(ﬁp HEWLETT

PACKARD

Packed Arithmetic — Architectural Influence
on Compilation

John Lumley

Appliance Computing Department
HP Laboratories Bristol
HPL-97-36

February, 1997

packed arithmetic, Packed arithmetic instructions attempt to harness

compilation the unused power within 32 and 64 bit ALUs to
speed principally multimedia application codes.
Additional hardware costs are generally modest,
partly because only very specific instructions
focused on the needs of a very few algorithms are
added. Using such features by systematic
compilation rather than assembly coding reveals
some problems resulting from architectural design
choices, mainly with modality and supporting
control flow.

IEE Colloquium on ‘Multimedia Instruction Sets: Design and Application,” Birmingham,
IntéfnatedicKesgibomD &ebOrdyy 25, 1997
© Copyright Hewlett-Packard Company 1997



1 Packed Arithmetic

Packed arithmetic instructions have been developed for recent general-purpose
microprocessors because: i) some critical media processing applications (noteably
MPEG) have voracious computing requirements, ii) these algorithms use small or
low-precision data types normally arranged in arrays, iii) there is excess ALU capacity
for such types within 32 and 64bit machines and iv) useful SIMD instructions can be
implemented cheaply on existing hardware. Initial exploitation has been confined to
hand-crafted assembly routine libraries[1]. Using this power more generally implies
some form of compilation: initial investigations suggest some annoying mismatches.
This paper examines the problem, noting where different architectural features or
specific instruction repertoires make (automated) software development easier or
more effective.

The main packed-arithmetic instruction repertoires show their different design centres.
HP’s MAX[2]originallyfocussed on the DCT within MPEG, Sun's VIS™ [3] has
extensive features aimed at graphics rendering (particularly with RGBalpha pixels
packed into a single word), whilst Intel's MMXT™™ [4] is rather more general-purpose
but smaller. MicroUnity's Mediaprocessor family [5] has been designed more
specifically for media applications. All are implemented as SIMD operations on a
designated register file.

2 Compiling for Packed Arithmetic

Given these architectural features and application code (probably in C) whose basic
structure should be able to exploit the SIMD parallelism provided, our aim should be
to use all the available (ALU) power. If the application is dominated by serious loop-
based computational hotspots with simple arithmetic and data can be packed four-at-a-
time into a word, then of course we'd like to run upto four times faster. My goal is to
try to get close to such an n-fold performance improvement by a reduction in executed
instruction count, treating as secondary other effects, such as memory/cache
interaction.

How do we approach compilation ? We could introduce the new constructs at two
levels: the code-generator stage where dependencies and operations are typically held
in DAGs at basic- and super-block granularity, or at a high level where loop-structures
can be attacked. Here I'm going to consider the latter, mainly because promising
important applications are often written as array-traversing loops and useful
information, particularly for parallelism, is available explicitly at this level.

A most promising, but not exclusive, approach is to 'stripmine’ these loops, i.e. carry
out n loop iterations at a time, with all appropriate data packed in individual 'stripes’.
We get the data into the appropriate packing and alignment and hold it there as long as
possible. This makes sense if the loops have effective trip counts large enough to
make start-up and shutdown costs a minor consideration and the amount of
computation (as opposed to memory traffic) is relatively high. With such a loop we
must consider the following about the correctness and efficiency of the stripmine:



e Is the loop strictly parallel (no iteration-borne dependencies) or can it be
transformed to be so ?

e How densely can the data be packed ?

e s the data properly arranged and aligned to apply SIMD processing and if not, can
it be made to be so (cheaply) ?

e In the loop body can we cover all necessary operations with our SIMD instruction
repertoire ?

e Can we accomodate any control-flow variation within the loop body ?

e What additional data manipulation and mode-switching operations need to be
added into the code ?

The first of these is a property of the algorithm and its application context - the actual
packed instruction repertoire (normally) has no bearing on this problem. The others
are all influenced to some degree by the implemented instructions. Of these it appears
that the most crucial for correctness/performance are the coverage of the SIMD
repertoire, modality of operation and mechanisms for handling control flow. We need
however to look for cases where a systematic application strategy, exploited by a
compiler, can yield high performance.

3 Instruction Coverage

To be efficient, all operations within the body of a stripmined loop need to be
supported for packed data. For compilation we need ’basic’ constructs supported
simply in the instruction set. Modular addition and subtraction is available as are most
of the logical bitwise operations (and/or, shifts etc.). For normal arithmetic operations
this seems to suffice. The absence of multiplication in some processors can sometimes
be a problem, though synthesis of (constant) multiplication is an option. There can be
drawbacks when, for hardware reasons and a very specific designcentre (such as
MPEG), an instruction is only supported at a particular width, and not others. One
operation unsupported, for obvious reasons, is table lookup. Also important is the
repertoire of data mixing and rearrangement instructions provided. These can be
needed both to set up initial parallel data streams and support limited interaction
across streams, such as in: a[i] = (b[i]+b[i+1])/2; In practice compilation will involve
some standard mappings between abstract operations and packed equivalents or short-
range instruction constructs.

