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When performing parameter estimation of dynamical
systems, one must evaluate unknown variables given
uncertain measurements. Often the problem is
approached using a probabilistic description of the
uncertainty and statistical estimation theory is applied.

Another approach is to make the so-called "set
membership" or "unknown-but-bounded error" (UBBE)
assumption. Here it is assumed that the measurements
contain errors that are within known bounds.

This paper discusses the frequency domain system
identification problem under the UBBE assumption. It
demonstrates that the set of all possible identifications
is a finite union of polyhedra. The paper also shows
how the problem of finding one valid identification
reduces to finding a feasible solution to a nonlinear
system of equations under box constraints. An example
of applying the resulting algorithm to actual
measurements is given.
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1 INTRODUCTION
When performing parameter estimation of dynamical systems, one must evaluate unknown
variables given uncertain measurements. Often the problem is approached using a probabilistic
description of the uncertainty and statistical estimation theory is applied.

Another approach is to make the so-called "set-membership" or "unknown-but-bounded error"
(UBBE) assumption [1][2]. Under the UBBE assumption, it is assumed that the measurements
contain errors that are within known bounds. That is, every time some quantity m is measured
(yielding a measured value fit), it is assumed that a lower bound m and upper bound iii can be

computed from fit such that the true value of the quantity is contained in the bounds: m~ m ~ iii.

There are several ways the bounds can be created. The bounds can come from manufacturers'
specifications. They can be the expanded uncertainty resulting from a metrological analysis of the
measurement equipment [3]. Approximate bounds can be obtained by taking the extremal values
from a set of repeated measurements.

The UBBE assumption may be more reasonable than a probabilistic description of measurement
error for a measurement where digitization error dominates environmental noise. An audio
frequency filter characterization measurement (Fig. 1) provides an example. A data acquisition
board was used with one digital-to-analog (0/A) converter and two analog-to-digital (AID)
converters, all triggered simultaneously from the same clock. The D/A generated a broadband
excitation. The excitation and the output of the filter were measured by the AIDs in the time
domain. Dozens of repeated experiments yielded identical measurements, except for occasional
differences in the least significant bit. Clearly, digitization error dominated. Making the UBBE
assumption, with bounds derived from the discrete voltages measurable by the AIDs, is reasonable
for this measurement.

Using bounds to describe measurement error is at least as old as the use of toleranced mechanical
drawing. Instrument manufacturer's specifications often give bounds on measurement error. Smit
[1] described a general theory for computing the possible values of quantities derived from
measurements under the UBBE assumption. Schweppe [2] showed how to solve a number of
parameter and state identification problems under the UBBE assumption. There has been
considerable recent work in the controls community on the problem of identifying the parameters

Data Acq Board

PC

Figure 1. AUdio-frequency filter
measurement
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(or bounds on the parameters) ofa linear system from time-domain measurements under the UBBE
assumption [4]-[6].

This paper is concerned with identifying the parameters of a single-input, single output, lumped
parameter, linear, time invariant system based on measurements of the complex spectra ofa broad
band excitation signal and the output of the system (Fig. 2). Schoukens and Pintelon [7] have
studied how to perform this identification when the measurement noise is modeled as being
random and drawn from some known distribution.

First, this paper formalizes the models of the device under test and measurement uncertainty to be
considered. Second, it shows that the set of all possible parameter values is the union of a large
number of polyhedral sets. It describes an algorithm for computing a single value for each of the
parameters. Last, it presents an example of using the algorithm on measured data.

2 MODELS OF MEASUREMENT UNCERTAINTY AND DEVICE UNDER
TEST

Assume that the complex excitation spectrum X(co) and output spectrum Y(co) are measured at a

discrete set of F frequencies n = {co 0' co l' ... , co F _ 1 }. These measurements can, for example,

be performed on a network analyzer. Assume further that for each co En, bounds X(co), X(co) ,

f (co), and Y(co) on the true spectra X(co), Y( co) have been obtained such that1

Re(X(co»:s; Re(X(co» :s; Re(X(co»

1m(X(co »:s; 1m(X(co » :s; 1m(X(co »

Re(f(co» :s; Re(Y(co» :s; Re(Y(co»

Im(f(co»:s; 1m(Y(co »:s; 1m(Y(co ».

(1)

(2)

(3)

(4)

The device under test is to be modeled as linear, time invariant, and delay-free with N zeros and
M poles. The transfer function of the system is given by

~~:~ ~ HUm) ~ (taie~Um)}(i/ie:'Um»)

Broadband
excitation

)«(00) "Y(oo)

Figure 2. Assumed measurement
set-up----------

1. This fonnulation, with rectilinear bounding boxes around X( CO ) and Y( CO ) , is somewhat arbitrary. It would also be reasonable to consider

bounding circles or ellipses, for example.
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or, more succinctly,

(5)

where the parameter vectors a E 9l
N

and b E 9l
M

are to be determined from the measurements

and eK(x) is a vector of functions that form a basis for the polynomials of degree K. Typically

eK(x) is [1,x,x2, ... ,xK]T. It could also be the Tschebyshev polynomials, or some other

orthogonal polynomials, up to degree K. Normally, one element of a or b is forced to be a chosen
constant, to eliminate parameter choices that differ only by a multiplicative constant.

