
ir r , r r ss rs r

Addresses:

Miranda Mowbray, Hewlett Packard Laboratories Bristol, Bristol BS12 6QT,

UK.
Gunnar Karlsson and Torsten Koehler, Swedish Institute of Computer Sci-
ence, Isafjordsgatan 22, S-164 28 Kista, Sweden.

stract

We introduce a capacity reservation scheme for multimedia tra�c. We com-

pare it to other algorithms in the literature. It has been implemented and its

worst-case performance has been analysed. It appears to give a noticeably

improved quality of service to delay-sensitive tra�c.

1

Internal Accession Date Only

Intro uction

Networked multimedia applications are becoming increasingly important to

the business community, and an increasing proportion of the tra�c of data

networks is used by such applications. Multimedia tra�c has di�erent quality

of service needs than those provided by most routers, which were designed

with regular data tra�c in mind. The main feature of multimedia tra�c

which makes it di�erent from regular data tra�c is that it is much more

sensitive to delay. Current routing technology gives \best-e�ort" service,

aimed at maximizing throughput, with minor consideration to delay and

loss. The result of this is that some delay-sensitive packets are not delivered

in time. We therefore believe that it is worth using a router scheduling

algorithm specially designed to give good performance for multimedia tra�c.

In this paper we introduce a new scheduling algorithm for routers which is

designed to solve this problem by minimizing the worst-case delay to delay-

sensitive tra�c without dropping these packets in the routers, whilst provid-

ing a best-e�ort type service to other tra�c. The delay-sensitive tra�c need

not necessarily come entirely frommultimedia applications { it might include

interactive data tra�c, which is also sensitive to delay. The algorithm works

with a reservation scheme; roughly speaking, a proportion of the capacity is

reserved for the use of delay-sensitive tra�c. Provided that delay-sensitive

tra�c arriving at the router does not exceed its reservation, a bound on the

2

delay can be given so that no delay-sensitive packet ever has an end-to-end

delay exceeding the bound. The reserved capacity carries packets loss-free

through the network with regard to contention (bit-errors might still occur).

The method is based on a pacing mechanism, which controls the departure

instances of the reserved packet stream. The leftover non-reserved capacity

can be used by anyone at best e�ort.

Much research on tra�c control has focused on the provision of delay and

loss guarantees in conjunction with statistical multiplexing (see, for instance,

[9, 5]). It may therefore seem a step backwards to propose a capacity reser-

vation which enforces a deterministic service rate for a source. In e�ect we

have a circuit (a TDM channel in telephony networks), albeit without the

constant delay since it still is asynchronous. First, it should be kept in mind

that the reservations do not preclude statistical multiplexing, which is used

for best e�ort tra�c. Second, statistical multiplexing is not an end in it-

self. Its prime motivation has been to e�ciently use the network capacity, a

resource which appears less and less scarce. Third, statistical multiplexing

with guarantees has not yet been proven viable for larger scale networks in

daily operating. Consider instead some of the advantages with deterministic

capacity reservation over statistical multiplexing with quality guarantees:

� Implementation with low complexity

� Simple source tra�c descriptor (an upper limit on the bit rate)

3

� Straightforward call-acceptance procedure

� Loss-free operation with bounded delay

� Sound basis for charging

We have strived for simplicity and robustness (as recommended by eg. [11])

and have also attempted to give the non-reserved tra�c a smooth and truly

best-e�ort service, without delays due to reserved tra�c.

We see the algorithm being used for routing within enterprise networks.

These are networks owned by large or medium-sized enterprises, typically

spanning several separate sites but with at most 4 or 5 hops between any

source and destination. Many companies started out with all their IT in-

frastructure in the IT department at the company's central headquarters,

and then acquired more equipment at branch o�ces. There has been a ten-

dency throughout the US and Europe for the di�erent branches to become

networked together, decentralizing the use of IT within the company, and

creating an enterprise network. These networks are large enough to support

heavy use of multimedia and interactive tra�c, but have few enough hops so

that it is possible to give useful bounds on the worst-case end-to-end delay.

