
Reduced-Redundancy Product Codes for

Burst Error Correction

Ron M. Roth
�

Gadiel Seroussi
y

Abstract

In a typical burst-error correction application of a product code of nv � nh arrays,

one uses an [nh; nh�rh] code Ch that detects corrupted rows, and an [nv; nv�rv] code Cv
that is applied to the columns while regarding the detected corrupted rows as erasures.

Although this conventional product code scheme o�ers very good error protection, it

contains excessive redundancy, due to the fact that the code Ch provides the code Cv
with information on many error patterns that exceed the correction capability of Cv. In

this work, a coding scheme is proposed in which this excess redundancy is eliminated,

resulting in signi�cant savings in the overall redundancy compared to the conventional

case, while o�ering the same error protection. The redundancy of the proposed scheme

is nhrv+rh(ln rv+O(1))+rv, where the parameters rh and rv are close in value to their

counterparts in the conventional case, which has redundancy nhrv + nvrh � rhrv. In

particular, when the codes Ch and Cv have the same rate and rh � nh, the redundancy

of the proposed scheme is close to one half of that of the conventional product code

counterpart. Variants of the scheme are presented for channels that are mostly bursty,

and for channels with a combination of random errors and burst errors.

Keywords: array codes, generalized concatenated codes, product codes, superimposed

codes.

�Computer Systems Laboratory, Hewlett-Packard Laboratories, Palo Alto, California, and Hewlett-Packard Israel Science

Center, Haifa, Israel. On sabbatical leave from the Computer Science Department, Technion, Haifa 32000, Israel. e-mail:

ronny@cs.technion.ac.il.
yComputer Systems Laboratory, Hewlett-Packard Laboratories, Palo Alto, California. e-mail: seroussi@hpl.hp.com.

Internal Accession Date Only

1 Introduction

Product codes [6][13] are a popular choice of error correction mechanism in magnetic record-

ing due to their ability to o�er good protection against both random and burst errors.

Figure 1 depicts a typical nv � nh array � over a �eld F = GF (q) which is encoded by

a product code consisting of two codes: an [nh; kh=nh�rh; dh] row code Ch over F and an

[nv; kv=nv�rv; dv] column code Cv over F . Hereafter we will refer to this product-code

construction as Construction 0. The overall redundancy of Construction 0 is given by

nhrv + nvrh � rhrv: (1)

In many applications, the codes Ch and Cv are taken to be maximum-distance separable

(MDS) codes such as Reed-Solomon (RS) codes, in which case dh = rh+1 and dv = rv+1.

This requires having code lengths nh and nv which do not exceed q+1, a condition that is

met in practice in cases where the codes are naturally symbol- (e.g., byte-) oriented, and

where burst correction is a major objective. Therefore, we will assume throughout this work

that the codes used are MDS.

rrr

r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r

r
r
r
r
r
r
r
r
r
r
r
r?

rv

6
?

6

kv

?

6

nv

� -nh
� -kh � -rh

Raw Data
Checks on

Rows

Checks on

Columns

Checks on

Checks

� Codeword of Ch

6
Codeword of Cv

p p p p p p p p p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

Figure 1: Array � of a product code.

In our model of error values, we will assume that entries in a transmitted array � are a�ected,

resulting in an array ~�. An a�ected entry is replaced by a value of GF (q) which is uniformly

distributed over the elements of GF (q), independently of the original contents of � or of the

1

other error values. Such a model is approximated in practice through the use of scramblers.

Notice that, in particular, an a�ected entry may still keep the correct value with probability

1=q. If its value has been changed, we say that this entry is corrupted. The error array is

de�ned by E = ~�� �.

The error patterns that will be considered in this work are mainly burst errors [13]. Assuming

that the encoded array � is transmitted row by row, then, by the nature of burst errors,

we expect the a�ected entries in the received array ~� to be con�ned to a number T of

rows, where T is governed by some probability measure ProbfT = t g which depends on the

channel and on the choice of nh and nv (see below). An a�ected (respectively, corrupted)

row in ~� is a row that contains at least one a�ected (respectively, corrupted) entry. With the

exception of Section 6, we will not assume any particular model on the patterns of a�ected

entries within an a�ected row. If the ith row in ~� has been a�ected, then the respective

error vector is given by the ith row of the error array E. An error vector is nonzero if and

only if the respective row in ~� has been corrupted.

A typical burst decoding strategy for Construction 0 is as follows: The code Ch is �rst used

to detect the corrupted rows in a way that we describe shortly. Having found the corrupted

rows, the decoder of Cv is applied column by column, now regarding the corrupted entries in

each given column as erasures. If p is the acceptable probability of array miscorrection, we

will allocate half (say) of this probability to the event that the number of errors exceeds the

correction capability of Cv. In particular, if Cv is an MDS code, then rv can be taken so that

ProbfT > rv g � p=2 : (2)

This guarantees that the erasure correction capability of Cv is acceptable. (In fact, con-

dition (2) can be slightly relaxed, since it is su�cient to require that, with probability

� 1� (p=2), the number of corrupted | as opposed to a�ected | rows in ~� does not exceed

rv.)

Now, the code Ch detects the corrupted rows by computing, for each row, its syndrome

with respect to Ch. Let ` be the number of a�ected entries in a given a�ected row. If

` < dh = rh+1, then the computed syndrome for that row must be nonzero in case the

row is corrupted. Otherwise, suppose that ` > rh for a given a�ected row. Since every

rh columns in any rh � nh parity-check matrix of Ch are linearly independent (by virtue of

Ch being MDS), the probability that such an a�ected row has an all-zero syndrome is q�rh

(furthermore, the probability that such a row has got corrupted in addition to having an

all-zero syndrome is q�rh � q�` < q�rh). Therefore, regardless of the number of a�ected

entries in a corrupted row, the probability of misdetecting a corrupted row is less than q�rh.

It follows that the probability that a row in a given array is both corrupted and misdetected

is less than
P

t ProbfT = tg � t � q�rh = �q�rh, where � stands for the expected value ETfTg.

In fact, since we assume that (2) holds, then it is su�cient to require that rh is such thatX
t

ProbfT = t j T � rv g � t � q
�rh � p=2 ;

2

or

�(rv) � q
�rh � p=2 ; (3)

where �(r) = ETfT jT � r g (and where we assume that rh does not exceed nh).