4 Modality

Whether or not the packed arithmetic features have to be used in a modal fashion may
be the most influential factor that the architecture has on compiled efficiency. MMX
use the floating-point register file to hold the packed data - whilst giving adequate
space for 64bit words it suffers from a potentially expensive ’context switch’ involving
storing FPU ’status’ when packed arithmetic is used. This may cause problems for
those cases in graphics where mixed-mode work is needed. VIS also holds packed
data in the floating-point register file leaving the integer register file free. MAX
operates solely within the integer register file, allowing much simpler mixing with



other operations and clean register allocation. Whether the resulting additional register
pressures causes performance problems remains to be seen.

With amodal operation of packed arithmetic very little special scheduling needs to be
carried out for these instructions and they can be processed at the compiler back-end
along with all other normal code. With modal facilities, ameliorating the costs of such
context switching typically means code must be moved extensively to bunch similar
sections together and surround them with appropriate context switches - this would
have to operate at a a fairly high level and is unlikely to be easy and effective with
current compilers.

5 Control flow

Most loops that have interesting computing behaviour exhibit some form of control-
flow variation. Clearly, in the search for performance, loop invariant control flow
should be removed outside the loop by simple inversion, or in the case of procedural
invocation, by some form of inlining. The real problem is to handle loop-variant
control flow, ie. the sort implied by

if(a[i] < 45)
b(i] = c[i] + 19;

With current architectures this turns out to be tricky to implement when we’re using
SIMD instructions to process n-at-a-time. Conventional single condition codes (zero,
It etc.) are meaningless for the results of these operations and different control
mechanisms need to be synthesised. Since separating the control flow for each
element in a packed word would be exceptionally expensive in hardware we must
either split the control flow through software (i.e. breaking the parallelism for the code
concerned) which defeats the original goal, or attempt to map into some equivalent
data flow with (cheap) hardware support. Some options are to include some form of
element-by-element predication on the SIMD operation, or providing generation of
conditional "mask words’ which can be logically combined (in software) to produce the
required data flow. The latter seems to be by far the cheapest to implement in
hardware and is what is used in MMX. So the above code is basically mapped into
dataflow as:

temp = (a[i] < 45) ? all_1ls: O;
templ = (c([i] + 19) & temp;
temp2 = Db[i] & (~temp) ;
b[i] = templ | temp2;

which can then be stripmined n-at-a-time, albeit at the cost of three extra logical
operations per assignment within the execution loop (assuming an and-complement
operator). This substitution can be carried out easily and systematically by a compiler
and can be subject to late-stage optimisation of the resulting dataflow. More drastic
control flow variation, such as abnormal loop exit, is not susceptible to such a simple
technique, but may be less important in practical situations.



In VIS the comparison operations are oriented to determining graphics clipping
conditions, resulting in single bit conditions and would need a different approach
(there are arguments for both modes of comparison result.). In some specific small-
scale arithmetic cases, such as maximisation, these control flow ’problems’ can be
overcome by careful use of saturation modes (as in MAX-2 - see [2] for details),
which are relatively cheap to build into the hardware, and can be surprisingly efficient
in software, though they are less likely to be exploitable systematically. MicroUnity’s
Mediaprocessor appears to combine condition and selection into a single operation.

6 Conclusion

For systematic efficient exploitation of these packed arithmetic features via automated
compilation, lack of modality and support for limited ’control-as-data’-flow within the
architecture seem to be important and potentially cheap in hardware.

7 References

[1] http://www.sun.com/sparc/vis/medialib.html

[2] R. Lee, "Subword Parallelism with MAX-2", IEEE Micro Vol 16 No 4, Aug.
1996, pp51-60

[3] M. Tremblay et al, "VIS Speeds New Media Processing", IEEE Micro Vol 16 No
4, Aug. 1996, pp10-20

[4] A.Peleg and U. Weiser, "MMX Technology Extension to the Intel Architecture",
IEEE Micro Vol 16 No 4, Aug. 1996, pp42-50

[5] C. Hansen, "MicroUnity’'s MediaProcessor Architecture”, IEEE Micro Vol 16 No
4, Aug. 1996, pp34-41

VIS is a trademark or registered trademark of Sun Microsystems, Inc. MMX is a
trademark of Intel.