Comparisons between this and other available schemes are made elsewhere

in this paper.

4

e ca acit reservation sc e e

Fig. 1 Separation of tra�c classes into di�erent FIFO queues

Connections which require reserved capacity are treated separately from traf-

�c without reserved capacity (so called \best e�ort" tra�c). The reserved

capacity could be a part or the full (maximum) capacity needed by the call.

Each of these two tra�c classes has its own bu�ers in the network nodes, as

shown in Fig. 1, which are denoted q1 and q2. The classes are separated

by addresses or some other header information. The packets in the reserved

class could be given either high or low loss-priority. The surplus tra�c with

low loss-priority is allowed on a connection to increase the exibility { the

reserved rate can be exceeded at its own risk { and to better the utilization

(eg, when capacity is reserved but little used and there is no \best e�ort"

tra�c).

The reservation only covers the high-priority packets of a stream with reser-

vation. The low-priority packets are forwarded if there is reserved capacity

5

left over. Low-priority packets can thus only use unused portions of the re-

served capacity. Best-e�ort on the contrary may use all left over capacity

(unused reserved as well as all unreserved). The best-e�ort tra�c may have

a di�erent set of loss-priorities, it is not of consequence for the reservation

scheme.

It is up to the user to decide how much capacity to reserve and how much to

vie for when a connection is requested. For video under layered source coding,

for example, packets can have di�erent loss tolerance. ou may not want to

reorder these packets, however, so they are not assigned to di�erent tra�c

classes. The scheme supports this scenario well: you make a reservation

which is su�cient for what must absolutely be delivered and send the rest at

a low-priority on the same connection. The low-priority packets which get

across are delivered in the proper order. If order is not important, send the

important part as reserved and the surplus as best e�ort. Again, the option

to send the low-priority packets along with the reserved packet-stream is to

soften the �xed reserved rate since it may be hard to estimate correctly the

rate before the session has started. So, if it is a bit low the surplus may still

be sent, albeit at its own risk, rather than being dropped at the sender.

We de�ne the reserved rate of a connection as the number of bytes, R, that

may be sent during a window of W bytes of transmission capacity. (Since

packets are measured in bytes, W is expressed in bytes as well.) The re-

6

served rate can be any ratio R=W of the link's capacity (R and W can be

arbitrarily large). The connections without reservations get full use of the

remaining portion (W � R)=W . Packets are serviced from the best-e�ort

queue exclusively if the other is empty. Reserved capacity is consequently

not wasted.

Fig. 2 A multiplexer with N input links.

If we assume N incoming links to a multiplexer and that all incoming links

have the same capacity, then

in

N

j=1

Rj

Wj

= out

Rout

Wout

(1)

in and out are the capacities of the incoming and the outgoing links, re-

spectively. The outgoing reserved capacity equals the sum of the incoming,

reserved capacity. The equation shows that Wout � Least common multiple

of (Wj). At each stage of multiplexing the values of Wout and Rout for the

outgoing stream may consequently increase. The departures of the packets

may well be clustered within the window. The bu�er space needed for the

reserved tra�c to avoid packet loss will thereby increase. Also, if the connec-

tions with reservations are served for R bytes before the non-reserved tra�c

7

is served, then the latter may be unduly delayed and receives a bursty service.

This worsens its tra�c characteristics and thereby also its performance, in

terms of loss and delay.

The problem with clustering is that a constant R=W ratio can be (aR)=(aW)

and that the factor a may grow inde�nitely. Thus, you can send aR bytes

consequtively with in an aW window which is more clustered than R bytes

in a row over a W -byte long window.

There are two immediate solutions to avoid aggregation of clusters. The �rst

is to require Wj = Wout for all j. If the links all have the same capacity, and

the rate is speci�ed for a �xed value of W , then W cannot become larger

and clustering is not a problem. This is the approach of the TTT [10] and

the Stop-and-Go queuing [4].

