DS-u by 1 (the value in the import exit map for r14)
from 2 to 1. There is no constraint in the import exit map
for the operand r16 and therefore, the outgoing edge
latency on operation o is reduced to 0.

9

3.7 Generating export maps from scheduled
region

After scheduling a region, we generate the export maps
for that region. The export maps describe the constraints
imposed by this region on other, as yet unscheduled,
regions and are formed by scanning the scheduled code for
this region.

 In our implementation, the export entry maps are
formed incrementally by iterating over all operations in the
superblock and scanning all operands of each operation.
For each scanned operand, we compute the cycle at which
it starts reading/writing. If the operand is not present in the
export entry map, we create an entry associating the
operand with the computed value; otherwise, we replace
the current value with the computed value if it is lesser.

The export exit maps are computed as follows. In one
forward scan through the superblock, we incrementally
form a pseudo exit def map and pseudo exit use map to
record the end times that an operation finishes reading or
writing an operand. When we reach a branch, we record its
exit time (branch schedule time + branch latency). When
we have scanned all operations with schedule times less
than the exit time, we generate the export exit def map and
export exit use map for the exit by subtracting the exit
time from the end times in the pseudo maps and discarding
any entries whose required dangle drops to zero or less.

3.8 Refinements
In this section, we describe the details of the basic

algorithm, and propose efficient ways of handling certain
special cases.

3.8.1 Cycles in CFG
Cycles in the control flow graph (CFG) can potentially

lead to incorrect schedules. Consider the example in Figure
6. Region R2 has been scheduled and region R3 is being
scheduled. Consider the dependence carried through region
R2 from the load to its use in region R3. To this point,
we have left unspecified whether the region being
scheduled is treated as scheduled or unscheduled during the
import map calculation. If region R3 is treated as
unscheduled, then it does not export constraints. The load
may be scheduled in the last cycle of region R3 and the
use in cycle 0. If the load latency is larger than the sum of
the schedule length of region R2 and the branch latency,
the dependence between the load and its use may be
violated.

In the above example, the load-use dependence is carried
from the exit of the region being scheduled, through other
scheduled regions, to the entry of the region being
scheduled. In order to satisfy this dependence, a region
being scheduled must export available dangle constraints
through its entries. But, since it is not yet scheduled, these
available dangle constraints are not yet known. We can
still ensure that such cyclic dependencies are satisfied by
exporting conservative available dangle constraints and

setting the export entry maps and entry-exit distances to
conservative initial values.

An obvious conservative approach is to assume that the
region cannot absorb any incoming dangles. Accordingly,
we set the export map entries to zero for all operands
referenced in this region. and set the entry-exit distances to
zero. We use these preliminary settings to calculate the
import maps. If the region is contained in a cycle in the
CFG in which all other regions are scheduled, these
preliminary settings ensure that dangles from a region are
not allowed to propagate back into the region through its
entry. In the previous example, the use of the load appears
in the preliminary export entry map of region R3 and
hence also appears in the import exit map with an allowed
dangle equal to the entry-exit distance of region R2. Hence
the load is constrained to complete before control enters
region R3 again through region R2 and correctness is
preserved.

In our implementation, we calculate less conservative
preliminary export maps with the potential for better
performance. After picking a superblock for scheduling,
we first compute its entry import maps and transfer these
constraints to corresponding dependence edge constraints.
Then, we calculate the depth of each operation in the
superblock. The depth of an operation is the length of the
longest path from the start node to this operation.
Alternatively, it is the earliest schedule time of the
operation that will obey all dependence constraints and
hence is a lower bound on schedule time on a finite
resource machine. This depth is used in determining a
conservative estimate for available dangle for the operands
of the operation. Similarly, we use the depth of the branch
operation to calculate preliminary entry-exit distances.

R4
U

R1
U

r4 <- r1 + 4

load r1, (r3)

R3
U

R2
S

Prelim export
 use map

r1 	2

Import exit
 use map

r1 	5

E1

R2->E1 = 3

Figure 6. Handling cycles in control-flow graph

10

 R1
 S

load r1, (r3)

CM 	 	DM-d
	 	 r1

	R2
	U

DS-u 	 	Branch
 r1

r4 <- r1 +4

 R3
 S

Export exit
 def map

r1 	4

Export entry
 use map

r1 	0

4

Figure 7. Handling of pass-through dangles

In the example in Figure 6, assume the use operation
has a depth of 2 . Using this value in the preliminary
export map, we calculate an import exit use map
constraint of 5 on r1. The load may be scheduled with an
outgoing dangle of up to 5.

3.8.2 Pass-through dangles
In the example in Figure 7, both regions R1 and R3 are

already scheduled and region R2 is picked up for
scheduling. Note the dependence from the load in the last
cycle of region R1 to the use in cycle 0 of region R3. If
region R2 is scheduled in less than 4 cycles, the
dependence is not satisfied. An incoming required dangle
for which there is no internal reference but an upward
available dangle is referred to as a pass-through dangle. The
load constraint appears in the import entry def map of
region R2 and the use constraint in the import exit use

map. But the transfer of these import map constraints to
edge constraints is unclear.

In our implementation, pass-through dangles are handled
as follows. Data-Merges and Data-Switches are created for
constraints in the entry and exit import maps. Subsequent
edge-drawing connects the Data-Merge to the Data-Switch.
The edge latency is set first from the entry import map; in
this case to 3 (required dangle of 4 minus branch latency of
1). The edge latency is then reduced by the available dangle
from the exit import map; in this case it remains at 3
because the available dangle is 0. Since the Data-Switch is
implicitly scheduled with its branch, we ensure that the
branch is scheduled in cycle 3 or later and the load to use
dependence is satisfied in the above example.

3.8.3 Inter-region output and anti-dependencies
In the example in Figure 8(a), there is a definition of r6

in the region being scheduled and an up-exposed available
def dangle on r6 of 2 cycles. The meld scheduler, as
described, inserts a Data-Switch defining r6 associated
with the branch and an edge from the definition of r6 to
the Data-Switch with a latency of (divide latency (12) -
branch latency (1) - available dangle (2) = 9). The insertion
of this edge delays the exit branch. An alternative is to
push the operation defining r6 below the exit branch.
The branch is now not delayed, potentially improving
performance. A similar situation occurs with anti-
dependencies. In the case of inter-region anti- and output-
dependencies, the operation can be scheduled either
sufficiently above or below a branch but not within a
window around the branch.

Though these constraints can be handled also as resource
constraints, we model these constraints somewhat
imperfectly as edge constraints. We compare the depth of
the defining operation and the exit operation to determine
whether it is better to constrain the defining operation
below or above the branch. If the defining operation has a
larger depth and it is currently above the branch, we move
the defining operation and all its dependent operations

r6 = r5 / r4

Branch
DS-u
r6

9

0 --
1 --
2 r6 = r8+r9

(a)

0 --
1 --
2 r6 = r8+r9

r6 = r5 / r4

Branch
DS-d
r6

0

(b)
Figure 8. Handling inter-region output dependencies

11

below the branch in the sequential order. Figure 8(b)
illustrates how we move the defining operation below the
branch. On the other hand, if the defining operation is
currently below the branch, we may choose to move it and
the operations on which it is dependent above the branch.
Finally, we draw an appropriate edge to satisfy the up-
exposed def dangle. In Figure 8(b), we draw an edge from
the branch to the definition of r6.

3.9 Complete algorithm
The complete algorithm for meld scheduling as

implemented in Elcor, our research compiler at HP Labs,
is described in Figure 9. This algorithm accommodates all
the refinements described earlier in this section. Careful
consideration is given in the complete algorithm to reduce
the number of times the dependence graph is constructed.
Our dependence graph construction step is expensive, and
we do not support incremental updates to the dependence
graph. The dependence graph is required before certain steps
in the meld scheduler such as depth-based heuristics and
transferring of map constraints to edge constraints. On the
other hand, certain steps in the meld scheduler, such as
pushing operations below branches or inserting Data-
Merge or Data-Switch nodes require reconstructing the
dependence graph.

3.10 Meld for in-order interlocked processors
The meld scheduling algorithm, as described so far,

assumes absolutely no interlocking hardware and requires

the compiler to satisfy any dangles. We now develop a
meld scheduling algorithm for an in-order issue,
interlocked (superscalar) processor. In our interlocking
model, the processor stalls on the issue of an instruction if
an instruction requires results from another issued but not
completed operation and these results will not be available
in time. A conventional superscalar scheduler incurs stall
cycles due to inter-region dangles. In contrast, the VLIW
meld scheduler as described in this report eliminates all
stall cycles but increases schedule length. Our goal in
developing a superscalar scheduler is to eliminate a
substantial fraction of the stall cycles of a conventional
superscalar scheduler while only minimally increasing
schedule length.

Our adaptation of the meld scheduler for superscalars is
based on the following observations. Firstly, branches are
rarely mispredicted and it may be better to stall in these
instances than to propagate dangles to the target regions of
such branches. We refer to a control-flow edge that is
predicted to be taken as a predicted edge; otherwise as a
mispredicted edge. Propagating dangles through a
mispredicted edge may increase the schedule length of the
target region, and the target region may be more frequently
executed than the mispredicted edge is taken. The
alternative of not propagating dangles may cause some
stall cycles when control transfers through these
mispredicted edges. But this approach does not delay other
paths through the target region because the schedule length
of the target region is not increased. Secondly, even if stall

 Iterate over scheduling regions in frequency order {
• Create meld scheduling constraints data structures for region;
• Build import entry map for the entry;
• Construct dependence graph for the region;
• Constrain latencies on entry edges using import entry maps;
• Calculate depth for ops in region;
• Set preliminary export entry map and entry-exit
 distances for the region;

• redraw_edges = FALSE
• Iterate over exits of region {

 - Calculate cutoff distance to limit the traversal for building import exit maps;
 - Build import exit map for this exit using the cutoff distance;
 - Handle problematic cases of inter-region anti and output dependencies as follows:

Iterate over problematic operations {
 Decide placement with respect to this exit using the heuristic;
 if (operation is moved or constrained by up-exposed dangles) redraw_edges = TRUE;

 }
• if (redraw_edges) {

 - Delete dependence edges and reconstruct dependence graph
 - Constrain entry edges using entry import maps

 }
• Iterate over exits of region {

 - Relax latency constraints on edges to exit using import exit maps
 }

• Schedule region
• Sort operations in sequential order by schedule times
• Scan and build export maps and distance maps for this region

 }
Figure 9. The complete algorithm for meld scheduling

12

cycles are required to satisfy dangles along mispredicted
edges, these stall cycles are likely to be overlapped with
the misprediction penalty. The misprediction penalty is
governed by the length of the entire instruction pipeline,
whereas the latency dangles are proportional to the length
of the pipelines of individual functional units. Most
functional units have shorter pipelines than the overall
instruction pipeline and dangles due to these functional
units will be overlapped with the misprediction penalty.
Notable exceptions are operations such as divide/square
root and certain memory operations such as loading
directly from second-level cache. But, these operations are
not very frequent.

The superscalar meld scheduler is very similar to the
original VLIW meld scheduler, except that it propagates
dangles only along statically predicted-taken exits. The
major changes are the control flow edge classification
scheme and a change in the propagation termination tests.
In our implementation, we have profile information on
block execution counts and exit frequencies. Using this
profile information, we classify a branch to be taken if it
is taken with a probability of more than 0.5 in the profile
run. Once we have classified all branches as predicted
taken/not taken, we label the control flow edges from the
predicted taken branches as predicted edges. The superscalar
meld scheduler uses a modified termination test for latency
propagation. Whereas the original VLIW meld scheduler
terminated the latency propagation along a control flow
edge if it encountered an unscheduled block or if the
accumulated distance exceeded a threshold, the superscalar
meld scheduler additionally terminates latency propagation
if the control flow edge traversed is a mispredicted edge.
Thus, in calculating the incoming required dangles before
scheduling a block, the superscalar meld scheduler
examines only the required dangles from blocks that are
reachable through predicted control flow edges.

4 Experimental evaluation
In this section, we present experimental results obtained

by our meld scheduling implementation.

4.1 Methodology
We use the IMPACT compiler from the University of

Illinois IMPACT project to get input in aggressively-
optimized superblock form [1]. The IMPACT compiler
performs traditional global optimizations, unrolls loops
eight times, forms superblocks and applies ILP
optimizations to each superblock. The memory
disambiguation information computed by the IMPACT
compiler is part of the input. In addition, the input code
contains profile information; each superblock is annotated
with weights indicating how often each superblock is
executed and how often each exit is taken. The Elcor
compiler at HP Labs takes the input in superblock form,
performs data-flow analyses, constructs dependence graphs
and schedules each superblock. Although the Elcor
compiler supports meld scheduling for both modulo

scheduling and superblock/hyperblock scheduling, the
experiments did not use modulo scheduling for loops.

To quantify the benefits of meld scheduling, we need a
baseline model that does not propagate latency constraints.
We considered two alternatives, both of which involve
padding schedules with enough no-ops to ensure correct
execution on non-interlocked machines. The first
alternative simply allows no latency dangles from the
region being scheduled. Thus, for each exit, the operations
issued before the exit must also complete before the
control transfers to the successor region. A problem with
this approach is that it causes side-exits of a superblock to
be delayed, and consequently, forces operations that are
control-dependent on the branch to be also delayed. Thus,
this approach increases the schedule length to other exits
including the main exit from the superblock. The second
alternative is to allow latency dangles through exits into
successor regions but ensure that the dangles are absorbed
by the immediate successors. This can be done as described
below.

After scheduling is complete for the entire function, we
inspect the immediate predecessors, calculate the
maximum incoming dangle and insert a block of no-ops
that absorbs this dangle. The second alternative gives
better performance than the first, since no-ops are inserted
once at the top of superblocks as opposed to once at each
of the exits. In order to obtain a fair comparison between
meld and no-meld, we use the second alternative as the
baseline or no-meld model.

To quantify how much of the available performance
improvement our technique is able to capture, we define an
upper bound on the performance improvement. The upper
bound is calculated by allowing regions to dangle into
neighboring regions, but ignoring the dangle when
calculating performance. This represents the best case in
which all outgoing dangles can be exported without any
attendant cost of absorbing incoming dangles. It is
important to note, however, that this upper bound is
unachievable in many cases on both non-interlocked and
superscalar machines. We refer to the upper bound as the
ignore-dangles model.

For each machine model, we schedule the code first
using the no-meld model and then using the meld
scheduler. The upper bound is computed while scheduling
using the no-meld model by simply ignoring the dangles.
The reported execution time improvements are based on
weighted schedule lengths and not based on actual
simulation. The execution time of a particular block is
obtained by summing up the contributions of each of its
exits. The contribution of a particular exit is the product of
the number of times this exit was taken during profiling
times the exit time of the exit. For a branch, the exit time
is the sum of the branch's schedule time and the branch
latency. This method is fairly accurate for a pure VLIW
machine, because the run-time issuing of instructions
tracks the compiler-generated schedule. However, it does
not account for cache misses, branch mispredictions, TLB
misses, etc. These other factors are expected to be similar

13

0

2

4

6

8

10

12

qs
or

t

w
c

le
x

ya
cc

to
m

ca
tv

al
vi

nn

es
pr

es
so

co
m

pr
es

s

eq
nt

ot
t

sc li

Benchmarks

%

Im
p

ro
v

e
m

e
n

t
o

v
e

r
N

o
-m

e
ld

Ignore-dangles

Meld

0

2

4

6

8

10

12

qs
or

t

w
c

le
x

ya
cc

to
m

ca
tv

al
vi

nn

es
pr

es
so

co
m

pr
es

s

eq
nt

ot
t

sc li

Benchmarks
%

Im

p
ro

v
e

m
e

n
t

o
v

e
r

N
o

-m
e

ld

Ignore-dangles

Meld

(a) (b)
Figure 10. Performance improvement due to meld scheduling and the upper bound for various

benchmarks. (a) Machine model W2L2 (b) Machine model W2L3
with or without meld scheduling and are not expected to
affect significantly the accuracy of our evaluation of meld
scheduling.

4.2 VLIW meld scheduler evaluation
Figure 10 shows the performance improvement over no-

meld for a set of Unix and SPEC92 benchmarks on the
W2L2 and W2L3 machine models described earlier in
Section 2. Note that the W2 model is capable of issuing
up to seven operations per cycle, consisting of two
integer, two float, two memory operations and one branch.
Each bar in the figure has two components. The first gray
component indicates the execution time improvement of
meld scheduling over the no-meld case. The second black
component indicates the additional execution time
improvement under the ignore-dangles model. Thus, the
two components together represent the upper bound
discussed earlier. Meld scheduling improves execution time
between 1 and 9% for the W2L2 model and between 1.7%
and 9.8% for the W2L3 model. Note that the black
component in the bar graphs are very small, especially
forthe W2L2 model, indicating that our meld scheduler
absorbs almost all the inter-superblock latency dangles.
With the longer latencies of the W2L3 model, meld
scheduling gives higher execution time improvements but
does not reach the (potentially unrealizable) upper bound
on many of the benchmarks. For the W2L3 model, the
difference between improvements due to meld scheduling
and the upper bound varies from 0 to less than 1.5%.

It is interesting to compare the results for the integer
benchmarks such as sc with the ones for the floating-point
benchmarks such as alvinn. In both machine models,
floating-point latency is higher than the integer latency.
Thus, it may seem that meld scheduling should provide
greater improvement on floating-point benchmarks as
compared to integer benchmarks. However, floating-point
benchmarks are highly loop-intensive and inter-region
dangles are less of a problem, since most of the
performance-critical dangles occur at the back edges.
Modulo scheduling of loops [10-13] is capable of handling
these dangles during scheduling. Loop unrolling provides
similar benefits. In our experiments, loops were unrolled
eight times reducing the impact of inter-region dangles on
the overall performance. For example, the average size of
the superblocks was 88 operations for alvinn and only 28
for sc. Moreover, superblocks in alvinn were executed
from start to finish with a probability of 0.96, while the
probability on sc was only 0.4. Thus, the dynamic number
of operations executed before control transfers to another
scheduling region is much larger for alvinn than for sc.
Since opportunities for hiding inter-region dangles
increases with the density of dynamic inter-region control
transfers, meld scheduling shows better performance
improvement for sc than for alvinn. Note that, for both
alvinn and tomcatv, the meld scheduler absorbs almost all
the inter-region latency dangles for W2L2 model and
comes very close to the upper bound for W2L3 model.

14

0

1

2

3

4

5

6

Machine Models

%

Im
p

ro
v

e
m

e
n

t
o

v
e

r
N

o
-M

e
ld

Ignore-dangles

Superscalar

Meld

W 1 W 2 W 3 W 4
L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

Figure 11. Estimated performance improvement due to in-order superscalar, meld scheduling and
the upper bound on various machines for the benchmark yacc

Figure 11 shows detailed results for the yacc benchmark
on all 16 machine models. We estimate the performance
improvement of an in-order superscalar over the no-meld
model as follows. We schedule using a conventional
scheduler permitting dangles through superblock exits and
ignoring dangles on superblock entries. For each control
flow edge, we compute the number of stall cycles as
follows. We determine the required dangles through the
associated exit and the available dangles from the
associated entry of the control flow edge and find the
maximum difference between the required dangle and
available dangle. We compute the product of the edge
frequency and the stall cycles and sum over all control flow
edges to obtain an estimate of stall cycles on an in-order
superscalar machine. Note that this estimated performance
is not based on actual simulation and does not consider the
effect of overlapping stalls due to cache misses, TLB
misses, branch mispredictions and other dynamic factors.
Each pair of bars in Figure 11 shows the performance
improvements for a particular width and latency
combination. The first bar of each pair is as in Figure 10;
the lower portion shows the performance improvement due
to meld over the no-meld model and the upper black
portion shows the remaining gap to the ignore-dangles
upper bound. The lower gray portion of the second bar
shows the estimated performance improvement of a
superscalar machine over the no-meld model. The top
black portion shows the gap between the estimated
superscalar performance and the ignore-dangles upper
bound. As expected, when the latencies are unity as in the
L1 machine models, there are no latency dangles and hence
no improvement. For the L2 models, superscalar and meld

scheduling achieves the upper bound. In the other two
models, L3 and L4 the gap is around 0.2%. In all the
cases, estimated superscalar performance is slightly better
than meld scheduling on a VLIW machine model, but by
no more than a fraction of a percent.

Overall, for small latency models, the possible
improvement is limited by the outgoing dangles. For
wider issue widths and larger latencies, the schedule length
is dominated by the critical path and the dangles become
smaller relative to the schedule length. Thus, the overall
improvement (as a ratio) using meld scheduling is large
when latencies are large and when the available parallelism
matches the machine parallelism.

4.3 Superscalar meld scheduler evaluation
We compared the performance of the superscalar meld

scheduler described in Section 3.10 to the conventional
scheduler on a set of SPEC and UNIX benchmarks on both
the W2L2 and W2L3 machine models. Our performance
comparisons calculate schedule length and stall cycles
based on control-flow profile information and not on actual
simulation. Note that the superscalar scheduler usually
employs a dynamic hardware branch predictor. In cases
where the dynamic predictions do not match the static
predictions used by the superscalar meld scheduler, there is
potential for performance loss in the superscalar meld
scheduler. If the dynamic predictor correctly predicts a
branch to be taken that was statically predicted not taken,
there may be stall cycles incurred due to latency dangles
that the superscalar meld scheduler ignored. Since our
evaluation is not based on actual simulation, we
effectively assume that the dynamic predictions are the

15

same as the static predictor, biasing the comparison
slightly in favor of the superscalar meld scheduler. Recall
that the conventional scheduler stalls on predicted control
flow transfers. In contrast, the superscalar meld scheduler
never stalls on predicted branches but potentially has
longer schedule lengths. Our experiments indicate that the
increase in schedule length in the superscalar scheduler was
sometimes lesser and sometimes greater than the additional
stalls in the conventional scheduler. Thus, the overall
performance of the superscalar meld scheduler was better
than that of the conventional scheduler on some
benchmarks, such as sc and alvinn but worse on others
such as espresso and tomcatv.

We carried out a more detailed evaluation of some cases
where the superscalar meld scheduler performance was
lower than the conventional scheduler. In all these cases,
we found that the superscalar meld scheduler was
attempting to satisfy constraints that were necessary for a
VLIW machine model but could be ignored for a
interlocking superscalar model. For instance, the
superscalar meld scheduler scheduled code to ensure that
there were no dangles through a return and that dangles
through back edges are satisfied. The superscalar meld
scheduler was derived from the VLIW meld scheduler and
some of the VLIW constraints were not removed. Thus,
our experiments did not clearly establish that the
superscalar meld scheduler outperforms a conventional
scheduler.

Further enhancements can be made to the superscalar
meld scheduler. A first step is to ensure that the scheduler
takes advantage of the interlocking hardware and ignores
infrequent latency dangles, such as into calls and returns.
Second, we can modify the scheduler so that inter-region
constraints are treated as soft constraints which are met
only if there is no increase in schedule length. Thus, the
superscalar meld scheduler does not cause any increase in
schedule length while attempting to reduce stalls due to
inter-region dangles.

5 Related work
There is a substantial body of work in the area of

instruction scheduling for instruction-level parallel (ILP)
machines [2, 4-7, 14, 15, 1] . Most of the work, however,
is directed at two related areas. The first area is the type of
scheduling region, e.g., trace, superblock, hyperblock,
general dag, innermost loops. The motivation here is
either to enlarge the scope of scheduling or to simplify
compiler engineering. The second area is the actual
scheduling algorithm and heuristics used within a region.
Many of these scheduling techniques are developed in the
context of superscalar machines [5, 6, 1]. Thus, they
accurately model resource-usage and latencies within a
region in order to get the best performance. But they
ignore the constraints at region boundaries in the hope that
any required run-time stalls will not affect the performance
significantly.

In contrast, both the Multiflow Trace machine and Cydra
5 relied on their respective compilers to manage all
resources and latencies. (Cydra 5 did have a latency-stalling
mechanism but only for memory operations.)
Consequently, the Multiflow compiler [2, 3, 14] and the
Cydra 5 compiler [15] used some form of meld scheduling
to ensure correctness and to get good performance.
However, there is no evaluation of the benefits provided by
meld scheduling over simple-minded approaches such as
padding. This report generalizes the technique and
quantifies the benefits of meld scheduling.

In the Multiflow compiler [3, 14], resource-usage and
latency constraints at region boundaries are represented as
partial schedules. After a trace has been scheduled, partial
schedules for each entry and each exit are exported to the
surrounding code. The scheduling of a trace honors some
or all of the partial schedules coming from scheduled
predecessors and successors. If the trace being scheduled
has a scheduled predecessor at the main entry, then the
predecessor's partial schedule is placed in the first few
instructions of the schedule. Similarly, the partial schedule
coming from a scheduled successor at the main exit is
placed in the last few instructions of the schedule. After a
trace has been scheduled, partial schedules at side entries
are merged with the schedule. There is no special treatment
given to cycles in the flow-graph. The main loop, i.e.,
pick a trace, schedule it, export constraints, handles cycles
naturally inserting appropriate compensation blocks to
reconcile constraints if necessary.

In the Cydra 5 compiler [16, 15], acyclic scheduling is
done at a basic-block level after a global instruction
motion phase. In a basic block, instructions are scheduled
from bottom to top. An unscheduled basic block honors
all resource-usage and latency constraints coming from
scheduled predecessors and successors. Constraints at an
entry (exit) are computed by looking at all predecessors
(successors), not just the immediate ones, that fall within
a pre-defined number of cycles. Cycles in the flow-graph
are handled as follows. The scheduler computes the
constraints for the exit of the block, schedules the block
except for the start node, computes constraints for the start
node, and finally, places the start node in the schedule.
Note that no compensation code is inserted during
scheduling.

The technique presented in this report builds on the one
in the Cydra 5 compiler. In contrast to both the Cydra 5
compiler and the Multiflow compiler, the technique
presented in this report can accommodate general region
topology and different scheduling paradigms. The
constraint propagation part of the technique is capable of
handling general multi-entry, multi-exit regions. The way
constraints are computed and honored, by necessity, depend
on the scheduler. Currently, we have implemented meld
scheduling in the context of two different schedulers,
modulo scheduler for loops and superblock/hyperblock
scheduler for the rest of the code, and integrated them using
the same framework. In contrast to the Multiflow
compiler, our technique never introduces any blocks just to

16

reconcile constraints, since a region honors all constraints
coming from its scheduled predecessors and successors. We
do, however, assume flow-through pipelines and don't
handle resource usage constraints across region boundaries,
which both the Multiflow and Cydra 5 compilers do. This
assumption reduces the amount of information and
simplifies constraint propagation. The technique presented
in this report, however, can be extended to handle resource-
usage for machines which do not have flow-through
pipelines.

6 Conclusions
Conventional scheduling algorithms operate without

relevant information about the schedules of previously
scheduled regions. In this report, we develop general data
structures consisting of export maps on a per entry and per
exit basis and entry-exit distance maps. We develop general
and efficient algorithms for propagating this information
to the entries and exits of a region being scheduled. In
contrast to previous work, our meld constraint
representation and propagation schemes are independent of
the underlying scheduling region and scheduler.

In the context of meld-scheduling in conjunction with
superblock scheduling, we identify and address a few
pitfalls and additional optimizations. Latency constraints
may propagate through other scheduled regions back to the
region being scheduled. In the presence of such cycles, we
develop techniques to detect such cases as well as to relax
constraints using depth information. Latency constraints
may come in from the entry and exit on an operand that is
not present within the region. In this case, the scheduling
of the exit must be delayed sufficiently to satisfy the
constraint. In our meld scheduler, such pass-through
dangles are handled in a uniform manner similar to other
constraints. Upward exposed def dangles impose
constraints on inter-region output- and anti-dependencies in
a strict VLIW machine. Our heuristics reorder operations,
if necessary, to reduce the impact of such constraints. The
complete algorithm is developed with attention to space-
and time-efficiency.

We define a baseline no-meld schedule in which pads of
no-ops are inserted at the entry of each scheduled region to
absorb incoming dangles from immediate predecessor
regions. In comparison to the no-meld scheduler, our meld
scheduler improved weighted schedule length, a measure of
execution time, between 1% and 10% on machine models
with non-unit latencies. Our meld scheduler also came
close to ignore-dangles, an (unrealizable) upper bound on
any meld scheduling strategy, coming within 0.2% on
most machine models on yacc and within 1.5% on W2L2
and W2L3 machine models on all benchmarks.

Though the main focus of this report is on developing
and evaluating a general meld scheduler, an interesting
observation is that the schedule for in-order interlocked
machines corresponds to the ignore-dangles schedule.
Thus, the gap between ignore-dangles and meld is also an
upper-bound on how much better these machines can do
than a non-interlocking machine scheduled using the meld

scheduler. On our benchmarks, the performance gap
between the ignore-dangles upper bound and meld
scheduling is small. Our detailed investigation of the yacc
benchmark considered a broad range of machine models and
also estimated the performance of an in-order interlocked
machine. The estimated performance of the in-order
interlocked machine is only slightly better than the
performance of a non-interlocking machine scheduled using
our meld scheduler.

Acknowledgments
We thank Bob Rau for suggesting improvements in our

cycle handling capability and in the presentation of our
experimental results. We also thank all the members of
Compiler and Architecture Research group at HP Labs.

References
1. W. W. Hwu, et al. The superblock: an effective

technique for VLIW and superscalar compilation. The
Journal of Supercomputing 7, 1/2 (1993), 229-248.

2. J. A. Fisher. Trace scheduling: A technique for global
microcode compaction. IEEE Transactions on
Computers C-30, 7 (1981), 478-490.

3. J. R. Ellis. Bulldog: A Compiler for VLIW
Architectures. (The MIT Press, Cambridge, MA,
1985).

4. A. Nicolau. Percolation scheduling: a parallel
compilation technique. Technical Report TR 85-678,
Department of Computer Science, Corneal, 1985.

5. D. Bernstein and M. Rodeh. Global instruction
scheduling for superscalar machines. Proceedings of
the SIGPLAN '91 Conference on Programming
Language Design and Implementation (1991), 241-
255.

6. S. A. Mahlke, et al. Effective compiler support for
predicated execution using the hyperblock.
Proceedings of the 25th Annual International
Symposium on Microarchitecture (1992), 45-54.

7. S.-M. Moon and K. Ebcioglu. An efficient resource-
constrained global scheduling technique for
superscalar and VLIW processors. Proceedings of the
25th Annual International Symposium on
Microarchitecture (Portland, Oregon, 1992).

8. V. Kathail, M. S. Schlansker, and B. R. Rau. HPL
PlayDoh architecture specification: Version 1.0.
Technical Report HPL-93-80, Hewlett-Packard
Laboratories, Palo Alto CA, 1993.

9. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data
Structures and Algorithms. (Addison-Wesley
Publishing Company, Reading, MA, 1983).

10. B. R. Rau and C. D. Glaeser. Some scheduling
techniques and an easily schedulable horizontal
architecture for high performance scientific
computing. Proceedings of the Fourteenth Annual
Workshop on Microprogramming (1981), 183-198.

17

11. M. Lam. Software pipelining: an effective scheduling
technique for VLIW machines. Proceedings of the
ACM SIGPLAN '88 Conference on Programming
Language Design and Implementation (1988), 318-
327.

12. B. R. Rau. Iterative modulo scheduling: an algorithm
for software pipelining loops. Proceedings of the 27th
Annua l In te rna t iona l Sympos ium on
Microarchitecture (San Jose, California, 1994), 63-74.

13. D. M. Lavery and W. W. Hwu. Unrolling-based
optimizations for software pipelining. Proceedings of
the 28th Annual International Symposium on
Microarchitecture (Ann Arbor, Michigan, 1995).

14. G. Lowney, et al. The Multiflow Trace Scheduling
Compiler. The Journal of Supercomputing 7, 1/2
(1993), 51-142.

15. J. C. Dehnert and R. A. Towle. Compiling for the
Cydra 5. The Journal of Supercomputing 7, 1/2
(1993), 181-228.

16. S. Srivastava. Implementation of Global Scheduling.
1988, Cydrome Internal Document.