We point out that the choice of rh through (3) is rather conservative (and therefore robust) in

the sense that we require that the overall probability of misdetecting a row will be not greater

than p=2. For instance, in the event that the number of a�ected rows T is much smaller than

rv, we could in fact allow the decoder of Ch to misdetect some of the corrupted rows and

take advantage of the remaining rv � T redundancy symbols (in excess of T) in Cv to locate

the misdetected corrupted rows. Such tuning, however, will depend much more substantially

on the behavior of the probability measure ProbfT = t g, whereas (2) and (3) depend only

on the (conditional) expected value of T and the point where the tail probability drops

below p=2. Indeed, in Appendix B we demonstrate how a �ner tuning of the parameters can

be made through a more extensive dependence on the probability measure ProbfT = t g.

The conservative approach, however, is warranted in many practical applications where the

characterization of the channel statistics is often rather poor.

Many variations on the decoding strategy of Construction 0 are possible, o�ering a trade-o�

between random and burst error correction. The considerations for determining the values

of nh and nv in the burst model case are roughly as follows. On the one hand, we would like

nh to be as small as possible so that the number of entries that will be marked as erased by

the decoder of Ch will be close to the number of entries that are a�ected by the bursts. On

the other hand, we would like nh to be large enough so that the ratio rh=nh | and hence

the relative redundancy | be as small as possible. Also, nv | and therefore rv | must be

small enough so that, by the law of large numbers, we will be able to maintain a su�ciently

small value for the ratio rv=nv while still satisfying (2). This however makes the decoder of

Cv more complex, as it needs to be able to correct more erasures. An upper bound on nhnv
is dictated by the amount of memory and latency that we can a�ord.

In this work, we observe that although Construction 0 o�ers very good error protection, it

contains excessive redundancy, due to the fact that the \inner" code Ch provides the \outer"

code Cv with information on many error patterns that exceed the correction capability of Cv.

More speci�cally, we allocate redundancy rh of Ch for each row of the array to determine

whether the row is corrupted. This way, the decoder of Ch can inform the decoder of Cv about

any combination of up to nv corrupted rows. However, the code Cv can correct only up to

rv erased locations, namely, it can only handle up to rv corrupted rows. Any information

about combinations of rv+1 corrupted rows or more is therefore useless for Cv. Nevertheless,

we are paying in redundancy to provide this information. A coding scheme where this

excess redundancy is eliminated is presented in Sections 2 and 3. Section 2 presents a basic

construction, referred to as Construction 1, that illustrates the key ideas and achieves most

of the redundancy reduction, while Section 3 presents a more re�ned construction, referred

to as Construction 2, that attains further redundancy gains through the use of codes with

varying rates.

3

In the early work by Kasahara et al. [11], they suggested an improvement on Construc-

tion 0 by a technique called superimposition. The objective in [11] was increasing the code

dimension while maintaining the minimum Hamming distance of the code. The same moti-

vation also led to the introduction of generalized concatenated codes by Blokh and Zyablov

in [4]. In those codes, the savings in the overall redundancy were obtained by using inner

and outer codes with varying rates. Generalized concatenated codes were further studied

by Zinoviev [18], and Zinoviev and Zyablov [19], [20], where the latter paper also considered

minimum-distance decoding of combined random and burst errors. Hirasawa et al. [7],[8] pre-

sented a similar construction which was shown to increase the code rate while maintaining

the miscorrection probability of random errors. For related work, see also [12] and [16].

Our main objective in this paper is to increase the code dimension while maintaining the

miscorrection probability of bursts (we do consider also a more general setting in Construc-

tion 3 of Section 6 that includes combined burst and random errors). Our constructions

di�er signi�cantly from that of Kasahara et al. [11] in the decoding mechanism (which we

present in Section 4), although the schemes do bear some resemblance in their encoding

mechanisms (our encoder is presented in Section 5). However, the di�erent objective allows

us to obtain a more substantial improvement on the code dimension over Construction 0

compared to the construction in [11]. Most aspects of our constructions also di�er from

those of Blokh and Zyablov [4] and Hirasawa et al. [7],[8]. Still, it is worth pointing out a

feature which appears both in those construction and Construction 2, namely, that of using

a sequence of codes of varying rates rather than a unique code | thereby increasing the

overall code rate while maintaining the miscorrection probability.

We also mention here the recent work [17], where the model of crisscross errors is studied.

That model is more general than the one we discuss here; however the construction for

crisscross errors requires more redundancy.

2 Simple construction with reduced redundancy

(Construction 1)

Let Ch and Cv be the MDS codes over F = GF (q) which are used in Construction 0 and

let [nh; kh=nh�rh; dh=rh+1] and [nv; kv=nv�rv; dv=rv+1] be their respective parameters.

Also, let Hh be an rh � nh parity-check matrix of Ch.

Let � be an array which consists of nh columns, each being a codeword of Cv. Unlike

Construction 0, we do not assume at this point that the rows of � belong to any speci�c

code. For each row of �, we compute its syndrome with respect to the parity-check matrix

Hh, thus obtaining an nv � rh syndrome array S = S(�); that is

S = �H 0
h :

(Note that each row in S can take arbitrary values in F rh.)

4

Now, suppose that � is transmitted through a noisy channel, resulting in a (possibly cor-

rupted) array ~� = �+E at the receiving end. Let ~S be the syndrome array ~�H 0
h correspond-

ing to the received array (see Figure 2). We compare ~S to the syndrome array S = S(�) for

rrr

?

rv

6
?

6

kv

?

6

nv

� -nh

Received

Array ~�

Raw Data

s s s s s s s s s s s s s s s

s s s s s s s s s s s s s s s s

s s s s s s s s s s s s

s s s s s

s s s s s

s s s s s

� -rh

-
-
-

Syndrome

Array ~S

Figure 2: Syndrome array for received array.

the transmitted array �.1 More speci�cally, we consider the di�erential syndrome array

�S = ~S � S = EH 0
h :

The following two observations can be made:

� If a given row in �S is nonzero (namely, if the contents of a given row in ~S has changed

compared to that row in S), then the respective row in � has been corrupted.

� If a given row in �S is all-zero, then the probability that the respective row in � has

been corrupted is less than q�rh.

Hence, if condition (3) holds, then, with probability � 1 � (p=2), the nonzero rows of �S

point at all the corrupted rows in ~�.

1For the time being, this \comparison" is only conceptual, as the original syndrome array S is not sent along with the

transmitted array �, and is not available on the decoding side.

5

Let S0; S1; . . . ; Sh�1 denote the columns of S = S(�). In order to allow the receiver to

locate the nonzero rows in �S = ~S � S, the transmitter encodes the raw data in � so

that each column vector Sj in the resulting syndrome array S = S(�) is a codeword of an

[nv; nv�rj; rj+1] MDS code Cj over GF (q). The choice of the redundancy values rj should

allow the receiver to locate the nonzero rows in �S out of ~S, with an acceptably small

probability of failure.