However, keeping W �xed is a rigid solution. If the value of W is low, then

the resolution of the speci�ed rates is limited (to W�1 bytes per second).

When the value is high, best e�ort tra�c may still be considerably delayed.

We have instead chosen to alleviate the batch arrival problem by enforcing

an even distribution of the packet departures within a window.

The issue is consequently how to pace the packet departures evenly to main-

tain the R=W ratio.

8

2.1 he lgorithm

The basic idea was to serve a packet from q1 and then to wait for an idle

period I before serving the queue again. Best e�ort tra�c is served during

the idle period. If Lf ig is the length of a packet served from q1, then we

get

Ii = Lf ig(�
�1
� 1) (2)

Here � = R=W . That means that the reserved rate is maintained. Typically,

one reserved packet is served, then a few best e�ort packets, and then another

reserved packet. The problem with this calculation is that the length of the

idle period gets short when the reserved rate is high { to be precise, the

length of the idle period tends to zero as � tends to one. Even though there

will be spare capacity available to best e�ort tra�c, it may be fragmented

into periods too short for a packet. We therefore allow several packets to

depart back-to-back until Lf 1g + Lf 2g + . . . + Lf ig Lf 0

1
g�=(1 � �)

(where 1 is the �rst packet of q1, and 0

1
is the �rst packet of q2). The

number of delay-sensitive packets served back-to-back is chosen so that the

corresponding idle period is at least as long as the time to send the pending

delay-insensitive packet.

The scheme does not tell which should be the next packet within its class to

send. The simplest is to pick them in FIFO order.

9

The steps in the pacing are as follows (assumes packets in both q1 and q2).

I. Serve q1 for i > 0 packets, until

Lf 1g+ Lf 2g+ . . . + Lf ig Lf 0

1
g�=(1 � �) (3)

II. Serve q2 for j packets, j > 0, until

Lf 0

1
g+ . . .+Lf 0

jg+Lf 0

j+1g > (Lf 1g+ . . .+Lf ig):(�
�1
� 1); (4)

or until q2 is empty (whichever is shorter).

III. If

(Lf 1g+Lf 2g+. . .+Lf ig):(�
�1
�1)� (Lf 0

1
g+Lf 0

2
g+. . .+Lf 0

jg)

is greater than zero, then schedule an idle (during which no tra�c at

all is sent) for this many bytes.

The pacing gives a known arrival process to the reserved tra�c on each link

so that it is possible to determine the bu�er space needed to ensure a lossless

operation.

2.2 Call acceptance

The goals of the proposed call-acceptance technique are to simplify the call

acceptance, and to provide users with a loss-free information transfer. Packet

loss is avoided by su�cient bu�ering in the nodes.

10

The acceptance procedure for calls that request some amount of reserved

capacity can be sketched as follows. The network controller preallocates some

portion of the capacity on the network links. This ratio could be chosen in

accordance with the available bu�er sizes. Notice that this capacity is not

wasted when not used by connections with reservations since surplus capacity

may be used by best-e�ort connections.

To accept a call, the network control has to �nd a route to the destination

such that on each link

�req + �ex � �res (5)

(The ratio denoted `res' is the reserved, preallocated portion of the link's

capacity; `ex' is the existing, used part of that capacity and `req' is the

requirement of the new call.) If the inequality holds for all links on the

route, then the call is accepted and the used capacity is updated:

�ex �ex + �req (6)

The call could be blocked if no such route exists. The preallocated capacity

could alternatively be updated on needed paths, according to

�ex �ex + �� (7)

for some ratio ��, so that Eq. (5) now can be met.

This increment of the preallocation can be done in anticipation of new con-

nections to reduce the probability of blocking. The preallocation lowers the

11

need for updates triggered by the call acceptance procedure, since most new

calls may be handled according to Eq. (5). Note that the preallocation does

not lead to a full reservation of all the capacity over time since reservations

on the incoming links to a multiplexer may not overload the output (see Eq.