3 THE SET OF FEASIBLE PARAMETERS

In (5), X(ro) and Y(ro) are any values that satisfy (1)-(4). Thus, there is a set S of feasible

parameter values, namely the set of parameters (a, b) for which there exists X(ro) and Y(ro) that

satisfy (1 )-(5). S is a subset of 9l
N

x 9l
M

and a function of X, X, f, Y, M and N.

The set of feasible parameters S gives all possible identifications of the system under the UBBE

assumption. If the boundaries of S were easy to compute and could be stored easily, they could be
used directly to solve problems such as:

- computing bounds on the possible parameter values,

- finding stable parameters, by searching within S, and

- comparing two measured systems to see if they are the same to within measurement error, by
checking whether their respective feasible parameter sets overlap.

Unfortunately, as we will now see, there is a strong indication that it is time-consuming to compute

S explicitly.

Theorem 1: S is the union of 2
N

+M polyhedral sets, each with at most 4F facets. (A similar
theorem for the time domain setting appears in [6].)

Proof Suppose (falsely) that we knew the signs of each element of a and b. We show that then S
would be the solution set of 4F linear inequalities.

Let r( ro) be the real part of the left-hand side of (5), and c(ro) the imaginary part:

(6)

r(ro)= LRe[Y(ro )]b;Re[e~(jro)] - LIm [Y(ro)]b/m[e~ (jro)]
; ;

- :LRe[X(ro )]b;Re[e
N

(jro)] + :LIm [X(ro )]b/m[e
N

(jro)]
; ;
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(7)

c(ro)= :LRe[Y(ro )]b/m[e~(jro)] + :LIm [Y(ro)]bjRe[e~ (jro)]
j j

- IRe [X(ro )]b/m[E>~(jro)] - IIm[X(ro )]bjRe[E>~(jro)]
j j

Equation (5) is equivalent to (8) and (9)

r(ro) = 0

c(ro) = o.
Let

{
Re[X'_(ro)], if bjRe[e~(jro)]~ 0

Y'R(b, ro, i) =
Re [ Y( ro )], otherwise

{
Re[J'i_(ro)], if ajRe[E>~(jro)] ~ 0

X'R(a, ro, i) =
Re[X(ro )], otherwise

{
1m [Xi_(ro )], if a,1m[e~(jro)] ~ 0

X'I(a, ro, i) =
1m [X(ro )], otherwise

{
1m [X'_(ro )], if b/m[E>~(jro)]~ 0

Y'I(a, ro, i) =
1m [Y(ro )], otherwise.

For each ro, (1)-(4) and (8) are equivalent to the following pair inequalities:

:LY'R(-b, ro, i)bjRe[e~ (jro)] - :LY'ib, ro, i)b,1m[e~ (jro)]
j j

- :LX'R(a, ro, i)bjRe[e~(jro)] + :LX'i-a, ro, i)b/m[e~(jro)] ~ 0
j j

:LY'R(b, ro, i)bjRe[e~(jro)] - :LY'i-b, ro, i)b/m[e~(jro)]
j j

-:LX'R(-a, ro, i)bjRe[E>~ (jro)] + IX'I(a, ro, i)b/m[E>~ (jro)] $; 0
j j

(8)

(9)

(10)

(11)

Equations (1)-(4) and (9) are equivalent to a similar pair of inequalities. Both pairs of inequalities

are linear, since eM(jro ), eN(jro ) , X'R' X'I' Y'R, and Y'I are constant for fixed ro .
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When the signs ofthe elements of a and b are fixed, S is the solution set of 4F linear inequalities.

Then S is a polyhedral set with at most 4F facets. But the signs of a and b are in fact unknown.

So S is the union of such polyhedral sets, where the union is taken over all of the choices of signs

for the elements of a and b . There are 2
N

+ M such choices of sign. 0

Theorem 1 suggests that computing S explicitly will take vast amounts of computer time, due to

the exponential growth of the number of polyhedra in S as Nand M increase. Points within a
particular polyhedron, however, can be found quickly by linear programming.

4 FINDING A SINGLE SOLUTION

Because of the apparent difficulty of computing S explicitly, the remainder of this paper is

concerned with the simpler problem offinding a single feasible parameter (a, b) E S. This section
shows how this problem is transformed into a nonlinear optimization problem that is solvable with
commercially available code.

This is done by finding not only values for a and b, but also corresponding values for X(co) and

Y(co) at the same time. This could be done by solving (1)-(5) with a solver for nonlinear equations

under box constraints. On some occasions, (1)-(5) will have no solution (usually because Nor M
is too small). When this happens, a numerical nonlinear equation solver will fail to converge. When
nonconvergence occurs it is impossible to determine whether (1)-(5) in fact have no solution or if
noncovergence is due to numerical errors. There are nonlinear equation solvers based on interval
arithmetic that will either provide tight lower and upper bounds on a solution or verify that no
solution exists [8]. However, the computing time required by such exact solvers increases
exponentially with the number of variables in the problem.

In order to make the numerical solver converge, even in the case where (1)-(5) have no solution,
we introduce a new positive real variable e . This e is an upper bound on the absolute error in the
constraint equations (8) and (9):

Ir(co)1 ~ e (12)

lc(co)1 ~ e . (13)

e can be set to a large enough value that (12) and (13) are satisfied, whatever initial values that

satisfy (1)-(4) are chosen for a, b, X(co) and Y(co). e is then minimized using a numerical

optimization code. A well-designed code should always coverage, since e is bounded below by O.

Ife can be reduced almost to zero l while maintaining values for a , b, X(co) and Y(co) that satisfy

(1)-(4), (12), and (13), then a solution to (1)-(5) is given by the final values of a and b. If e cannot

be reduced to zero, that suggests that (1)-(5) have no solution and that Nor M should be increased.

1. e cannot, of course, be reduced exactly to zero because ofthe numerical round-off errors in floating point computations.
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Specifically, the following constrained, nonlinear optimization problem in real variables is formed
and solved numerically: Find the real (M + N + 4F + 1)-vector

(a, b, Re[X(oo )], 1m [X(oo )], Re[Y(oo )],Im[Y(oo )], e) that minimizes e such that (1)-(4) hold

and e ~ 0, r(oo)::; e, -r(oo)::; e, c(oo)::; e and -c(oo)::; e, and bo = 1.

This optimization problem is solved using the iterative, constrained, nonlinear optimization routine
constr from the Matlab Optimization Toolbox. Following a recommendation in [9], Forsythe

polynomials [10] are used for the polynomial basis eK(x) to improve the numerical stability of
the optimization code.

To start the iterative code, X(oo) is set equal to (X(oo) + X(oo» /2 and Y(oo) is set equal to

(f((0) + Y( (0» /2. Then the initial values for a and b are set to those that give the least squares

fit to X((0) and Y(00 ) , and e is set large enough to satisfy (12) and (13).

5 EXAMPLE
The algorithm of the previous section was applied to measurements of a passive bandpass filter
from [11]. The excitation was a 16-frequency multisine in the band 244.IHz to 976.6 Hz. An 8-bit
digitizer was used to measure the time-domain signals. The measurement was repeated 25 times.

The bounds X( 00 ), X( 00 ), 1'(00), and Y((0) were taken to be the extremal values encountered

among the 25 measurements. For example, for each 00, Re[X(oo)] was taken to be the smallest

measured value Re [X(00 )] from among the 25 measurements.

The optimization required five iterations. The final value of the maximum absolute equation error

was e = 1.5951· 10-
20

, which is well within round-off error of zero.

Fig. 3 shows the amplitude and phase of the non-parametric transfer function Y(00 ) / X((0) of all
25 measurements (each measured value is indicated with a "+") and the identified parametric
transfer function HUoo) . Fig. 4 shows the real and imaginary parts of same data.

Figs. 5-8 illustrate that the algorithm results in values for X((0) and Y((0) that satisfy (1)-(4). Fig.

5 shows the differences Re[X(oo)-X(oo)] and Re[X(oo)-X(oo)]. Since the values of

Re[X(oo) -X(oo)] are below or on the x-axis, and the values of Re[X(oo) -X(oo)] are above or

on the x-axis, (1) is satisfied. Fig. 6 shows 1m [X(oo ) - X(oo)] and 1m [X(oo ) - X(oo)] in the same
manner, illustrating that (2) is satisfied. Similarly, Fig. 7 shows that (3) is satisfied and Fig. 8 shows
that (4) is satisfied .

Several of the differences plotted in Figs. 5-9 appear to be on the x-axis, indicating that the

corresponding constraint was satisfied at equality. The smallest difference was 1.2· 10-9 ,

numerically equal to zero. The numerical method found parameter values on the border of S.

The signs of the elements of a and b did not change from those of their initial values.
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Figure 3. Amplitude and phase of nonparametric transfer function (measured
datum =u+") and identified transfer function

1.5

0.5

o

-0.5

-1

\
\
\

reo! part solid, imaginaIy part dashed

-1.5
200 300 400 500 600

frequenG)' (Hz)
700 800 900 1000

Figure 4. Real and imaginary parts of nonparametric transfer function

7
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Bounds on Y minus identified Y
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6 CONCLUSIONS
This paper contains two main contributions. First, it shows that the set of feasible parameter values
is the union of polyhedra, where the number of polyhedra grows exponentially as the number of
parameters increases. This exponential growth suggests that computing the set of all possible
parameter values would be computationally infeasible. Second, it demonstrates how a
commercially available optimization code can be used to find a single feasible value for each
parameter.

Finding a single value for each parameter in the example took only five iterations of a numerical
solver, starting from the least squares solution. The signs of the parameters didn't change from
those of their initial values. Similar behavior was noted on other data sets. This suggests that the
parameter values computed by least squares often have signs that yield a polyhedron that is non-
empty. A possible direction for future research would be to investigate how well S is approximated
by the union of a small number of polyhedra near the least squares fit.
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