
Opacity-Weighted Color Interpolation
for Volume Sampling

Craig M. Wittenbrink, Tom Malzbender, Michael E. Goss
Computer Systems Laboratory
HPL-97-31 (R.2)
July, 1998

E-mail:  [craig_wittenbrink;malzbend;gross]@hpl.hp.com

volume rendering,
compositing,
ray tracing

Volume rendering creates images from sampled
volumetric data. The compute intensive nature of
volume rendering has driven research in algorithm
optimization. An important speed optimization is the
use of preclassification and preshading. We
demonstrate an artifact that results when
interpolating from preclassified or preshaded colors
and opacity values separately. This method is flawed,
leading to visible artifacts. We present an improved
technique, opacity-weighted color interpolation,
evaluate the RMS error improvement, hardware and
algorithm efficiency, and demonstrated improvements.
We show analytically that opacity-weighted color
interpolation exactly reproduces material based
interpolation results for certain volume classifiers,
with the efficiencies of preclassification. Our proposed
technique may also have broad impact on opacity-
texture-mapped polygon rendering.

To be published in IEEE, 1998 Symposium on Volume Visualization, October 19-20, 1998, Research
Triangle Park, North Carolina,
  Copyright Hewlett-Packard Company 1998

Internal Accession Date Only



1

Opacity-Weighted Color Interpolation For Volume
Sampling

Craig M. Wittenbrink, Thomas Malzbender, and Michael E. Goss∗

Hewlett-Packard Laboratories, Palo Alto

                                                                

∗1501 Page Mill Road, MS 3U4, Palo Alto, CA 94304,
{craig_wittenbrink,malzbend,goss}@hpl.hp.com.

Abstract
Volume rendering creates images from sampled volumetric data.
The compute intensive nature of volume rendering has driven
research in algorithm optimization. An important speed
optimization is the use of preclassification and preshading. We
demonstrate an artifact that results when interpolating from
preclassified or preshaded colors and opacity values separately.
This method is flawed, leading to visible artifacts. We present an
improved technique, opacity-weighted color interpolation,
evaluate the RMS error improvement, hardware and algorithm
efficiency, and demonstrated improvements. We show
analytically that opacity-weighted color interpolation exactly
reproduces material based interpolation results for certain volume
classifiers, with the efficiencies of preclassification. Our proposed
technique may also have broad impact on opacity-texture-mapped
polygon rendering.
Keywords: volume rendering, compositing, ray tracing.

1 INTRODUCTION
Volume rendering as introduced by Drebin et al. [DCH88]
demonstrated classification and shading. Other research has
focused on approximation algorithms for speed and
parallelization approaches for throughput. There remain subtleties
in the proper development of volume rendering systems, both
software and hardware. In this paper we examine the approach of
rendering from preclassified or preshaded colors, because a
potential for artifacts exists. Drebin et al. used opacity-weighted
colors, but Levoy [Lev88,Lev90] proposed a simpler approach
that directly interpolates colors and opacities. Using non-opacity-
weighted colors may create errors.

The artifacts are subtle and can be confusing. We present a
technique, opacity-weighted color interpolation, that avoids the
artifacts and is an improvement upon Drebin et al.’s approach.

Levoy [Lev88,Lev90] proposed a volume pipeline that
classifies and shades voxels before interpolation. This approach
can lead to two computational advantages compared to classifying
sample points interpolated from voxel data. First, classification
can be treated as a preprocess and need not be repeated per view.
Second, the number of voxels in a dataset can be significantly less
than the number of sample points when computing a view,
resulting in lower classification cost. Figure 1 shows a volume
rendering pipeline performing separate interpolation of colors and
opacities.

Acquired scalar values, )(xf , are classified to opacities,

)(xα , and shaded to compute voxel colors, )(xC , at sample
points within the volume. The colors and opacities are then

resampled along ray points projecting into the volume, Figure 2A,
and composited along the ray to compute a final ray color. We
describe how to correctly perform the interpolation, and illustrate
why the published technique produces artifacts. There are also
implications for hardware which are not obvious, that we analyze
and clarify. We first review the optical model and the existing
technique, illustrate the artifact, then present our solution. We
also evaluate the RMS error improvement, hardware and
algorithm efficiency, and demonstrated improvements for several
rendering scenarios. In order to understand Figure 1, we need to
discuss the optical model and our notation for colors and
opacities.

1.1 Volume Rendering Optical Model
Volume rendering algorithms are based on the physics of light
interaction with modeled particles in a volume. The beginnings of
a particle model for graphics rendering were developed by Blinn
[Bli82] and extended by Kajiya et al. [KH84] to
nonhomogeneous densities of particles. Blinn adapted the
radiative transfer theory particle model for realistic image
synthesis [Bli82] from Esposito [Esp79] Chandresakar [Cha60]
and others. Blinn’s analytical solutions solved the lighting of
layers of homogeneous particles, to render Saturn’s rings. The
common algebraic technique for combining ray samples is
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Figure 1. Pipeline analogous to Lev88 “Figure 1. Overview of
volume rendering pipeline”.
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compositing, derived separately by Blinn [Bli82] and Porter et al.
[PD84]. Kajiya provided a generalization to nonhomogeneous
volumetric media, and developed single and multiscattering
solutions [KH84]. Modern direct volume rendering algorithms are
largely based on Levoy [Lev88], Drebin et al. [DCH88], Sabella
[Sab88], and Upson et al. [UK88]. (Note: the work in [DCH88]
was demonstrated a couple of years prior to publication, but not
released due to its proprietary nature to Pixar). Max has published
a survey of direct volume solution approaches [Max95]. Non-
particle model volumetric approaches were widely developed
before 1988, including [Mea82,Mea85,Kau91]. Other related
work in particle and radiative transfer theory applied to volume
visualization includes [Max86][KK89].

As direct solution of the posed integro-differential equations
for the radiative transfer of light through a nonhomogeneous
model is not in general analytically solvable [KH84][Max95], and
numerically very expensive to solve, researchers have developed
numerous approximations for computational tractability. Among
those approximations are the single scattering assumption and the
nonshadowed assumption. A single scattering assumption simply
ignores multiple bounces of light, which is accurate if the
particles are not too shiny (called low albedo or reflectivity). The
nonshadowed assumption is that the light sources are not
shadowed  as they illuminate the volume, which saves work on
calculating the light source contribution.

Another important approximation which saves computation is
to classify, shade, and then resample, because the data are often
resampled without reclassification. Choices such as these result in
different volume rendering pipelines. Figure 1 shows a pipeline
that does classification and shading before resampling.

In this paper we assume the optical model of absorption plus
emission [Max95], as a solution of the following differential
equation (from Max),

)()()()( sIsssCds
dI ττ −=                          (1)

where I  is the light intensity at distance s , )(sC is the intensity

(color) reflected from a point in the volume, )(sτ is an extinction
coefficient. The extinction coefficient can be used to solve for
opacity, α , for a given length of material usually by a Taylor
series approximation to the exponential:

K+−≅−= ∫
2

)(1
2)(

0 lle
l

dtt ττα
τ

          (2)

So that the solution integral, when evaluated by a Riemann sum is
approximated by the following:

∑ ∏
=

−

=
−=

N

n

n

m
ray mnnCC

1

1

1

])[1(][][
~ αα ,              (3)

for N sample points along a ray, indexed by n, of colors ][nC ,

opacities ][nα , and the transparency of the material in front of a
ray point computed by the product of the local transparencies,

])[1( mα− . Such a solution has been used by Blinn and others
[Bli82,KH84,DCH88,Lev88,Max95 EQ page 103, Witt93 Eq 61].
Though researchers [Max95,Sab88,WVG91,Wil91] have also
mentioned the possibility of rendering a completely transparent
glowing gas, we do not address that possibility here. A physically
based model, assuming classification determines particle densities
and colors is assumed for the analysis here, and would be an
appropriate model for medical visualization and volume graphics.

2 SEPARATE INTERPOLATION OF
COLOR AND OPACITY

Using the approach shown in Figure 1, the optical model basis
just discussed, EQ (3), let us examine in detail how to perform the
calculation. We follow Blinn’s [Bli94] notation for an opacity-
weighted color, which he calls an associated color, and denotes it

as 
~
C C= α whereC is simply the nonweighted color, or gray

level. The compositing equations are [Bli94] (for either front-to-
back or back-to-front)

frontfrontbackbackfrontnew )1(
~ ααα CCC +−=            (4)

frontbackfrontnew )1( αααα +−=                  (5)

When iterating front-to-back we can use

front(old)backbackfrontfront(new)
~

)1(
~

CCC +−= αα           (6)

We can also iterate back-to-front with the following equation
[Lev88]:

frontfrontback(old)frontback(new)
~

)1(
~ αα CCC +−=            (7)

In [Lev88] the ray colors are not described as associated
colors, which is correct if an opaque background is used. Figure
2A shows a ray exiting a fully opaque region, into a region of
empty space. Here a simplified 2D volume is raycast with a 1D
ray. Voxels are classified and shaded before interpolation. Then,
interpolation is performed. Three ray samples are shown (bilinear
interpolation), with their opacities and colors from front-to-back:

01 =α , 01 =C , 5.02 =α , 5.02 =C , 13 =α , 13 =C . These are

the results of the “Ray tracing/resampling” step in Figure 1. Now
the three sample points are composited front-to-back, first 1 and

2, where 12
~
C  is front=1, back=2, substituted into the iterative

version of EQ 4, EQ 6, and similarly for 12α  where we use EQ 5.
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Seperate Interpolation  
of Color and Opacity  

~
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Figure 2. A ray leaving a fully opaque material into empty space showing sample points and compositing results. (A) shows the result with
independent interpolation of color, and opacity, as is commonly done. This incorrect result has allowed colors in an empty region of space to
contribute to the ray. (B) shows the correct results with opacity-weighted interpolation. See Figure 4 for details on the interpolation.
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Then (12) are composited with 3:
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The resultant ray color is 75.0
~

123123 == αCCr . This is in

error, and can be shown by a simple example in the next section
where we also present our new technique.

3 OPACITY-WEIGHTED COLOR
INTERPOLATION

Figure 2B shows the same scenario, but now we shall opacity-
weight the colors before interpolation. The opacity-weighted

color shall be called an associated color 
~
C C= α , and shall be

explicitly calculated by multiplying all sample points by their
opacity. We shall also now use a slightly different compositing
equation that is equivalent to EQ 4, but uses associated colors
[Lev90,Bli94],

frontbackfrontnew
~~

)1(
~

CCC +−= α  .             (8)

For opacity, we use the same compositing as before, EQ (5).
Note the change in the Figure 2B key. Three ray samples are
shown (bilinearly interpolated), with their opacities and

associated colors from front-to-back: 01 =α , 0
~

1 =C , 5.02 =α ,

5.0
~

2 =C , 13 =α , 1
~

3 =C . Figure 3 shows a new volume

rendering pipeline, and the ray sample values are the results of the
“Ray tracing/resampling” step after the opacity weighting. Now

the three sample points are composited front-to-back, first 1 and
2:
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~~
)1(

~

12112
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=+×−=
+−=

=+×−=
+−=

αααα
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Then (12) are composited with 3:
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15.01)5.01(
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)1(

~

12312123

12312123

=+×−=
+−=

=+×−=
+−=

αααα

α CCC

The resultant ray color is 1
~

123123 == αCCr . As we will

show, this is the correct result for the optical model shown. The
error occurs at the resample point falling between the materials.
To summarize, a complete calculation of the resampled ray color
at the transition is shown in Figure 4. The color is 1.0 using
opacity-weighted color interpolation and 0.5 by separate color
and opacity interpolation, which is not consistent with our optical
model.

We propose that proper calculation of resampled colors is
done by weighting each source voxel color value, (Cr , Cg , Cb )

by the opacity α . This is similar to Drebin et al. [DCH88], but
has some important advantages that are discussed in Section VII.
These weighted colors are then interpolated, as are the opacity
values. A ray interpolated sample opacity and color are calculated
as:

α α= ∑wi i
i

                                 (9)

~ ~
C wi iCi

i

wiCi
i

= =∑ ∑α                          (10)

The weights, iw , are the percentage contribution for each

source volume value sample point. For trilinear interpolation
there are eight weights. The compositing is then done using EQ
(5) and  EQ (8) using these opacity-weighted interpolated colors
at each ray sample point. At each source voxel we choose to store
opacity (α ) and unweighted color (C ), and perform the opacity
weighting during interpolation. For the case where α  is 0, the
products with (Cr , Cg , Cb ) are zero, therefore the colors may be

set to 0. Since the products wi iα  are used for each channel, they

can be computed once as ω αi wi i= , resulting in:

α ω= ∑ i
i

                                    (11)

~
C iCi

i

= ∑ω                                  (12)
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Figure 3. Opacity-weighted color interpolation pipeline analogous to
Figure 1. Uses correct opacity-weighted colors for interpolation, with
modified and added blocks in bold. Note, that opacity weighting must
occur prior to interpolation for the ray resampling, and hence is not
possible to be corrected for in the compositing stage following
interpolation.
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Our method uses efficient calculation, with minimal storage
requirements, and computes correct ray colors. Next we analyze a
continuous model of this example.

4 EXAMPLE PROBLEM REVISITED
In the problem demonstrated in Section 2 and Section 3, there
was a difference in the colors when interpolating an alpha
weighted color versus interpolating a non alpha weighted color.
The error shown results from the approximation to shading points
along the ray, by preshading and then resampling those sampled
colors. The artifact shown above varies with the ray phase, or the
distance from the closest sample point to the material. Consider
the scenario of driving rays into a material. Figure 5 shows a solid

material with a sharp interface. Consider volume samples to lie
within, either the air surrounding the material, or in the material.
Define the phase parameter, r , to be the value between 0 and 1,
where the ray resampling point lies between the voxel sample
point in air, and the voxel sample point in the material. With the
color and opacities of the previous example, we can analytically
solve for the color for each interpolation approach. For non
opacity-weighted color interpolation we can use EQ 4 to
composite the results. Since the parameter, r , varies between 0
and 1, and the color and the opacity do as well, a linear
interpolation of both the opacity and color will be equal to r . We
can substitute into EQ 4,

2111)1(
~

rrrrrCr +−=×+×−= .

Figure 6 gives a plot of the color that results for different
phases of the ray. A different color results for every value of r ,
and the example in Section 2 happened to use the worst case
when 5.0=r , and the resulting color is 75.0=C .

For opacity-weighted interpolation we can solve the same
scenario. The interpolated associated color and opacity are equal
to r , and we composite with EQ 8,

111)1(
~ =+−=+−= rrrrCr .

The result is a constant color of 1, irrespective of the value of
r . The value of the ray color will always be the color of the
material. It is straightforward to generalize this to a generic color
variable. Consider the boundary between the air and material in
Figure 5. For a ray sample rate the same as the volume sample
rate, there will always be 1 ray sample in the transition between
material and air at the boundary and a sample within the material,
as shown before. Interpolated values at the transition will be

lhe_materiavalue_in_t×r . Define the color of the material to be

mC , the opacity of the material to be mα , then substituting into

EQ 4 and EQ 5, and solving for the resultant color, we get for
separate interpolation of color and opacity

Opacity Weighted Interpolation of Color  
Seperate Interpolation  
of Color and Opacity  

α = 0

5.0)(2 =−+= aba r αααα

5.0)(2 =−+= aba CCrCC

5.0)(2 =−+= aba r αααα

5.0)
~~

(
~~

2 =−+= aba CCrCC

15.0/5.0
~

222 === αCC

α = 0

α = 1

α = 1

α = 1

α = 1

C = 0

C = 0
α = 0

α = 0

0
~ =C

0
~ =C

1
~ =C

1
~ =C

C = 1

C = 1

Color
Difference

Figure 4 – The determination of color at the boundary between empty space and material, showing a bilinear interpolation as repeated linear
interpolations, with the distance r, between the samples as 0.5 in the vertical and horizontal directions. Two different colors result, 0.5 for
separate interpolation, and 1.0 for opacity-weighted interpolation. This is the cause of the error.
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For opacity-weighted color interpolation, where interpolated

opacity and color are mrα  and mCr
~

, we composite with EQ 5

and EQ 8 to get
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If interpolation was done instead on material values, which
are then converted to colors, then the opacity-weighted color
interpolation is equivalent if the classifier is a linear ramp or a
step. Material value, m , is defined as a scalar that is classified to
some color and opacity by a function or a lookup table

)(Classify),( mC mm =α . This implies that material based

interpolation will be equivalent to opacity-weighted color
interpolation for a certain class of material classifiers. The
interpolated material value would be equal to mr × .

The color will depend on a transfer function. Consider a step
function. If the interpolated material is equal to m  or more, than

mC
~

 results, the same result as opacity-weighted color

interpolation for 1=mα . A ramp would be color mCr
~

 at the

transition. Input mC
~

 as the back color, mCr
~

 as the front color,

and the reduction of the back color is by a factor )1( mrα−  to

give,

)1(
~

~~
)1(

~

mm

mmm

rrC

CrCrC

α

α

−+=

+−=
.

This is the exact same as the opacity-weighted color
interpolation for arbitrary mα . Note, that for the general result,

an mα  value of 1, the color equation reduces to the material

color, but for smaller opacities the color will vary depending on
the ray phase. The non opacity-weighted interpolation will vary
by a quadratic term. This example provides more intuition as to
why opacity-weighted color interpolation is more correct, because
it approximates material based interpolation for step and linear
material classifiers, and eliminates the dependencies of ray colors
on the phase, r , for solid materials.

5 RESULTS
The interpolation of unweighted colors miscalculates the shading
of new sample points along rays. In volume rendering such errors
can result in color shifting, darkening, greater aliasing, and
contribution of color from null regions. We show several
examples of artifacts resulting from this error.

Figure 8 shows two volume renderings of a volumetric torus.
The dataset is a sampled analytic torus function that has been low
pass filtered to 8 bit voxels for antialiasing. This volume is then
classified before rendering using a standard isosurface classifier
[Lev88]. The rendering itself uses a step size of one half of the
voxel spacing. The rendering using separate interpolation of
colors and opacity causes severe banding artifacts since the colors
assigned to empty space contribute to the ray with this scheme.
The rendering using opacity-weighted color interpolation, Figure
8 right, does not show these artifacts.

The next example, shown in Figure 9, compares interpolation
strategies on a rendering of a computed tomography dataset. This

8-bit dataset (100 x 96 x 249 voxels) includes several human
vertebrae and was collected with spiral CT. Data is courtesy of
Dr. Ramani Pichumani, Stanford University. Classification was
also performed as a preprocess, and empty space (opacity = 0.0)
surrounding the thresholded vertebrae was colored red. This
readily labels surface regions where inappropriate colors are
being introduced. The data was rendered using volumetric ray-
casting with a step size of one half of the voxel spacing. Note that
the worst artifacts appear (red areas in left image) when rays are
able to graze along the surface for some distance, leading to a
result that is dependent on surface orientation relative to the
viewer. Animation also shows that the artifact causes banding and
is view dependent.

We have additionally investigated the variation of the method
with some test objects. Three test objects are shown in Figure 10.
The test objects are density volumes, that are classified to a single
material, and we call them corner, graze, and phase. These three
empirical test cases were designed to further evaluate the
analytical investigation of error by phase of the ray. Each volume
has been synthesized, some of them with antialiasing along the
principal face. The antialiasing was performed by using a
windowed sinc.

For the corner scenario, Figures 11 and 12 show the resultant
differences between non-opacity-weighted shading, left, and
opacity-weighted shading, first from left. The difference is shown
in both the same units as the original images, and also in
histogram equalized form, so as to make the artifacts obvious. The
RMS error between the tests is significant. The perceptual
differences vary by scenario, volume resolution, and whether the
antialiasing of the source data was performed. Figure 7 shows a
plot of RMS error, with the antialiased and aliased volumes split
into two rows of bars (AA versus non-AA). The antialiasing
reduces the difference in all cases. For experiments we have run,
errors are higher for non-antialiased source volumes. Errors are
also higher for lower resolution source inputs. Shown are 323 and
1283 source volumes, and the magnitude of the error in rendering
the 323 source volumes is higher. In all of these test renderings,
nonopacity-weighting darkens the results. For bone and white
objects a blackened, soot like material appearance results. This is
because air is assigned a black color, but it could as easily have
been red, as in the case of the vertebrae. In summary, a separate
interpolation of color and opacity creates artifacts at the transition
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Non-AA
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Figure 7. Comparison of RMS Error between non-opacity-weighted
shading and opacity-weighted shading for three scenarios (Corner,
Phase, Graze), two volume sizes (1283, 323), and using antialiasing
or not (AA, Non-AA).
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between materials, that may be eliminated or lessened using
opacity-weighted color interpolation.

6 HARDWARE IMPLICATIONS
Hardware implications for opacity-weighted color interpolation
are an apparent significant increase in work, because of the
premultiplication of colors by opacities. We show that this is not
the case, and look in more detail at the hardware implementation
of EQ’s 8, 11, and 12. Interestingly, the cost for performing
opacity-weighted color interpolation is the same as nonweighted
interpolation if a sum of weighted values are used as shown in
EQ’s 11 and 12. But, nonweighted interpolation achieves fewer
operations when using a binary tree interpolation approach. We
have calculated the number of multiplications (M) and additions
(A) for four approaches:
Interpolation
method

Binary tree Sum of weighted
products

Separate
color/opacity

28M, 56A 36M, 47A

Opacity-weighted
color

52M, 56A 36M, 47A

Table 1. Multiplication (M) and addition (A) costs for separate
color/opacity interpolation and opacity-weighted color
interpolation.

These costs are for the interpolation of an RGBα  value for a
sample point. The compositing costs turn out to be the same for
either approach even though different equations are used. The
binary tree interpolation is often used for trilinear interpolation in
volume rendering, and involves repeated linear interpolations.
The method is shown in Figure 4 for bilinear interpolation. The
computation can perform, for a single trilinear interpolation of a
value, four interpolations in x , two interpolations in y , and one
final interpolation in z . If the four corners of an area between
point samples are labeled with 0 or 1 depending on their range in
dimensions ZYX ,, , the interpolation would be calculated as:

]]1,1,0[]1,1,1[[]1,1,0[)1,1,(

]]1,0,0[]1,0,1[[]1,0,0[)1,0,(

]]0,1,0[]0,1,1[[]0,1,0[)0,1,(

]]0,0,0[]0,0,1[[]0,0,0[)0,0,(

ffxfxf

ffxfxf

ffxfxf

ffxfxf

−+=
−+=
−+=
−+=

Then in dimension y  using values from dimension x :

)]1,0,()1,1,([)1,0,()1,,(

)]0,0,()0,1,([)0,0,()0,,(

xfxfyxfyxf

xfxfyxfyxf

−+=
−+=

.

And finally in dimension z :
)]0,,()1,,([)0,,(),,( yxfyxfzyxfzyxf −+= .

Where ),,( zyx  is the fractional domain location value where the
interpolation is to be performed, and is assumed to range between
0 and 1 inside the 8 values being interpolated. Brackets are used
for array values [], and parenthesis for continuous functions ().

To compute the sum of weighted values approach, requires
computing eight weights for each sample point to contribute to
the final interpolated voxel, iw . Then the samples are all

multiplied and summed as shown in EQ 12. To calculate the
weights, the following equations are used:

))()((]1,1,1[

)1)()((]0,1,1[

))(1)((]1,0,1[

)1)(1)((]0,0,1[

))()(1(]1,1,0[

)1)()(1(]0,1,0[

))(1)(1(]1,0,0[

)1)(1)(1(]0,0,0[

zyxw

zyxw

zyxw

zyxw

zyxw

zyxw

zyxw

zyxw

=
−=

−=
−−=

−=
−−=

−−=
−−−=

These weight value equations may also be expanded to be
computed with fewer multiplications, or computed as shown to
reduce the latency in the circuit necessary to compute them.

Considering binary tree interpolation, for the nonweighted
interpolation, simply calculate four trilinear interpolations, one
for each RGBα . Each trilinear interpolation is decomposed into
seven linear interpolations, which is most efficiently calculated as
one multiply with two additions, so 4x7x(1M,2A) equals 28M,
56A. When performing opacity-weighted color interpolation,
there is the added cost of 3x8 multiplies to opacity weight the
colors, totaling 52M, and 56A.

The sum of weighted values approach, for the nonweighted
interpolation, computes the weights with 4 multiplies, 19
additions, and then computes four sum-of-weighted-calculations,
requiring eight multiplies and seven additions each (32M, 28A).
The total is 36 multiplies and 47 additions. For weighted
interpolation, because the ω  values are computed, the weighting
is not done redundantly, so we simply compute the weights (4M,
19A), premultiply weights (8M), sum for alpha (7A), and perform
3 weighted interpolations 3x(8M,7A), which totals 36M and 47A
the same cost as nonweighted interpolation. Calculating
conditionals on voxel values allows implementations to skip
interpolations if voxels, or interpolated opacity equals zero.

What this analysis shows is that it is possible for only a small
additional cost 36M versus 28M to do opacity-weighted color
interpolation, and additionally, the proper way to most efficiently
compute that is by sum of weighted interpolated values.

7 RELATED WORK
The popularity of ray casting [Lev88,Lev90] has lead to the
interpolation artifact appearing in a number of volume rendering
implementations. Opacity-weighted shading is a small
improvement, but is also easily misunderstood. The pervasiveness
of the artifact is also hard to determine. But, opacity-weighted
color interpolation is an unpublished technique as demonstrated
here except for Drebin et al. [DCH88] who preweight entire
volumes. Examination of source code has shown others [LL94]
have used similar solutions.

Drebin et al. [DCH88] specify opacity weighting of the colors
for volume rendering by preweighting. Others have noted the
difficulties associated with opacity and color, notably Wilhelms
and Van Gelder [WVG91] and Blinn [Bli94], but not as it relates
to resampling of shaded color values in volume ray tracing.
Wilhelms notes that different answers will result if one
interpolates colors versus data, but the former may be faster. We
have actually shown here that interpolating opacity-weighted
color can provide the same answer in some circumstances. Blinn
discusses the issues in filtering an image that has opacities at each
pixel. He shows an example of overlaying and downsampling,
and the different answer that results if downsampling first without
opacity weighting the colors. He calls the opacity-weighted colors
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associated colors in perhaps the clearest and most concise
discussion of this subject. Wilhelms, Van Gelder et al.
[Wil91,VGK96] discuss the issues in interpolating colors instead
of materials, and resulting artifacts, but do not clarify that
additional artifacts result if interpolated colors are not weighted
by opacity.

We demonstrated the problem encountered by separate
interpolation of color and opacity in the context of ray cast
volume rendering in this paper. However, the suitability of the
interpolation method presented is not limited to ray-casting and
applies to other techniques such as splatting [Wes90], three-
dimensional texture mapping [VGK96], and polygon rendering as
well.

There are three alternative approaches to avoiding the
interpolation artifacts described in Section 2. These are
summarized in Table 2. The first alternative is to store raw data
(material) values themselves, interpolate these down to ray
samples, and then classify the interpolated results
[Osb97,Sch96,Avi94,Hoh90]. Sub-voxel surfaces may be
reconstructed by this approach, but there are drawbacks. First,
classification must be performed for every frame being computed,
unlike the preclassification case. Computational cost is also
typically higher since there are often more ray sample points than
voxels. Second, since classification acts on sample points whose
positions are view dependent, material interpolation can introduce
view dependent.

The second alternative is to store classified-shaded-color
values preweighted by opacity, along with opacity at each voxel,
as was done in Drebin et al. [DCH88]. Interpolation is then
performed on preweighted colors. Preweighted colors, however,
require more bits of precision than unweighted colors for the
same image quality. This is because opacity weighting returns a
fraction of the shaded values, which if rounded to be stored in
fixed point will reduce the accuracy of subsequent calculations.
Rounding a floating-point number to a fixed-point representation
results in a maximum error of 5.0  But, when opacity-weighting,
we are rescaling the values so the color error is multiplied. To
convert to fixed point, a number is scaled, then rounded. A
floating-point color, C , in the range of [ ]1,0 , can be converted to

fixed point by )5.0)1((Int +−×= NCCF , for N  levels in the

range [ ]1,0 −N  and the integer operator ()Int . The floating point

scaled color value, we call FC , and the fixed-point value is

CFF CC ε+=′ , where 5.0≤Cε . Now we can scale and convert

an associated color in the same way CFF CC ε+=′ ~~
. But, the error

in the unweighted color must be calculated by dividing out the
opacity.  The exact opacity is )1/( −= NFαα , considering no

error to represent Fα , the fixed-point opacity. The 5.0  bit error

is scaled when recalculating the unweighted color as

)1/(
~

/
~

−′=′=′
NCCC F

FFF
αα . Which is equal to

)1(~
FCFF

NCC αε −+=′ , by substitution and rearranging of

terms. The rounding error in the associated color, C
~ε , is scaled

by ( ) FN α/1− . As an example consider rounding 8 bit colors and

opacities, 256=N , and 2551 =−N . The error will be the
maximum of )/255(5.0 Fα  for [ ]255,1∈Fα . The smallest

opacities create the largest errors say that 1=Fα  results in an

error 127)1/255(5.0 =  for values ranging from 0  to 255 , or half

of the range of the color (half of the bits). Errors will be large
when rendering mostly transparent materials.

In the proposed alternative a higher precision representation
can be used during weighting which results in greater accuracy.
Three-dimensional texture mapping using hardware acceleration
[VGK96] does not opacity weight colors, but it could be done by
preweighting which may result in difficulties due to the fixed
point texture storage formats.

The third alternative is opacity-weighted color interpolation
as described here. Color and opacity values are stored
independently. Opacity-weighting is performed during
interpolation for memory savings (bit precision), computational
advantages of preclassification, and comparable speed to
preweighting colors. For example 8 bit colors can be loaded into
32 bit registers, and then alpha weighting may be performed on
the higher precision representation.

Method Advantages Disadvantages

(1)

Interpolate then
classify

Sharper surface
detail compared

to (2,3)

Classification:
*view dependent
*needed per view

(2)

Store opacity-
weighted colors

shorter render
time compared to

(1)

Requires more
bits/voxel than

(3)

(3)

Store Unweighted
Colors, α weighted

interpolation

short render time
less bits/voxel

Softer imagery
compared to (1)

Table 2 - Volume rendering approaches that avoid this
interpolation artifact.

8 CONCLUSIONS
We show an artifact in volume rendering software and algorithms.
We show the origins of the artifact in the literature, and identify
the cause of the artifact— an improper interpolation method. The
artifact appears as artificial darkening in monochrome images,
highlighting of aliasing errors, or as color shifts in RGB
rendering, actually creating misleading renderings. We clarify that
the situation occurs only when classifying and shading before
resampling, and present a solution for this case. We refer to this
solution as opacity-weighted color interpolation. Prior published
solutions have either interpolated ray values and then classified
and shaded, stored entire opacity-weighted volumes which
requires more storage precision, or interpolated incorrectly.

The issue of whether this artifact is widely seen or embedded
in production code is difficult to ascertain. Other implementations
get around these difficulties, primarily by doing interpolation of
materials [Osb97,Sch96,Avi94,Hoh90]. We have determined that
preweighting has been used in some implementations. Drebin et
al. [DCH88] correctly discuss the opacity color issues, and
actually use preweighted associated color volumes. But, because
of the scaling issues, this achieves a less accurate rendering with a
fixed-point format than our method.

Lacroute and Levoy [LL94] do properly opacity weight as
determined by examining the publicly available code. They
premultiply during the time that voxel color values are loaded,
and that code base is widely used. But the advantages and
elimination of artifacts by doing this have not been published.
The preclassified color method [Lev88,Lev90] describes the
separate interpolation of color and opacity values. The widest use
of the improper technique seems to be implementations that use
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3D texture mapping, as the color values are not preweighted, and
are not weighted prior to interpolation (such as [VGK96]).

The discovery of a method to directly render from preshaded
values makes software and hardware more efficient Opacity-
weighted color interpolation is an important clarification to the
technique. It allows for a more accurate solution with the same
efficiency. We found error magnitudes are data set, view,
classification, and shading dependent, which may account for the
oversight. Also, because of the number of steps in volume
rendering, other artifacts may dominate such as reconstruction
error, gradient calculation, and shading, reducing the relative
importance of opacity weighting. In fact, the same artifact as
shown for volume rendering is important for polygon graphics.
We believe this work represents an easy fix for artifacts that exists
in all texture mapping implementations that use color and opacity
textures. Further work is needed to quantify the amount of error
that results, but texture mapping could be additionally improved
with opacity-weighted color interpolation. While the misuse of
opacity and color in volume rendering is subtle, we believe that
this work clarifies an important nuance in a widely used
algorithm, and will improve the quality and understanding of
future implementations having an impact for nearly all computer
graphics.
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Figure 8. Left: Artifacts of separate interpolation of colors and opacity. Right: Improved using opacity-weighted color interpolation.

Figure 9. Left: Separate interpolation of color and opacity. Middle: Opacity-weighted interpolation of colors.  Right: Normalized
difference Image. Data courtesy of  Dr. Ramani Pichumani, Stanford University.

Figure 10. Three test rendering scenarios: corner, graze; and phase. One plane of the material boundaries has been antialiased during
formation, by using a windowed sinc interpolation.

   

Figure 11. Left four images: from left, i) Artifacts of separate interpolation of colors, ii) opacity-weighted, iii) difference, iv) equalized
difference. RMS Error 39.0. Right four images: same view and differences of antialiased face. RMS Error 17.7.

   

Figure 12. Left four images: from left, i) Artifacts of separate interpolation of colors, ii) opacity-weighted, iii) difference, iv) equalized
difference. RMS Error 20.3. Right four images: same view and differences of antialiased face. RMS Error 8.32
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