(1)). But if the used part of the existing reservation is low, the reserva-

tion can be reduced. The main idea is that the capacity allocation may be

disassociated from the handling of connection requests.

2.3 emarks

All connections with reserved capacity are paced at the network access. The

amount of capacity to reserve for a connection could be chosed according to

the \e�ective capacity" of the source for a given tolerable bu�ering delay (see

[6] for details on \e�ective capacity").

The pacing function is performed per link (output port) and not per stream,

as in schemes suggested for statistical multiplexing. The complexity of the

implementation is thus comparatively lower for the capacity reservation. The

dual bu�ers for the two tra�c classes may be logical queues in shared mem-

ory.

The two bu�ers may be dimensioned di�erently. The bu�er for tra�c with

reservations must have a size in accordance with the limits given for loss-free

operation. Any additional space should be included only if the delay limits

12

allow it to hold more packets with low loss-priority. Best e�ort tra�c could

instead be given ample bu�er space to minimize the probability of packet

loss.

The reservation scheme allows \best e�ort" tra�c to use all non-reserved

capacity as well as the slack in the reserved capacity. The network may

therefore be well utilized. It may also be operated to emulate a TDM network

by requiring full reservation for all connections. The reservations can use

all of the network's capacity, when needed. The reservation scheme has

advantages also over a traditional TDM network: it does not require a �xed

channel (framing) structure nor synchronicity within the nodes.

The charge for a call consisting of packets in a reserved tra�c class may be

based on the amount of reserved capacity, its duration and, possibly, the

length of the route. Packets within a reserved tra�c class with low priority

that are sent in addition over the connection would not be counted. This

basis is more attractive than the charge after behavior (such as peak-to-mean

ratio) that may result from the statistical tra�c control.

The capacity reservation is most suited to near isochronal sources which have

predictable rates. The performance guarantees are also most valuable for

such sources, which include most video and audio sources, since the needed

real-time delivery makes retransmission infeasible. Batch data, on the con-

trary, is commonly o�ered a best e�ort service and the reliability is added by

13

retransmission at the transport layer. Note, however, that the simpli�ed call

acceptance procedure may allow su�ciently fast connection establishment to

handle transfer of bulk data, such as images.

orst-case erfor ance anal sis

The performance of this algorithm with respect to a particular tra�c stream

was analysed using techniques similar to those in [1, 2]. The tra�c stream

was that of delay-sensitive tra�c in a route from a 100BaseVG LAN, to

an FDDI ring, across a 64�6kb/s WAN to another FDDI ring, and from

there to a 100BaseVG LAN, using four routers in all which were assumed to

run the same scheduling algorithm. The delay-sensitive tra�c was as bursty

as possible, subject to realistic bounds on packet lengths, and there was

enough delay-insensitive tra�c to ood the WAN. Estimates of worst-case

delays on the media and non-queueing delays within the routers were made

based on real-life measurements. For this stream, when the routers run the

algorithm described, the worst case end-to-end delay for a delay-sensitive

packet was calculated to be around 162ms. All non-preemptive scheduling

algorithms give a worst case end-to-end delay of over 150ms for this example.

Golestani's Stop-and-Go [4] gives a worst case delay of over 165ms, and pure

FIFO scheduling, which does not distinguish between delay-sensitive and

delay-insensitive tra�c (as in many current routers), gives a worst case delay

14

of over 500ms.

The ITU recommendation for delays for telephony (G.114) is that 150ms

end-to-end delay is certainly acceptable, care is to be used above that, and

400ms delay is unacceptable.

An upper bound can be calculated on the amount of bu�er space needed to

ensure that no delay-sensitive packets are dropped: for this particular tra�c

stream, under the algorithm described, bu�er space for 36 delay-sensitive

packets will su�ce. The net bu�ers in the router measured hold 32 packets.

However, the bound is for the space needed for delay-sensitive packets alone.

Some bu�er space should also be provided for delay-insensitive packets. In

contrast to pure FIFO scheduling, it is not necessary to have any constraints

on the quantity of delay-insensitive tra�c entering the system in order to

ensure that delay-sensitive packets are not dropped.

I le entation

A prototype implementation of the algorithm was done for a Hewlett Packard

workstation, connected over a Serial Line IP (SLIP) link to another worksta-

tion.

Here is the pseudocode on which the scheduling part of the implementation

was based. This part was implemented within the SLIP server, which acts

15

as endpoint and router, so that hosts which do not have SLIP access can

communicate with the SLIP router over a LAN and gain from the scheduling

inside the router. The SLIP software was extended to integrate the scheduler

and to deal with the two pseudo network interfaces simultaneously.

LEN_LO and LEN_HI return the length of the next waiting delay-insensitive

and delay-sensitive packet respectiviely, SCHED_LO/HI schedules the speci-

�ed packet for transmission and SCHED_ID() schedules an idle period.

while (1) {

/* Initialize delay-insensitive length counter */

lo_s = 0;

/* Calculate length of delay-insensitive service */

hi_s = hi_s * (1 - rho)/rho;

do {

/* If there is a delay-insensitive packet, schedule it

and add its length to the counter */

lo_s += lo;

if (lo) SCHED_LO(lo);

}

/* If there is a no delay-insensitive packet, and service

is to delay-insensitive traffic, schedule an idle */

while((lo = LEN_LO()) && (lo_s + lo <= hi_s));

16

if (hi_s - lo_s > 0) SCHED_ID(hi_s - lo_s);

/* Initialize delay-sensitive length counter */

hi_s = 0;

/* Calculate length of delay-sensitive service */

lo_s = lo * rho/(1-rho);

while(hi = LEN_HI()) {

/* If there is a delay-sensitive packet, schedule it

and add its length to the counter */

hi_s += hi;

SCHED_HI(hi);

if (hi_s >= lo_s) break;

}

}

5 Revie of ro osals in t e literature

There are three proposals for scheduling with deterministic performance

guarantees in the literature that have receivedmuch attention: Virtual Clocks

by Zhang [13], Packet-by-Packet Generalized Processor Sharing by Parekh

and Gallager [7], and Stop-and-Go Queuing by Golestani [4]. The �rst two

propose work-conserving, non-FIFO algorithms. (A work-conserving algo-

17

rithm is one for which the link is never left idle if there is a packet in the

queue to be sent.) The latter as well as the algorithm proposed here are not

work-conserving and could use any service order.

This section presents a brief review of the proposals that were rejected in favor

of our own algorithm. (See [12] for a more extensive overview of scheduling

algorithms.)

5.1 Virtual Clocks

Each connection (ow, stream, virtual circuit, call or any other denotation)

has its own virtual clock. The clock is incremented each time a packet be-

longing to the connection arrives to the (multiplexing) bu�er. The packet is

stamped with the new time of the clock. Packets are then served from the

bu�er in order of increasing time stamps. The service order is thus FIFO per

connection but not for the aggregation of connections.

The clock increment is the inverse of the connections reserved rate times

the length of the packet (for example, at 3 Mb/s, a 375-byte packet would

advance the clock by 1.0 ms). The rate of a connection exceeds the reservation

when its virtual clock surpasses the network clock.

Zhang's paper explains a framework for tra�c control. It could be used to

provide performance guarantees by providing policing and guaranteed bu�er

18

space. No such results are presented in the paper, but an upper delay bound

has been derived recently, and it is identical to that of the PGPS algorithm

[3].

The method requires one virtual clock and a logical queue per connection.

This may cause scaling problems when implemented. The clock increment

must be computed per packet.

5.2 Packet-by-Packet Generalized Processor Sharing

(PGPS)

This scheme [7, 8] is akin to the previous one. Each arriving packet is stamped

with the time it would complete service according to a Generalized Processor

Sharing (GPS) scheme (cf. scheduling according to the time stamps of the

virtual clocks). The packet which would complete service �rst is scheduled

to go �rst.

GPS assumes tra�c and service rates to be in�nitely divisible. Each connec-

tion has a weight Wi which guarantees it a portion equal to Wi=(�jWj) of

the total capacity, where the denominator is the total of all weights. When a

connection does not use its allocation, the slack may be shared by the back-

logged connections according to their weights. A \best-e�ort" tra�c class is

assigned a weight and treated like any other connection.

The packet-based GPS closely approximates the GPS and performance guar-

19

antees are possible for connections controlled by leaky buckets. The paper

gives the bounds for single-node case (the multinode case is covered in a

sequel [8]). The bounds get weaker as the number of hops increases.

The implementation has the same drawback as the former scheme: the com-

plexity scales with the number of connections. Another complication is that

all weights must be recomputed when a new connection is accepted. The

computation per packet of the completion time, used for the scheduling deci-

sion, is more complex than determining the clock increment in the previous

method.

5.3 Stop-and-Go Queuing

The requirements on input connections in this method have a strong resem-

blance to those for the TTT speci�cation method. A connection is restricted

to send at most B bytes of data in a period of length T (a frame in the

author's terminology). A packet arriving in frame i at a node will not be

serviced until the start of the next frame, i+ 1. The service is consequently

not work-conserving. The delayed service ensures that a smooth connection

does not get clustered. Any service discipline could be used to schedule which

packets should go in a frame, including the ones discussed above.

The frame length T determines the worst-case delay through the network.

A small T gives a low delay, but limits the granularity of the capacity al-

20

locations, which is one packet per frame. It may be alleviated by allowing

multiple frame sizes at the cost of increased complexity. The minimum and

maximum delays are no more than N � T seconds apart, for a route N

hops long. (Here multiplexing hubs are counted in the hop count, as well

as routers.) The jitter is consequently tightly bound. When the worst case

delay is near the unacceptable, one cannot, however, hope to have acceptable

performance on the average.

Best e�ort tra�c may be serviced during the periods when controlled packets

wait for the next frame to commence. The tra�c will receive a service which

clusters the packets at the end of each frame. This will worsen its loss

performance.

The algorithm is simple to implement if the packets are served in FIFO order

and a single frame length is used. The server either forwards the �rst packet

of the queue, or waits until the next frame starts (best-e�ort tra�c would be

served during the waiting period).

5.4 Discussion

Both Virtual Clocks and PGPS concentrate on the service of a queue and

attempt to divide the service evenly in time over the connections, in pro-

portion to their allocations. The idea is to emulate a system where each

connection has its own queue that is serviced at the allocated rate. GPS of-

21

fers in principle the most even division possible. PGPS closely approximates

the unattainable GPS and is therefore closest to the goal.

Queuing in the node occurs when the incoming rate of a connection tem-

porarily exceeds the service rate of the connection. For a route over more

than one hop, the issue is whether the service discipline may propagate and

even aggravate the burstiness of a connection. If so, the delay (and loss) may

increase in each node along the route.

Queuing in the node occurs when the incoming rate of a connection tem-

porarily exceeds the service rate of the connection. The worst-case bounds

for Virtual Clocks and PGPS are derived under the assumption that all con-

nections are shaped by leaky buckets at the network access. This makes the

service for the end-to-end connection non-work conserving. The virtue of

having conservation of work inside the network when the access is non-work

conserving is therefore questionable. The algorithm we propose is not work

conserving for reserved tra�c but is approximately work conserving for best

e�ort tra�c (the idle period in step III of the algorithm constitute some lost

service time since it is too short for sending the j + 1st best-e�ort packet).

The main di�erence between Stop-and-Go and the algorithm proposed in this

paper is that the latter does not have a �xed frame size. In fact, one may

view the window size W (in which R bytes are sent) as the frame size in our

scheme. It is thus di�erent for each link, depending on its total capacity and

22

proportion of reserved capacity. Another di�erence is that Stop-and-Go only

restricts a connection to B bytes of data per frame; we require in addition

that the data is as evenly spread over the window as possible considering

the entirety of the packets. This restriction is added to give non-reserved

connections a smooth and truly best-e�ort service.

6 Conclusion

Multimedia tra�c has di�erent quality requirements from those of standard

data tra�c { in particular, interactive voice and video tra�c is more sensitive

to delay than standard data tra�c is.

In this paper we have introduced a new scheduling algorithm which is de-

signed to give a good quality of service to delay-sensitive tra�c. We have

given an example of how it might be implemented, and compared it to other

algorithms in the literature. The algorithm has been simulated and its worst-

case performance has been analysed.

The new algorithm has the advantage that the quality of service to delay-

insensitive tra�c does not deteriorate if the amount of delay-sensitive tra�c

sent onto the network is more than the reserved capacity. Therefore with

this algorithm it is not necessary to monitor the delay-sensitive streams to

ensure that they conform to their speci�cations, in order to preserve the

23

quality of service of delay-insensitive tra�c. (Such monitoring is necessary,

however, if one wants to ensure the loss performance, and may also be useful

in identifying misbehaving streams.) The algorithm attempts to give an even

service to delay-insensitive tra�c.

We conclude that the use of the new algorithm appears to give a noticeable

improvement to the quality of service for delay-sensitive tra�c.

24

References

[1] Rene L. Cruz, A Calculus for Network Delay, Part I: Network Elements

in Isolation, IEEE Trans. Information Theory vol.37 no.1, Jan '91, pp.

114-131.

[2] Rene L. Cruz, A Calculus for Network Delay, Part II: Network Analysis,

IEEE Trans. Information Theory vol.37 no.1, Jan. 1991, pp. 132-141.

[3] N. Figueira and J. Pasquale, An upper bound on delay for the Virtual

Clock service discipline, IEEE/ACM Transactions on Networking, Vol.

3, No. 4, August 95, pp. 399-408.

[4] S. J. Golestani, A Stop and Go Queueing Framework for Congestion

Management, Proc. ACM SIGCOMM'90, Philadelphia PA, September

1990, pp.8-18

[5] S. Jamin, et al., A Measurement-based Admission Control Algorithm for

Integrated Services Packet Network, ACM Computer Communications

Review, Vol. 25, No.4, October 1995, pp. 2-13.

[6] F. P. Kelly, Notes on e�ective bandwidth, in S
�
tochastic Networks: The-

ory and Applications (Eds. F. Kelly, S. Zachary, I. Ziedins), Oxford

University Press, 1996.

[7] Abhay K. Parekh, Robert G. Gallager, A Generalized Processor Sharing

approach to ow control in integrated services networks { the single node

25

case, IEEE/ACM Transactions on Networking, Vol.1, No.3, June 1993,

pp.344-357

[8] Abhay K. Parekh, Robert G. Gallager, A Generalized Processor Sharing

approach to ow control in integrated services networks { the multiple

node case, IEEE/ACM Transactions on Networking, Vol.2, No.2, April

1994, pp.137-150.

[9] H. G. Perros and K. M. Elsayed, Call Admission Control Schemes: A

Review, IEEE Communications Magazine, Vol. 34 no. 11, November

1996, pp. 82-91.

[10] Michael Spratt, The Target Transmission Time per Source Port

(TTTPSP) Scheduling Algorithm and Derivatives, HP Labs internal

document

[11] G. Woodru�, R. Kositpaiboon, Multimedia Tra�c Management Princi-

ples for Guaranteed ATM Network Performance, IEEE Journal on Se-

lected Areas in Communications, Vol.8 no.3, April 1990, pp.437-446.

[12] H. Zhang, Service Disciplines for Guaranteed Performance Service in

Packet-Switching Networks, Proceedings of the IEEE, Vol. 83, No. 10,

October 1995, pp. 1374-1396.

26

[13] L. Zhang, Virtual Clocks: A New Tra�c Control Algorithm for Packet

Switching Networks, Proc. ACM SIGCOMM`90, Philadelphia PA, Sept.

1990, pp. 19-29.

27