A simple choice for Cj, which we assume for the remainder of the section, would be setting

rj = 2rv for each j, where rv satis�es condition (2). This condition implies that with

probability � 1 � (p=2), the number of nonzero rows in �S will not exceed rv. Therefore,

in this case, by decoding the columns of ~S, the decoders of Cj can locate the nonzero rows

of �S and, thus, the corrupted rows of � with probability > 1� �q�rh � 1� (p=2).

Now, each column vector Sj is obtained as a linear combination of the columns of �. Each

column of �, in turn, is a codeword of Cv. Since the code Cv is linear, it follows that each

column Sj is a codeword of the MDS code Cv whose redundancy is rv. However, we require

that Sj belong to an MDS code Cj with redundancy rj = 2rv, making the overall redundancy

in S equal to 2rhrv. If we choose each Cj to be a subcode of Cv, then we can fully exploit the

redundancy inherited from Cv due to linearity. The required additional redundancy of rhrv
in S will be achieved by imposing rhrv additional linear constraints on the encoded array

�. We refer to the resulting scheme as Construction 1, and from the above discussion, we

readily obtain the following.

Proposition 1. The redundancy of Construction 1 is

nhrv + rhrv : (4)

Hence, the redundancy of Construction 1 compares very favorably with (1) when rv � nv,

as is usually the case in practical applications. In particular, when rh=nh = rv=nv and

rh; rv � nh; nv, the reduction in the redundancy is close to a factor of 2 compared to

Construction 0.

3 Further redundancy reduction (Construction 2)

Additional savings in redundancy can be achieved by observing that for each 1 � j < rh,

the decoder of Cj can obtain erasure information from columns of ~S that have already been

decoded. This will result in a coding scheme which will be referred to as Construction 2. As

we show next, the overall redundancy of Construction 2 is at most nhrv+rh(ln rv+O(1))+rv,

where the parameters rh and rv are close in value to their counterparts in Construction 0.

In Construction 2, we encode the array � as before, so that each column is a codeword of

the [nv; nv�rv; rv+1] code Cv and, for 0 � j < rh, each column vector Sj in S = S(�) is a

6

codeword of an [nv; nv�rj; rj+1] code Cj. We will determine the parameters rv, rh, and rj
later on. Let ~S0; ~S1; . . . ; ~Srh�1 denote the columns of the possibly corrupted syndrome array
~S. We assume that the receiver decodes those columns in a consecutive order, starting with
~S0. Since the code C0 does not have any a priori erasure information, its redundancy will be

set to r0 = 2rv in order to locate up to rv errors in ~S0.

As mentioned, if a row in �S = ~S � S is nonzero, then the respective row in ~� is corrupted

(furthermore, the converse holds with probability > 1 � �q�rh). However, there may be

nonzero rows in �S that are missed by the C0-decoder: These are the nonzero rows in �S

whose leading entry (i.e., their entry in �S0 = ~S0 � S0) is zero. Nevertheless, with high

probability (which we compute next), most of the nonzero rows in �S will be found by the

C0-decoder when applied to ~S0, and the locations of those rows can be passed to the decoders

of C1; C2; . . . ; Crh�1 as erasure information. These decoders, in turn, can locate nonzero rows

in �S that were missed by the C0-decoder.

In general, for 1 � j < rh, the Cj�1-decoder will pass erasure information to the Cj-decoder,

thus allowing the reduction of the redundancy of Cj which is required in order to decode
~Sj. Ultimately, the erasure information passed by the Crh�1-decoder to the Cv-decoder will

include (with an acceptably small probability of failure) the locations of all the corrupted

rows in ~�, leaving the Cv-decoder with the task of decoding erasures only. For the sake of

uniformity, it will be convenient to de�ne Cj and rj for j = rh as Cv and rv, respectively.

Thus, we will have a gradual transition from full error correction for C0, through combined

error{erasure correction for Cj, 1 � j < rh, to pure erasure correction for Crh = Cv. The

determination of the redundancies rj, 0 � j � rh, in Construction 2 is discussed next.

3.1 Setting the constraints on the code parameters

Let Hh be the parity-check matrix of Ch used to compute S and, for 1 � j � rh, denote by

H
[j]
h the j � nh matrix which consists of the �rst j rows of Hh.

We say that Hh satis�es the MDS supercode property if, for j = 1; 2; . . . ; rh, each matrix H
[j]
h

is a parity-check matrix of an MDS code. A code Ch is said to satisfy the MDS supercode

property if it has a parity-check matrix that satis�es the MDS supercode property. Examples

of matrices that satisfy this property are Hh = [�k
`]

rh�1;nh�1
k=0;`=0 , where the �` are distinct

elements ofGF (q); these are parity-check matrices of generalized RS codes. Notice that when

rh > 1, every matrix that satis�es the MDS supercode property must be nonsystematic. Since

every MDS code has a systematic parity-check matrix, it follows that codes that satisfy the

MDS supercode property also have parity-check matrices that do not satisfy the property. We

also point out that there are MDS codes, such as the [q+1; q+1�r; r+1] (doubly-extended)

RS codes with r > 1, that do not satisfy the MDS supercode property. We elaborate more

on this in Appendix A.

We will assume in Construction 2 that Hh satis�es the MDS supercode property.

7

Consider the syndrome array S = �H 0
h. For 1 � j � rh, denote by S[j] the matrix formed

by the �rst j columns of S, i.e.,

S[j] = [S0 S1 . . . Sj�1] = �H
[j]
h

0
:

We de�ne ~S[j] in a similar manner and we let �S[j] be ~S[j] � S[j].

We say that a corrupted row in ~� is hidden from ~S[j] if the corresponding row in �S [j] is

all-zero. For 1 � j � rh, denote by Xj the random variable which equals the number of

corrupted rows in ~� that are hidden from ~S[j]. We extend this de�nition to j = 0, letting

X0 denote the number of corrupted rows in ~�.

We will assume that for 1 � j < rh, each code Cj is a subcode of Cv and so we can write

rj = rv + aj where aj � 0. The overall redundancy of Construction 2 thus equals

rvnh +
rh�1X
j=0

aj : (5)

We will also de�ne arh = 0, in accordance with our previous convention that Crh = Cv.

We can now formulate our problem as follows: Given an acceptable probability p of mis-

correction, �nd nonnegative integers rv(� nv), rh(� nh) and a0; a1; . . . ; arh�1 (and arh = 0)

that

minimize rvnh +
rh�1X
j=0

aj ; (6)

subject to the constraint

Prob

n rh[
j=0

fX0 +Xj > rv + aj g
o
� p : (7)

The constraint (7) replaces conditions (2) and (3) and guarantees, with acceptable proba-

bility, that for each j, the number of errors, Xj, and erasures, X0 �Xj, does not exceed the

correction capability of the code Cj (i.e., the redundancy is at least (X0 �Xj) + 2Xj).

In the sequel, we �nd an approximation to the solution of (6) and (7). By (7), we must

have ProbfX0 +Xj > rv + aj g = O(p) for all j. In particular, for j = rh we need to have

ProbfX0 +Xrh > rv g = O(p), which, in turn, implies that ProbfX0 > rv g = O(p). On the

other hand, for j = 0 we need to have Probf 2X0 > rv + a0 g = O(p), which thus motivates

us to choose a0 = rv. This choice is also consistent with our strategy that the C0-decoder

handles as many as rv errors without having any a priori information on the locations of

those errors.

Now,

Prob

n rh[
j=0

fX0 +Xj > rv + aj g
o

8

� Prob

n rh[
j=0

fT +Xj > rv + aj g
��� T � rv

o
+ ProbfT > rv g

�
rhX
j=1

Prob

n
T +Xj > rv + aj

��� T � rv
o
+ ProbfT > rv g ;

where the second inequality follows from a union bound and the fact that X0 � T � rv given

the conditioning event (and so the term that corresponds to j = 0 vanishes). It thus follows

that (7) is implied by

ProbfT > rv g � p=2 (8)

and
rhX
j=1

Prob

n
T +Xj > rv + aj

��� T � rv
o
� p=2 : (9)

Satisfying the constraint (9) guarantees with acceptable probability that each Cj-decoder

will have enough redundancy to correct the number of full errors, Xj and erasures, T �Xj,

that it will typically encounter.

The expressions ProbfT +Xj > rv + aj j T g will be bounded from above using Lemma 1

below.

Lemma 1. For 1 � j � rh and every nonnegative integer b,

ProbfXj > b j T g � q�j(b+1) �

T

b+ 1

!
;

where
�

t

b+1

�
= 0 if b � t.

Proof. Suppose that row i in ~� contains at most j a�ected entries and let e be the respective

error vector. Since Hh satis�es the MDS supercode property, H
[j]
h is the parity-check matrix

of an [n; n�j; j+1] code and, thus, row i in �S [j] is all-zero if and only if e = 0. Hence, if

at least one of the (up to) j a�ected entries of row i in ~� has been corrupted, then that row

cannot be hidden from ~S[j].

Next consider the rows in ~� that contain more than j a�ected entries, and let � be the

random variable which equals the number of those rows. For each such row, the respective

row in �S[j] will be zero with probability q�j. Furthermore, the vector values of the rows

in �S[j] that correspond to distinct a�ected rows of ~� are statistically independent. Hence,

recalling that � � T , we have,

ProbfXj > b j T; � g �
�X

z=b+1

�

z

!
q�jz(1� q�j)��z

�

�

b+ 1

!
q�j(b+1) �

T

b + 1

!
q�j(b+1) ;

9

and, therefore,

ProbfXj > b j T g = E�

n
ProbfXj > b j T; � g

o
�

T

b + 1

!
q�j(b+1) ;

as claimed.

For nonnegative integers r, s, and !, we de�ne the quantity BT (r; s; !) by

BT (r; s; !) = ET

(
T

s+1�T

!
� !T�r

��� T � r

)
: (10)

Clearly, BT (r; s; !) = 0 when s � 2r. The following corollary follows readily from the

de�nition of BT and from Lemma 1.

Corollary 1. For 1 � j � rh and every nonnegative integer a,

ProbfT +Xj > rv + a j T � rv g � BT (rv; rv+a; q
j) � q�j(a+1) :

By Corollary 1, we can replace the constraint (9) by the following stronger condition,X
1�j�rh :aj<rv

BT (rv; rj; q
j) � q�j(aj+1) � p=2 ; (11)

where we recall that rj = rv+aj and arh = 0. Notice that we have restricted the summation

index set in (11) to those values of j for which aj < rv, since BT (rv; rj; q
j) = 0 otherwise. In

fact, if ProbfT = rv g > 0 (which is the case if rv is the smallest integer that satis�es (8)),

then we can also state conversely that BT (rv; rj; q
j) > 0 whenever aj < rv.

We next show a feasible solution for the aj, satisfying the constraint (11). This solution will

be the basis of Construction 2, since, together with the requirement (8), it will also satisfy

constraint (7) and provide an approximation to (6).

3.2 Analysis of a feasible solution

For a nonnegative integer r, de�ne �T (r) by

�T (r) = q�r � ETf q
T (2T�1) j T � r g : (12)

Theorem 1. Given an acceptable probability p of miscorrection, let rv be a positive integer

(such as an integer that satis�es (8)) and let rh be an integer such that

logq

q

q�1
�
�T (rv)

p=2

!
� rh � nh (13)

10

(provided that such an integer rh exists). Then the following values

aj =

(
rv if 0 � j < rh=rv
drh=je � 1 if rh=rv � j � rh

; 0 � j � rh ; (14)

satisfy the constraint (11).

Proof. Let j1 < j2 < . . . < js be a sequence which consists of all indexes 0 < j � rh such

that aj 6= aj�1; note that js = rh, and de�ne js+1 = js + 1. Fix T to a value less than or

equal to rv. For every 1 � ` � s we have,

j`+1�1X
j=j`

T

rj+1�T

!
� q�j(rj+1�T) =

T

rj`+1�T

!
�

j`+1�1X
j=j`

q�j(rj`+1�T)

�
q

q�1
� q�j`(rj`+1�T) �

T

rj`+1�T

!

�
q

q�1
� q�rh � qj`(T�rv) �

T

rj`+1�T

!
; (15)

where (15) follows from (14), namely, j`(rj` + 1) = j`(aj` + 1 + rv) � rh + j`rv. Hence, for

every �xed T � rv we have,

X
1�j�rh : aj<rv

T

rj+1�T

!
� q�j(rj+1�T) =

sX
`=1

j`+1�1X
j=j`

T

rj+1�T

!
� q�j(rj+1�T)

(15)

�
q

q�1
� q�rh � qj1(T�rv) �

sX
`=1

T

rj`+1�T

!

�
q

q�1
� q�rh � qT�rv �

sX
`=1

T

rj`+1�T

!
(16)

�
q

q�1
� q�rh � q�rv � qT � (2T�1) :

Taking expected values with respect to the probability measure ProbfT = t j T � rv g yields

X
1�j�rh : aj<rv

BT (rv; rj; q
j) � q�j(aj+1) �

q

q�1
� q�rh � q�rv � ET

n
qT � (2T�1)

��� T � rv
o

�
q

q�1
� q�rh � �T (rv) � p=2 ;

where the last inequality follows from (13).

Note that for the values of aj de�ned in (14) we have

rv = a0 � a1 � . . . � arh�1 � arh = 0 ;

11

and so for 1 � j � rh, the code Cj�1 can be taken as a subcode of Cj.

In order to compute rh from (13) we need to get upper bounds on �T (rv). We obtain such

bounds in Appendix B, but we mention here the very simple bound

�T (r) � 2r � 1 : (17)

The condition rh � nh will be satis�ed if the acceptable probability of error p is at least
2q
q�1

�T (rv)q
�nh; by (17), this lower bound on p is smaller than 2q

q�1
2rvq�nh. Now, if p is smaller

than this bound, we will need to take rh = nh and increase rv so that Cv will be able to

correct a certain number of errors, in addition to erasures (note that a similar proviso on p

is also implied by (3)). This situation, though, will be fairly atypical, and it will probably

mean that the initial design parameters nh, nv, or q might need to be re-thought.

Remark. Inequality (16) in the proof of Theorem 1 holds with equality if j1 = 1, which

occurs if rh � rv. Otherwise, an improvement of the left-hand side of (13) can be obtained

by introducing the positive integer variable J , resulting in the following bound on rh,

min
J>0

max
n
(J�1)rv + 1 ; logq

�
(q=(q�1)) � �T (rv; J)=(p=2)

�o
� rh � nh ; (18)

where

�T (r; J) = q�rJ � ETf q
J�T (2T�1) j T � r g : (19)

By (18), the minimizing J is at most j1 = drh=rve.

Lemma 2. Let rh and aj be de�ned by (13) and (14). Then,

rhX
j=0

aj � drh=rverv + (rh � 1) (ln rv +) ;

where = 0:5772 . . . is the Euler constant [1, p. 255].

Proof. Write j1 = drh=rve. By (14) we have,

rhX
j=0

aj � j1 � rv +
rh�1X
j=j1

 &
rh

j

'
� 1

!
� j1 � rv +

rh�1X
j=j1

rh � 1

j

= j1 � rv + (rh � 1)
�rh�1X
j=1

1

j
�

j1�1X
j=1

1

j

�

� j1 � rv + (rh � 1) (ln rh + � ln j1) ;

where we have used the inequalities ln x �
Px�1

j=1(1=j) � ln x+ . Hence,

rhX
j=0

aj � j1 � rv + (rh�1)
�
ln (rh=j1) +

�
� drh=rverv + (rh�1) (ln rv +) ;

12

as claimed.

We summarize the foregoing discussion by bounding the redundancy of Construction 2 in

the following proposition, which follows from (5) and Lemma 2.

Proposition 2. The redundancy of Construction 2 is bounded from above by

nhrv + (rh � 1)(ln rv + + 1) + rv + 1 ; (20)

where rv and rh are set according to (8) and (13).

3.3 Computing the code parameters

The bound (17) on �T (r) allows us to estimate the left-hand side of (13) and set rh to

rh =

&
rv � log2(p=2)� log2(q�1)

log2 q

'
+ 1 : (21)

In comparison, the value of rh for Construction 0 and Construction 1, as dictated by (3), is

given by

rh =

&
log2(�(rv))� log2(p=2)

log2 q

'
: (22)

Hence, when �(rv) = ETfT jT � rvg � 1, the value of rh in (21) is larger than the one in (22)

by an additive term which is at most drv= log2 qe+1. Therefore, applying Construction 0 or

Construction 1 with the conservative approach (namely, a coding approach where we insist

on keeping the row misdetection probability upper-bounded by p=2), the redundancy (20) of

Construction 2 can be signi�cantly smaller than the redundancy (4) of Construction 1 (and

hence much smaller than the redundancy (1) of Construction 0).

The development leading to (21) and (22) was based, in both cases, on the conservative

approach, which assumes very little on the behavior of the actual probability distribution

ProbfT = t g. A �ner computation and comparison is possible when more detailed knowledge

of the distribution is available. An example of such analysis is presented in Appendix B for

a Bernoulli distribution. However, the conservative approach is the appropriate choice in

the following so-called cut-o� row-error channel. In this channel, we assume that there is a

cut-o� error count rc such that ProbfT > rc g � p=2 and

ProbfT = t j T � rc g =

8><
>:

1��c t = 0

�c t = rc
0 otherwise

:

The cut-o� row-error channel models (in a rather simpli�ed manner) a case where the array

may be susceptible to one long burst event occurring with probability (1�(p=2))�c, and such

13

an event a�ects several rows in the array; in our simpli�ed model we assume that the burst

a�ects exactly rc rows, which makes it more amenable to exact analysis.

By (2) and (8) we can take rv = rc and have

�(rv) = ETfT j T � rv g = rv � �c :

The computation of �(rv) is rather straightforward and we obtain

�T (rv) = q�rv � ETf q
T (2T�1) j T � rv g = (2rv�1) � �c :

Hence, by (13) we can choose

rh =

&
rv + log2 �c � log2(p=2)� log2(q�1)

log2 q

'
+ 1

=

&
rv � log2 rv + log2(�(rv))� log2(p=2)� log2(q�1)

log2 q

'
+ 1 (23)

(note that this value can be smaller than the one in (21)).

On the other hand, it is easy to verify that, for this channel, (22) provides the right choice for

rh for Construction 0 and Construction 1. It is also easy to check that the redundancy (20) of

Construction 2 can thus be signi�cantly smaller than the redundancy (4) of Construction 1

for this channel. We illustrate this in the next numerical example.

Example. Consider the design of a code with nh = 96, nv = 128 over F = GF (28), with

a target array error rate of p = 10�17. We assume a cut-o� row-error model as described

above, with �c = 10�3 and rc = 10. We set rv = rc = 10 and by (23) we take rh = 8. Next,

we use (14) to obtain a0 = 10; a1 = 7; a2 = 3; a3 = 2; a4 = a5 = a6 = a7 = 1; a8 = 0. The

total redundancy is nhrv +
P

j aj = 986 symbols. In comparison, for Construction 0 and

Construction 1, we take by (22) rh = 7, resulting in a redundancy of 1030 symbols for the

latter and a redundancy of 1786 symbols for Construction 0.

In Appendix B, we analyze the Bernoulli row-error channel. In this channel, each row gets

a�ected with probability � = �=nv, independently of the other rows. It turns out that for

typical values of q, nv, and � we can take

rh =

&
rv + log2(rv+1)� log2 �

log2 q

'
+ 1 : (24)

On the other hand, in Construction 0 and Construction 1 we need to take

rh =

&
3
2
log2(rv+1)� log2 � +O(1)

log2 q

'
; (25)

14

and such a value of rh is required also if we do not insist on the conservative approach.

Hence, the redundancy of Construction 2 will be typically smaller than that of Construc-

tion 1 for the Bernoulli row-error channel, and therefore typically much smaller than that of

Construction 0.

Remark. When comparing our construction with Construction 0, we have chosen a �delity

criterion which is the probability p of having a miscorrection in any given nv � nh array.

The performance of a coding scheme can be measured also in terms of the e�ective `sym-

bol error probability' after decoding, which equals the average fraction of erroneous entries

among the decoded entries. For Construction 0, the strategy that we have outlined used

the code Ch for detection only. Therefore, Ch will never miscorrect, namely, it will never

identify an una�ected row as corrupted (on the other hand, it might misdetect corrupted

rows). Therefore, the dominant failure event for these codes is one in which rv+1 rows are

corrupted, and the condition is detected by Ch, which prevents Cv from doing any further

\damage." Under the constraint (8), the e�ective symbol error probability after decoding in

this case is approximately (p=2)(rv+1)=nv. In Construction 2, however, the codes Cj might

miscorrect; by the constraint (9), this will happen with probability p=2 whenever T � rv.

Such a miscorrection, in turn, might introduce up to rv false corrupted rows in the decoded

array, amounting to an increase of (p=2)rv=nv in the e�ective symbol error probability after

decoding. To resolve this, we need to choose a value for p which is one half of the value

chosen in Construction 0. Since the dependence of the parameters on p is logarithmic, such

a choice of p has a small (if any) e�ect on the code parameters.

3.4 Summary of Construction 2

To summarize, Construction 2 is obtained as follows:

� Given nh, nv, and p, set the parameter rv to be the smallest positive integer such

that (8) holds.

� Set the parameter rh so that (13) holds.

� Set the code Ch to be an [nh; nh�rh; rh+1] code over F with an rh � nh parity-check

matrix Hh which satis�es the MDS supercode property.

� For 0 � j � rh, set Cj to be an [nv; nv�rj; rj+1] code over F such that rj = rv + aj
and aj is given by (14). Furthermore, each code Cj�1 is a subcode of Cj: the rj � nv
parity-check matrix Hj of Cj consists of the �rst rj rows of the rj�1 � nv parity-check

matrix Hj�1 of Cj�1. We let Cv and Hv be Crh and Hrh, respectively.

Let h0;h1; . . . ;hrh�1 denote the rows of Hh. In Construction 2, the raw data is encoded into

an nv � nh array � such that the following holds:

15

� For 0 � j < rh,

Hj�h
0
j = 0 ; (26)

namely, when the syndrome of each row of � is computed with respect to the parity-

check matrix Hh, an nv � rh array S = [S0 S1 . . . Srh�1] = �H 0
h is obtained in which

each column Sj is a codeword of Cj.

� Each column in � is a codeword of Cv = Crh, namely

Hv� = 0 : (27)

We can rewrite (26) and (27) as

Hj�H
[j+1]
h

0
= 0 ; 0 � j � rh ;

where H
[j+1]
h is the matrix which consists of the �rst j+1 rows of Hh and H

[rh+1]
h is de�ned

as the nh � nh identity matrix.

4 Decoding

The decoding procedure of Construction 2 can be summarized as follows. Let � be the

transmitted array and let ~� be the received array. For each j, 0 � j � rh�1, �j will denote

the number of erased locations input to the decoder of Cj from previous stages.

1. Compute the syndrome array ~S = [~S0
~S1 . . . ~Srh�1] =

~�H 0
h.

2. Set �0 = 0. For j = 0; 1; . . . ; rh�1, do

a Given the locations of �j erasures in column ~Sj, apply an error-erasure-correcting

decoder for Cj to locate up to b(rv+aj��j)=2c additional full errors in column ~Sj.

For each full error found in ~Sj, mark the corresponding rows in ~S and ~� as erased.

b Let �j be the number of full errors found in Step 2a. Set �j+1 = �j + �j.

c If �j+1 > rv, declare the array undecodable and stop.

3. Apply an erasure-correcting decoder for Cv to recover a total number of up to rv erasures

in each column of ~�.

We point out that the probability of miscorrection will be bounded from above by p

also if we limit the number of full errors that we attempt to correct in Step 2a to

minfaj; b(rv+aj��j)=2cg.

Steps 2 and 3 can be implemented by choosing the codes Cj to be RS codes and using any of

the known decoding algorithms for these codes, designed to handle both errors and erasures.

16

The basis of those algorithms is computing an error-locator polynomial �(z) over the �eld

F (see [2, Ch. 7], [3], [15]) in an iterative manner, such that the roots in F of the computed

polynomial �(z) indicate where the locations of the errors are. If the locations of some errors

are initially known (i.e., if some of the errors are actually erasures), then this information can

be incorporated into the RS decoding algorithm by a proper initialization of the polynomial

�(z).

In the array decoding procedure outlined above, each stage j, 0 � j � rh � 1, produces

an error locator polynomial �j, which is then fed to the next stage as the initial value

of its error locator polynomial �j+1. More speci�cally, we �rst compute an error-locator

polynomial �0(z) for the column ~S0 of ~S. By Lemma 1, the probability of having any

corrupted row which is hidden from ~S[1] = [~S0] satis�es

ProbfX1 > 0 g � �=q

(where � = ETfTg). Since the redundancy of C0 is 2rv, we will experience a decoding failure

on ~S0 only when the number of corrupted rows in ~� exceeds rv. Indeed, the constraint (8)

guarantees that this will occur only with an acceptably small probability. For subsequent

columns of ~S, we compute an error-locator polynomial �j(z) that points at the erroneous

rows in ~S[j+1] = [~S0
~S1 . . . ~Sj]. The Cj-decoder will fail on the column ~Sj only when for

some ` � j, the number of corrupted rows that were hidden from ~S[`] exceeds the correction

capability of C`; this occurs when X0+X` > r`. However, the constraints (8) and (9) (which

imply (7)) guarantee that this probability is acceptably small for all j. By Lemma 1, the

probability that Cj will need to correct proper errors (in addition to erasures) satis�es

ProbfXj > 0 g � �q�j :

We can therefore conclude that when � � rv � nv � q, most of the error-locating e�ort will

typically fall on the C0-decoder while computing the error-locator polynomial �0(z). The

role of the rest of the columns of ~S amounts, in most cases, to verifying, with an acceptably

small probability of error, that �0(z) is the true error-locator polynomial. If the polynomial

�0(z) turns out to be inconsistent with any of the subsequent columns in ~S, then it will

be updated by the decoding algorithm when applied to those columns. At any rate, by

well-known properties of linear-recurring sequences [15], it can be shown that the number

of such updates is bounded from above by the number of actual corrupted rows, assuming

that no failure has occurred in the decoding of any of the columns of ~S. Thus, the total

number of operations performed in a typical execution of the array decoding procedure will

be signi�cantly smaller than the number of operations in rh independent RS decodings.

5 Encoding

In this section, we outline an encoding procedure for Construction 2. The encoder described

here resembles the one in [11], with the following two major di�erences:

17

� The new encoder is systematic, namely, the raw data is included, as is, in the en-

coded array �. The encoder in [11], on the other hand, encodes part of the data

non-systematically.

� The new encoder is more general in the sense that the codes Cj have di�erent redun-

dancies.

The raw data is assumed to be entered into � column by column, starting at the column

�nh�1 and ending with �0. We denote the resulting reversed array by
(

�.

We break the encoding procedure into two main steps:

Step A: Encoding raw data into the subarray

�A = [�rh �rh+1 . . . �nh�1]

of � and computing an nv � rv redundancy array V = [V0 V1 . . . Vrh�1].

Step B: Encoding the remaining part of the raw data into the subarray

�B = [�0 �1 . . . �rh�1]

through the computation of an nv � rv syndrome array S = [S0 S1 . . . Srh�1].

Step B makes use of the redundancy array V that is computed in Step A. The computation

of the columns of V can be carried out on-line while reading the data into �B. Therefore,

no latency will be caused during encoding. The arrays �A, �B, and V will be generated in

reverse form. The reversed arrays will be denoted by
(

� A,
(

� B, and
(

V .

5.1 Encoding Step A

The computation of the columns of the subarray �A and the redundancy array V is carried

out as follows:

Step A1: For j = nh�1; nh�2; . . . ; rh, insert the raw data into the �rst nv�rv entries of �j.

Step A2: For j = nh�1; nh�2; . . . ; rh, set the last rv entries of �j so that �j becomes a

codeword of Cv = Crh.

Steps A1 and A2 are interleaved, and they amount to applying a conventional RS

encoder to obtain each column of �A.

18

Step A3: Set the entries of V so that each row of [V j �A] is a codeword of Ch. The

computation of V can be done through accumulation of redundancy symbols while

reading the data into �A.

Step A2 guarantees that Hv�A = 0, in accordance with (27). By Step A3 we have

[V j �A](H�
h)

0 = 0 (28)

for any parity check matrix H�
h of Ch (in particular, the matrix used here does not have to

satisfy the MDS supercode property de�ned in Section 3.1). Hence, Step A3 can be easily

implemented using a systematic parity-check matrix of Ch. In this case, the redundancy

array V can be computed column by column, while reading the data into �B.

5.2 Encoding Step B

Encoding Step B does depend on the speci�c choice of the parity-check matrix Hh of Ch. In

particular, Hh will need to satisfy the MDS supercode property, namely, for 1 � j � rh, the

matrix H
[j]
h is a parity-check matrix of an MDS code.

Let Hh = [hk;`]
rh�1;nh�1
k=0;`=0 be such a parity-check matrix. Now, for encoding purposes, we

usually prefer to have matrices that are systematic (and, indeed, we did choose a systematic

matrix in Step A). However, when rh > 1, matrices that satisfy the MDS supercode property

must be nonsystematic. Hence, we will require instead the weaker condition hk;` = 0 for

0 � ` < k < rv and hk;k = 1 for 0 � k < rh. We will refer to such a parity-check matrix

as upper-triangular (borrowing the term from square matrices). Notice that for each j, the

�rst j rows of such an Hh generate an [nh; j; nh�j+1] MDS code [14, Ch. 11]; hence, for

any upper-triangular parity-check matrix Hh that satis�es the MDS supercode property, we

must have hk;` 6= 0 for ` > k.

The following lemma is an immediate consequence of the fact that every [n; n�r0; r0+1] MDS

code has a minimum-weight codeword with zeroes in the �rst n�r0�1 coordinates.

Lemma 3. Let C be an [n; n�r; r+1] code over F = GF (q) that satis�es the MDS supercode

property. Then C has an r � n upper-triangular parity-check matrix that satis�es the MDS

supercode property.

We explain next how the columns of �B are encoded. Let Hh be an upper-triangular parity-

check matrix of Ch and such that Hh satis�es the MDS supercode property. Let Q =

[Qj;`]
rh�1
j;`=0 be the inverse of the matrix formed by the �rst rh columns of Hh. Clearly, Q is

an rh � rh upper-triangular matrix. Now,

� = [�B j �A] = [�B�V j 0] + [V j �A] :

19

By (28) we can express the syndrome array S = S(�) in the following manner:

S = �H 0
h = [�B�V j 0]H 0

h :

Hence,

�B = SQ0 + V ;

or

�j = Sj +
rh�1X
`=j+1

Qj;`S` + Vj ; 0 � j < rh : (29)

Letting (�)i denote the ith component of a vector, we can rewrite (29) in scalar notation as

follows:

(�j)i = (Sj)i +
rh�1X
`=j+1

Qj;`(S`)i + (Vj)i ; 0 � j < rh ; (30)

where 0 � i < nv.

Suppose that S` is known to the encoder for j < ` < rh. The encoder computes �j and Sj
using (30) as follows:

Step B1: Write the raw data into the �rst nv�rj entries in �j.

Step B2: Set the �rst nv�rj entries in Sj so that (30) holds for 0 � i < nv�rj.

Step B3: Set the last rj values in Sj so that Sj becomes a codeword of Cj.

Step B4: Set the last rj values in �j so that (30) holds for nv�rj � i < nv.

Steps B1 through B4 guarantee the following two properties: (a) �j is systematic, namely,

its �rst nv�rj entries consist of raw data, and (b) Sj 2 Cj.

The encoding procedure is described in Figure 3 in terms of the portions of the array � that

are computed in each encoding step. An auxiliary nv�rh array is added for the computation

of the syndrome array S. The redundancy array V , on the other hand, can be computed

in the same area where �B is written. The dotted line separates between the raw data and

the redundancy symbols. The encoding steps that are applied in the computation of each

particular area of the array are indicated in parentheses.

6 Applying row error-correction (Construction 3)

So far in the constructions, we have used only the detection capability of the code Ch to mark

the corrupted rows. This is a consequence of the fact that we did not assume any model

on the number of a�ected entries in a row, thus assuming in e�ect the worst-case scenario

20

rr

rr

r

r

r
rr

rrr
rrrrrrrrrr

r

rr

r

r

r
rr

rrr
rrrrrrrrrr

r

?

rv

6
?

6

kv

?

6

nv

� -nh
� -rh� -kh

?

rv

6

� -rh

Subarray
(

�A

(A1)

Checks on Columns of
(

� A

(A2)

Array
(

V
(A3)

and

Subarray
(

�B

(B1)

(B4)

Columns Sj
(B2)

Checks on Sj
(B3)

6
�0

SSo
�rh�1

��7
�rh

6
�nh�1

6
S0

6
Srh�1

Array
(

�
Syndrome

Array S = S(�)

Figure 3: Encoding procedure of Construction 2.

where all the entries in an a�ected row may get corrupted. Indeed, in such a worst-case

event, there is really no use in attempting to correct errors along rows.

In this section, we incorporate partial knowledge on the distribution of the number of a�ected

entries in a row and extend Construction 2 to include some error correction (on top of error

detection) on the rows. This approach may be advantageous in cases where there is a

signi�cant probability to have only a limited number of a�ected entries in one row. This is

typically the case where the channel inserts both burst and random errors. The resulting

extended coding scheme will be referred to as Construction 3.

We introduce a design parameter, �, which marks the number of errors that Ch will attempt

to correct. The ultimate design should optimize over that parameter. The parameter � will

be implicit in all forthcoming notations. The random variable T� will stand for the number

of a�ected rows each containing no more than � a�ected entries. The random variable T+ will

denote the number of rows that contain more than � a�ected entries. Clearly, T = T�+T+.

As before, each column in the array will be a codeword of an [nv; nv�rv] code Cv, except

that here we set rv so that

ProbfT+ > rv g � p=4 : (31)

21

The reasoning here is that the code Cv will need to correct erasures only in those rows

that contain more than � a�ected (rather, corrupted) entries. We will introduce another

parameter, r0v, which stands for the overall number of a�ected rows that Construction 3

should be able to handle. The parameter r0v will be determined by the inequality

ProbfT > r0v g � p=4 ; (32)

which is the analog of (2) or (8).

The code Ch is chosen to be an [nh; nh�rh] code that satis�es the MDS supercode property,

where rh is set so that Ch can correct any pattern of up to � full errors or less and detect, with

su�ciently high probability, any pattern of more than � errors. Assuming that the decoder

indeed attempts to correct up to � errors in each row, the probability that a row containing

more than � corrupted entries will be misdetected or miscorrected by Ch is bounded from

above by

q�rh �
�X
i=0

nh

i

!
(q � 1)i � q�rh+2� ;

where the inequality holds whenever nh � q (we show in Appendix A that this is always the

case when the MDS supercode property holds and rh > 1). This bound on the probability

takes into account the worst-case scenario where all nh entries in that row may get a�ected.

Given a value of T+, a decoding failure will occur only if the number of rows that were

miscorrected by Ch exceeds rh�T+; the probability of this to happen is bounded from above

by
�

T+

rv+1�T+

�
� q(�rh+2�)(rv+1�T

+). To guarantee the acceptably small probability of decoding

failure, we require that rh is chosen so that

ET+

(
T+

rv+1�T+

!
� q(�rh+2�)(rv+1�T

+)
��� T+ � rv

)
� p=4 ;

or, equivalently,

BT+(rv; rv; q
rh�2�) � q�rh+2� � p=4 (33)

(recall the de�nition in (10)).

The idea behind Construction 3 is that we code a given nv�nh array � in a way that makes

the respective nv � rh syndrome array S(�) a mini-array in which we can recover up to r0v
a�ected rows using the decoder of Construction 2 (when designed for nv� rh arrays). Those

a�ected rows are in fact the syndrome vectors of the rows of � with respect to the code Ch.

Now, the rows of S(�) are already `scrambled' versions of the rows of � through the use of

the code Ch. Therefore, there will be no need to introduce another row-code (i.e., an analog

of Ch) for the rows of the mini-array S(�). We will, however, need to de�ne a parameter r0h
and codes C 00; C

0
1; . . . ; C

0
r0
h
�1; C

0
r0
h

= C 0v that will be applied to the columns of S(�) as follows:

The codes C 0j, j = 0; 1; . . . ; r0h�1, will be applied to r0h�1 columns of S(�) (say, the last

columns), and C 0v will be applied to the remaining columns. Note that r0h is not an actual

redundancy of any code in this scheme.

22

Following Theorem 1, we set r0h so that

logq

q

q�1
�
�T (r

0
v)

p=4

!
� r0h � rh ; (34)

where �T (r) is as in (12), with T = T+ + T�. (If r0h > rh, then rh should be increased to

have rh = r0h.) Each code C 0j is an [nv; nv�r
0
j] MDS code where r0j = r0v + a0j and a0j is given

by

a0j =

(
r0v if 0 � j < r0h=r

0
v

dr0h=je � 1 if r0h=r
0
v � j � r0h

; 0 � j � r0h : (35)

The overall redundancy of Construction 3 equals

rvnh + (r0v�rv)rh +

r0
h
�1X

j=0

a0j ;

(compare with (5)), and this redundancy should be minimized over �.

Given (by (32)) that the number of a�ected rows is r0v or less, it follows from Theorem 1

that the probability of failing to decode the syndrome array S(�) is bounded from above by

p=4. Note that the overall probability of the `bad events' in (31), (32), and (33), does not

exceed 3p=4.

Figure 4 illustrates the structure of a coded array in which Ch is enhanced to correct �

errors, where the area below the dotted line represents the redundancy symbols. Encoding

is carried out in a manner which is similar to the description in Section 5. In fact, the

encoding algorithm is exactly the same if we de�ne the codes C0; C1; . . . ; Crh as follows:

Cj =

8><
>:
C 0j if 0 � j < r0h
C 0v if r0h � j < rh
Cv if j = rh

:

At the decoding side, we proceed as follows: We use the decoders of C0; C1; . . . ; