
PermWeb: Remote Parallel and Distributed Volume Visualization

Craig M. Wittenbrink

Hewlett-Packard Labs

1501 Page Mill Road

Palo Alto, CA 94304

Kwansik Kim, Jeremy Story

and Alex Pang

Baskin Center for Computer Engineering and Computer Science

University of California, Santa Cruz

Santa Cruz, CA 95064

Karin Hollerbach and Nelson Max

Institute for Scienti�c Computing Research

Lawrence Livermore National Laboratory

Livermore, CA 94550

In this paper we present a system for visualizing volume data from remote supercomputers (PermWeb).
We have developed both parallel volume rendering algorithms, and the World Wide Web software for access-
ing the data at the remote sites. The implementation uses Hypertext Markup Language (HTML), Java, and
Common GatewayIn terface (CGI) scripts to connect World Wide Web (WWW) servers/clients to our volume
renderers. The front ends are interactive Java classes for speci�cation of view, shading, and classi�cation in-
puts. We present performance results, and implementation details for connections to our computing resources
at the University of California Santa Cruz including a MasPar MP-2, SGI Reality Engine-RE2, and SGI Chal-
lenge machines. We apply the system to the task of visualizing trabecular bone from �nite element simulations.
Fast volume rendering on remote compute servers through a web interface allows us to increase the accessibility
of the results to more users. User interface issues, overviews of parallel algorithm developments, and overall
system interfaces and protocols are presented. Access is available through Uniform Resource Locator (URL)
http://www.cse.ucsc.edu/research/slvg/.

Key Words and Phrases: permutation warping, load balancing, interactive viewing, remote frame-bu�er
viewing, Java, World Wide Web, parallel volume rendering.

1 INTRODUCTION

Visualization of simulated and collected volumetric data is important in many �elds. Recent examples of
the data sets used for research and development include the Visible Human1 and global ocean circulation data.
Much of the research in visualization has been made accessible by providing immediate accessibility to tools
and data through the World Wide Web (WWW). Others havein vestigated the interfacing of renderers through

Internal Accession Date Only

the WWW,2 and other applications in graphics investigating dissemination and interactivity such as virtual frog
dissection3 and immersive virtual worlds.4 The development of WWW tools is an interesting topic. Card et al.5

investigate limitations and current capabilities of the WWW. We are speci�cally interested in investigating and
developing tools for the following capabilities:

1. remote viewing by experimental scientists to compare trabecular bone strength or architecture �ndings with
measurements.

2. remote searching by scientists to �nd the closest visual sample match to web published data for selection
of reasonable material properties.

3. remote evaluation by surgeons and radiologists of patient data, for diagnosis or pre-operative scenarios.

4. e�ective, rapid demonstration of �nite element analysis of trabecular bone and other simulations.

Volume rendering algorithms provide a realistic, complete, but computationally expensive means of visualizing
sampled 3D data such as those found in medical imaging and computer simulations. Rendering is the creation of
images from models, whether those models are geometric or volumetric. By rendering slices and volumes of data,
and changing rendering parameters, medical imaging allows searching for di�erent tissues or abnormalities.

Our work involves integrating a parallel renderer with the �nite element studies of human joints at the
Lawrence Livermore National Laboratory (LLNL).6{10 Such tools for visualization will make the validation, and
re�nement of the model simpler, and the demonstration of the results faster and easier. Our collaboration with
LLNL has allowed us to use up-to-date data sets where we have proven their e�ciency.

We are researching a combination of strategies based on tiling and permutation warping for e�cient mem-
ory access and data communication that takes advantage of the massively parallel computational resources, or
hundreds to thousands of processors. We have (a) extended this strategy to data dependent optimizations for
massively parallel calculations, (b) provided remote control through the World Wide Web (WWW), (c) and ap-
plied these tools to the task of visualizing trabecular tissue from �nite element simulations. The combined use of
parallel permutation warping with WWW access results in our system name, PermWeb.

We have extended our permutation warping techniques11 to take advantage of data dependent coherency for
large speedups. Speedup studies have been done at the University of California, Santa Cruz using the MasPar
MP-2 4096 node machine. Our volume rendering speedups through e�cient network and memory accesses have
been published,11{13 but their utility has not been widely seized upon. Our volume rendering algorithm uses
permutation warping to achieve linear speedup and linear storage on parallel machines. The algorithm supports
arbitrary view directions, large data sets, large parallel machines, and high order �lters, combined features
not supported by other data parallel algorithms. Extensions to the algorithm make it superior in speed, while
supporting superior �ltering qualities to parallel variants of the shear warp factorization algorithm. The ability to
do load balancing, culling, and adaptive ray termination are possible with the massively parallel MIMD (multiple
instruction stream multiple data stream) and SIMD (single instruction stream multiple data stream) machines.

We developed remote frame viewing solutions, in order to e�ectively use the remote supercomputers at Santa
Cruz. For wider availability of limited high end computational resources, we have provided a WWW interface for
users to request volume renderings of 3D data sets. This interface allows users to specify viewing parameters. In
future implementations we are considering providing web interfaces for setting transfer functions. The web tools
can also be a vehicle to allow remote steering of simulation together with visualization of intermediate results.

Fast volume rendering on remote compute servers through a web interface allows us and the scienti�c com-
munity in general to improve the way data are analyzed and visualized. On-line rendering of simulations is
important to reduce/remove time lost waiting for the results of awed simulations, and to promote faster un-
derstanding of correct results. Together with the WWW interface we hope for as wide availability of the tools

2

and research results as possible. In this paper we present the software architecture for PermWeb, describe the
necessary components, and also discuss implementation details and tradeo�s. We also discuss a variety of user
interfaces, and performance issues for PermWeb. We briey describe our parallel volume rendering algorithms,
project methodology, motivating application, and system.

1.1 Background: Volume Rendering and Permutation Warping

Volume rendering is a class of algorithms that compute the interaction of light in a volume of light-scattering-
particles. For a more in depth discussion of volume rendering see Blinn,14 Kajiya and von Herzen,15 and Levoy.16

The �nal output is a 2D array of pixel intensities which can be calculated in many di�erent ways indicated by
the numerous input variables: volume data, light sources, view transform, classi�cation function, and shading
function. An illustrative categorization of possible algorithms is by viewing transform. The viewing transform
converts the initial shading intensities and the opacities to the three dimensional screen space by resampling.
Existing parallel algorithms may be grouped into four categories determined by their viewing transforms: back-
wards, multi-pass forwards, forwards splatting, and forwards wavefront. A backwards viewing transform is ray
tracing, where the eye point is transformed back into the object space to determine the spatial positions within
the data space that a�ect the view ray. Nieh and Levoy,17 and Yoo et al.,18 have developed backwards (ray
tracing) volume rendering algorithms for parallel computers. Multi-pass forwards algorithms transform in the
opposite direction, and move data from the object space to the screen space, for example as is done in the shear
warp algorithm.19{21 Forwards splatting takes each voxel, and contributes their results to the screen, and though
highly parallelizeable has artifacts from out of ordered compositing.22 Forwards wavefront parallel algorithms
are similar to the multi-pass forwards algorithm, but often order the data in a more structured fashion, such as
that used in the line drawing algorithm.23 Our permutation warping24 approach computes a backwards mapping
algorithm with optimal storage and deterministic communication on shared or distributed memory machines.

Permutation warping is essentially a processor assignment technique that provides a general approach for
e�cient parallel transform algorithms. Permutation warping is better than prior parallel algorithms because it is
memory e�cient, processor e�cient, general, and accurate. The algorithm calculates a volume rendering output,
and gives speci�c memory layout and communication requirements necessary for the exclusive read exclusive write
parallel random access machine (EREW PRAM). Processors are assigned sample points, requiring thousands to
millions of processors. There are schemes for e�cient virtualization to fewer processors as well.

Our algorithm consists of the following three steps:

1. Processors classify and shade, reading neighboring data as necessary.

2. Each processor resamples the opacities, and intensities, to be aligned with the view rays. If done in a straight
forward fashion this would require many rounds of communication, but we have developed a permutation
warp that requires only one communication.13 We resample in the object space (OS) near where the points
lie, and then send the resampled data to their screen space positions. The method uses a rule that calculates
processor assignments for the viewing transform as we initially investigated in Wittenbrink et al.13 Figures
1 and 2 illustrate the transforms calculated by the processors. Figure 1 shows virtualized permutation
warping. The rotated screen space view is overlapped with the non-rotated object space (left). Subimages
are computed and then communicated to the aligned screen space (middle), and the sorted subimages are
shown in bold in preparation for �nal compositing (right). Figure 2 shows the upright cube on the left as the
original data space, and the rotated The machine is visualized as processors with object space assignments
(left) and processors with screen space assignments (right). The object space processors are connected to
the right, where the screen space is the upright cube, and the original object space is rotated in relation
to the screen. The lines drawn from left to right show communication required to permute the data to the
appropriate processors in a provable one-to-one single communication step.

3

A processor does permutation warping by:

(a) Calculating processor assignments;

(b) Calculating the reconstruction point;

(c) Performing resampling and reading the values of its neighboring processors; (The number of neighbors
used determines the �lter order.)

(d) Sending resampled values to screen processors. Figure 1 shows the aligned subimages in two-dimensions.
Figure 2 shows view spaces in three-dimensions, where lines are drawn from a processor, and the pro-
cessor it is communicating to. The calculated view is the rotated cube, and processors in the center of
the cube do not communicate, as there is a small angle of rotation for this example.

3. A parallel product evaluation combines resampled intensities and opacities. Binary tree operations are used,
similar to a parallel product, for the associative compositing.

Figure 1: Virtualized permutation warping.

Figure 2: Permutation communication.

1.2 Project Methodology

This research project encompasses three areas: parallel algorithms research, system development, and dis-
tributed software architecture research. This paper is an overview of the project, and we briey discuss here the
methodology for the algorithm, system, and architecture research. The parallel algorithm research methodology
is to incorporate the advantages of data dependent optimizations into our scalable algorithms. There are more
recent sequential algorithms that suggest immediate algorithmic improvements. The methodology for the systems
development has been to prototype functioning systems for the driving applications and to optimize and tune
the performance. There is more detail of the system in Sections 3 and 4. The methodology for the software
architecture development has been to abstract the lessons learned from the prototyping, and to also try to an-
ticipate newer developing technologies. The software architecture is described further in Section 3. To provide
full discussion of the project we mention briey here the approach and developments of the parallel algorithms
research.

Several enhancements are possible for the permutation warping algorithm: load balancing, region culling,
and local sub-cube adaptive termination. These enhancements are the subject of another paper.25 Our prior
algorithmic studies of permutation warping have shown that it is time and space optimal for resampling on
the EREW PRAM.11{13,24 The MIMD study that we carried out showed that there was poor load balancing
for certain view angles. An e�ective load balancing strategy is a must for MIMD variants of the permutation
warping algorithm, and our current work includes altering the mapping of permutations to virtual addresses which
allows the use of slackness, and also redistribution of processor's work for SIMD and MIMD. The permutation
assignment can be done from virtual processor address to virtual processor address, and the virtual assignments
can be dynamically altered to load balance the processing as it occurs.

4

In related work the shear warp factorization algorithm,19 has been able to reduce the amount of work necessary
in computing a volume rendered output from regular volumes by nearly an order of magnitude. Parallel versions
of this program have been presented,21 and the primary speedup is through straight forward parallelization of
the sequential algorithm. But Lacroute et al.21 and other studies20 show that the possible speedup to higher
numbers of processors is limited because of the decomposition. Permutation warping can scale further as we
demonstrated on the SIMD implementations, and it is also possible to use culling which has improved the shear
warp approach. Culling through octree encoding, and other compression schemes has been investigated, using
the parallel permutation warping algorithm yielding improvements of up to 400%.

Because in permutation warping, each subvolume is rendered as if it were a separate volume rendering job,
some amount of adaptive termination along a ray may be performed. In addition, as the subvolume's contributions
are computed, an amount of work may be terminated by either doing front to back parallel evaluation, or through
communication of termination signals, once accumulated opacity has reached the threshold set. The adaptive
termination in the subvolume is a straightforward addition, while the adaptive termination across subvolumes
can be done in a variety of ways. The improvement is expected to partially depend on the architecture. Future
research shall generalize the tiling and permutation warping for rendering on other supercomputers as well as
continue to examine additional data performance enhancements.

2 SCIENCE MOTIVATION

The development of tools for visualization is most useful when driven by true application requirements. The
science motivation for our remote rendering tools is to assist in scienti�c evaluation for �nite element studies.
Our driving application is to investigate trabecular bone structures. We briey describe our application, and the
questions that are being investigated to elucidate the system requirements and decisions in the following section.

Many bones have an outer layer of compact cortical bone and an inner core of porous cancellous (or trabecular)
bone. Although its speci�c architecture can vary signi�cantly, trabecular bone has a cellular structure with space
between the network of bone trabeculae. Variation in the architecture of the trabecular bone depends upon
loading conditions of the bone as well as health of the individual. Trabecular bone is always less dense than is
cortical bone, with volume occupancy of less than 70% typically being de�ned as trabecular. Mechanical properties
depend on overall bone density as well as speci�c architecture and strength of the existing trabeculae. In healthy
subjects, bone density increases with use. Changes in trabecular architecture reect increases in loading normally
experienced by the bone. Similarly, mechanical properties of trabecular bone are anisotropic; directions normally
subjected to higher loads exhibit, for example, thicker, stronger trabeculae that more closely resemble plate-like
structures. Lightly loaded directions form more open networks. Changes in trabecular architecture and strength
can also be related to diseases such as osteoporosis. Since variability in strength among trabecular bone samples
is high, non-invasive methods are quite useful. Important research involves using 3D visualization to assist in the
measuring of bone architecture, diagnosing, and studying bone disease. The science questions we are interested
in relate to comparison of empirical studies on the bone structures to simulations and evaluation of hypothesis
on structure and function. Because of the complex three-dimensional structure of the bone, volumetric rendering
is useful. Because the simulation studies are done on massively parallel platforms, the combined rendering allows
for amortization of data set movement that speeds up visualization and therefore investigation.

5

3 SYSTEM DESCRIPTION

The system is intended to support science investigation, and we make certain assumptions about the users of
the system. We assume the users have networked computers, desire access from multiple platforms and platform
types, and require access to shared supercomputing resources. The scenario includes internetworked computers
within an intranet that share a joint rendering server. For our speci�c project, we have researchers in di�erent
locales (Santa Cruz, Palo Alto, Livermore, and Berkeley), di�erent platforms (Hewlett-Packard, Silicon Graphics,
and personal computers), and with di�erent parallel servers available (MasPar, Meiko Scienti�c, Silicon Graphics
Challenge, and Cray T3D).

A system to achieve our science goals with our modest support and personnel required using as many o�-the-
shelf components as possible. We therefore leveraged all user client software by assuming Netscape Navigator
or Microsoft Explorer type front ends to the system. We also assumed that we had access to a web server, and
that most networking transmission would use the WWW standards. Because the servers are at di�erent sites we
assumed the system would be a multiprocess system. Figure 3 shows an overview of the software architecture
of the system. The four main processes are the Web Server, Render Request, Render Server, and Child Render

Work. Only the last three are custom software, and many components of the custom programs are built from
freeware.

The custom software developed is also indicated by the source �les shown in Figure 3. The rectangular source
�les include: render.html, tcpclient.c, tcpserv.c myppmtogif.c, and render.c. The dashed lines show the source �le
dependencies to programs. The front end, because of the use of standard WWW browsers, is coded in hypertext
markup language (HTML). This language speci�es a hypertext document, and has embedded images. Figures 6
and 7 show the appearance of two of our front ends.

The tcpclient.c program is invoked as a common gateway interface (CGI) program, so it may run on a di�erent
platform than the web server that provides access to the render.html forms interface. The additional processes
Render Server and Child Render Work are from the same program that continually runs, waiting for requests
to create a volume rendering. The volume data is shown to be in bone volume.vol, which is stored in memory
for fast access to the rendering server. The results are always compressed before being sent back to the client
(myppmtogif.c), and the server requires a volume renderer (render.c).

The software architecture is made clear through a brief explanation of its operation, as shown in the �gure
with the numbered circles. In (1) a user makes a request via the WWW to the Web Server. The Web Server

returns the render.html front end forms interface. Once the user has selected the desired parameters, he chooses a
button \render", which (2) invokes the CGI process. Typically CGI processes are found in the cgi-bin directory,
and may be referred to as cgi-bin scripts. In (3) the cgi-bin script contacts the Render Server, which (4) causes
the Render Server to fork o� Child Render Work. In this way a single , server handles requests from many users
which can be controlled by choosing how many connections the server will accept. In (5) Child Render Work

accesses the source volume, bone volume.vol, renders it into an image, compresses the image to the GIF format,
(6) sends the result to through the socket to Render Request, and exits.

Render Request upon receipt of the image, in (7) writes it to a �le, result.gif, and in (8) returns the appropriate
uniform resource locator (URL) to the requesting client. The page returned to the client includes the URL for the
image, and is typically in the form of a WWW page with the cgi-bin script as the page: http://Web Server2/cgi-
bin/Render Request/?params. Web Server2 is indicated if in fact a di�erent server is used than for the initial
request. The parameters indicate the location where the actual viewing parameters are passed to the server. The
system is simple, e�cient, and uses WWW technology including front end clients, servers, protocols, to provide
access to rendered information. The advantage of our system is a small amount of code to be developed for
general and exible use.

6

Web Server Render Request Render Server

Child Render Work

1

2 3 4

5

6

7

8

Request “http://Web Server/render.html”

“http://Web Server(2)/cgi-bin/Render Request/?params”

render.html

result.gif

tcpserv.c
myppmtogif.c

render.c

bone_volume.{vol,rv}

tcpclient.c

process

source file

data file
socket

communication

file read or write

“”

Figure 3: PermWeb architecture

4 RESULTS

We have developed several interfaces and experimented with di�erent approaches to interfacing to renderers.
We have four available interfaces for volume rendering, web page \http://www.cse.ucsc.edu/research/slvg". The
user can try out di�erent viewing parameters and/or data sets. The web clients link to the renderer (either a
workstation or the MasPar MP-2) using the software architecture in the previous section. We briey review some
of the implementation decisions, lessons learned, and approaches.

For the �rst implementation the cgi-bin scripts are written in C and csh-scripts. A WWW client passes viewing
parameters either through an HTML forms or, for the second implementation, a Java interface, which is link to a
cgi-bin script to call the renderer. The Java classes26 provide more interactivity in specifying the classi�cation and
viewing parameters, while maintaining the wide portability and accessibility of the web clients. The Java/WWW
client provides a two dimensional interactive graphics interface, and the same approach looks promising for a
fully interactive 3D volume renderer, allowing access to a variety of parallel platforms, and datasets for a large
number of users. The third implementation interfaces to the MasPar, and the fourth implementation uses Java
to animate prerendered images.

Because WWW servers often have security di�culties, it is important to limit access and exibility as much
as possible. CGI scripts are a possible security problem, especially when providing access to code in development.
Therefore one security issue is how to provide development access to cgi-bin scripts. We have used di�erent
servers, placing cgi-bin scripts on a more restricted server to limit possible damage.

The system architecture can render from a network request without ever touching disk for data access. But,
we have found in prototype and development, many of the common building blocks and volume renderers read
and write from �les. Our current implementation writes several intermediate �les, a .ppm image, a .gif image,
and the .gif image on the cgi-bin script server. In addition the memory caching of the source volumes has not
been implemented, but is an easy extension to reduce latency of request to �nal image.

The two renderers we have experimented with are the MasPar rendering software that we developed, and are
7

extending,25 and the publicly available shear warp volume renderer of Lacroute and Levoy.19 Figure 6 and 7 show
WWW/HTML/Java front ends to our implemented system. The MasPar renderer uses permutation warping as
described earlier, and runs on the University of California Santa Cruz, MasPar MP-2, 4096 node machine. The
machine has a DECstation front end, which runs the renderer. In this instance, it was more straight forward to
have the server use a system call to run a separate volume rendering program on the MasPar, and retrieve the
resulting image. The �rst algorithm is the permutation warping algorithm, and this is the base algorithm we
used for our algorithm enhancements. The second major algorithm uses octree encoding of subvolumes to assist
in compressing, and accelerating the visualization process.

The algorithm research is an investigation of the time, quality tradeo�s possible with the permutation warping
approach. The results show that there are up to 400% run time advantages in using volume coherency to accelerate
a SIMD implementation.25 The MasPar code is in MPL, a parallel variant of the C language. Due to the lack
of parallel I/O on our MasPar, the current bottleneck is not the rendering rate, but the time to read the volume
data from disk.

The shear warp renderer (webrender) uses the VolPack library, and is a slightly modi�ed example from the
library that takes view parameters and input �le, so that di�erent input �les can be used. We have run the shear
warp on a Silicon Graphics Indigo2, again using a system call to have the Render Server call webrender to render
the image. The input �le types for the MasPar renderer are raw binary volumes in column, slice major ordering.
The Shear Warp rendering program used the preprocessed volume in the VolPack de�ned .rv format. We have
written converters to convert the bone data set into these two volume data formats.

One of the key components to achieve acceptable performance is the compression of the result image. By
using the freeware GIFENCOD by David Rowley, which uses Lempel-Zif compression, a .ppm image can quickly
be converted to a .gif image. The remote viewer than gets the image more quickly, even with the overhead
of compressing the image. We have experimented with parallelizing the GIFENCOD code, and also coded the
compression on the MasPar, but only have preliminary results. A centralized color hash table is used and further
exploration of this is required.

In addition to the HTML front end, Java26 has been investigated as a means to provide more interactivity to
users. Figure 7 shows a prototyped Java front end. The user selects di�erent views by moving the sliders which
are indicated by the plotted circles of the center of view, and the object center. A Java class object is developed,
compiled to Java byte code, and made available to the web server. It would be straight forward to develop a 3D
interface for selecting viewpoints, and even additional parameter selections such as classi�cation and shading.

The current performance of the MasPar access is on the order of many seconds. Depending on the loading
of the MasPar, which is a queued system, there may be a delay to get in the execute queue. The �le read time
of the source volume dominates the total execution time, which could be �xed either by using a parallel I/O or
memory caching of the volume using a continually running server. The current performance of the shear warp is
typically a few seconds. Because of the relatively fast �le access of the Indigo2, and the smaller source volumes
used, the performance is reasonable for remote users. The precompressed, run-length encoded, source volumes
used by shear warp help in reducing the �le read latency. The anticipated performance given full optimization
of the system software would be 5-10 frames per second. To get better performance than this may require a web
browser plug in for a more direct connection to the rendering server, bypassing the multiple step socket paths
used with the current system.

There are more and more advanced web technologies becoming available, and it may be e�ective to use
digital video web browser plug in, and implement a custom render server that communicates with one of these
browsers. In this way, the transmission of images would be standard, and likely Java class animated front ends,
in coordination with a third party video plug in, would provide good performance with small development costs.

8

Figure 4: Rendering of trabecular bone, view 1. Figure 5: Trabecular bone, view 2.

Figure 6: PermWeb HTML front-end. Figure 7: PermWeb Java front-end.

9

5 SUMMARY AND CONCLUSIONS

We have detailed a software architecture for remote volume rendering using many standardized WWW com-
ponents, and a few custom components. The system was designed to address several key constraints for scienti�c
inquiry including measurement simulation comparison, multiple study comparisons, and evaluation in research or
diagnosis scenarios. Key to the performance of our system is image compression, and in-memory rendering and
transfer. We have developed multiple front ends using this system architecture including Java interactive front
ends for specifying viewing parameters. We have interfaced the system to multiple renderers, including our parallel
permutation warping code on the MasPar, and the VolPack library code of Lacroute et al. We have investigated
performance issues in reducing the latency of the rendering, and improving the system. Future research includes
the development of coupled compression renderers, parallel compression algorithms, heterogeneous platform par-
allel rendering, and further data dependent optimization parallel rendering. The data dependent optimizations
of permutation warping are the subject of another paper.25 The lessons learned are that a small scale software
project can easily leverage the WWW technologies available to make remote visualization systems. Anticipated
developments in digital video web browser plug-ins, newer network technologies, and more exible multimedia
types will make such an architecture more and more e�ective at providing solutions for distributed visualization
systems.

ACKNOWLEDGEMENTS

We would like to acknowledge our collaborators, especially the faculty and students of the Santa Cruz Labora-
tory for Visualization and Graphics. We would also like to thank Dr. Paul Skokowski for his interest in coupling
the visualization and �nite element research. This work is supported by the Lawrence Livermore National Labo-
ratories, grant ISCR-LLNL B291836.

6 REFERENCES

[1] Dave Sims. Applications: Putting the visible human to work. IEEE Computer Graphics and Applications,
16(1):14{15, January 1996.

[2] C.S. Ang, D.C. Martin, and M.D. Doyle. Integrated control of distributed volume visualization through the
world-wide-web. In Proceedings Visualization '94, pages 13{20, Washington, DC, October 1994. IEEE.

[3] David W. Robertson and William E. Johnston. Using the world wide web to provide a platform independent
interface to high performance computing. In COMPCON, pages 3{7, San Francisco, CA, March 1995. IEEE.

[4] John R. Vacca. 3D worlds on the web. Computer Graphics World, 19(5):43{50, May 1996.

[5] Stuart K. Card. Special report, cg and viz in the gii: subreport, visualizing retrieved information: A survey.
IEEE Computer Graphics and Applications, 16(2):63{67, March 1996.

[6] Hollerbach Karin and Hollister A. Computerized prosthetic modeling. In Biomechanics, September 1996.

[7] P.-L. Bossart, H. E. Martz, and K. Hollerbach. Finite element analysis of human joints: image processing
and meshing issues. In Proceedings of ICIP-96, pages Vol. II{285{288, Lausanne, Switzerland, September
1996. IEEE.

[8] Karin Hollerbach. Modeling human joints and prosthetic implants. In Science and Technology Review, pages
19{21, September 1996.

10

[9] K. Hollerbach, D. Schauer, and Ashby A.E. Modeling the biomechanics of human joints and prosthetic
implants. Technical Report UCRL-TB-118601-Rev.1, University of California, Lawrence Livermore National
Laboratory, Livermore, CA, 1995.

[10] C. Nielsen, K. Hollerbach, S Perfect, and K Underhill. A computational method for comparing the behavior
and possible failure of prosthetic implants. In 1995 IEEE Intl. Conf. of the Engineering in Medicine and

Biology Society. IEEE, 1995.

[11] Craig M. Wittenbrink and A. K. Somani. Permutation warping for data parallel volume rendering. Journal
of Parallel and Distributed Computing, submitted, 1995. available as Technical Report, UCSC-CRL-96-33.

[12] Craig M. Wittenbrink and Michael Harrington. A scalable MIMD volume rendering algorithm. In Proceedings
IEEE 8th International Parallel Processing Symposium, pages 916{920, Cancun, Mexico, April 1994.

[13] Craig M. Wittenbrink and A. K. Somani. 2D and 3D optimal parallel image warping. Journal of Parallel

and Distributed Computing, 25(2):197{208, March 1995.

[14] Jim Blinn. Light reection functions for simulations of clouds and dusty surfaces. In Computer Graphics,
pages 21{29, July 1982.

[15] J. T. Kajiya and B. Von Herzen. Ray tracing volume densities. In Proceedings of SIGGRAPH, pages 165{174,
July 1984.

[16] Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics and Applications, 8(5):29{37,
May 1988.

[17] J. Nieh and M. Levoy. Volume rendering on scalable shared-memory mimd architectures. In Proceedings of

1992 Workshop on Volume Visualization, pages 17{24, October 1992.

[18] T. S. Yoo, U. Neumann, H. Fuchs, S. M. Pizer, T. Cullip, J. Rhoades, and R. Whitaker. Achieving direct
volume visualization with interactive semantic region selection. In Proceedings IEEE Visualization `91, pages
58{65, San Diego, CA, October 1991.

[19] Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-warp factorization of the viewing
transformation. In Proceedings of SIGGRAPH 94, pages 451{458, Orlando, FL, July 1994.

[20] Minesh B. Amin, Ananth Grama, and Vineet Singh. Fast volume rendering using an e�cient, scalable parallel
formulation of the shear-warp algorithm. In Proceedings of the 1995 Parallel Rendering Symposium, pages
7{14, Atlanta, GA, Oct 1995. IEEE.

[21] Philippe Lacroute. Real-time volume rendering on shared memory multiprocessors using the shear-warp
factorization. In Proceedings of the 1995 Parallel Rendering Symposium, pages 15{22, Atlanta, GA, Oct
1995. IEEE.

[22] L. Westover. Footprint evaluation for volume rendering. In Computer Graphics, pages 367{376, August 1990.

[23] P. Schroder and G. Stoll. Data parallel volume rendering as line drawing. In Proceedings of 1992 Workshop

on Volume Visualization, pages 25{32, Boston, MA, October 1992.

[24] Craig M. Wittenbrink and Arun K. Somani. Permutation warping for data parallel volume rendering. In
Proceedings of the Parallel Rendering Symposium, pages 57{60, color plate p. 110, San Jose, CA, October
1993.

[25] Craig M. Wittenbrink, Kwansik Kim, and Alex T. Pang. Data dependent optimizations for permutation
volume rendering. Technical Report UCSC-CRL-96-24, University of California, Santa Cruz, December 1996.

[26] David Flanagan. Java in a Nutshell. O'Reilly & Associates, Sebastopol, CA, February 1996.

11

Web Server Render Request Render Server

Child Render Work

1

2 3 4

5

6

7

8

Request “http://Web Server/render.html”

“http://Web Server(2)/cgi-bin/Render Request/?params”

render.html

result.gif

tcpserv.c
myppmtogif.c

render.c

bone_volume.{vol,rv}

tcpclient.c

process

source file

data file
socket

communication

file read or write

“”

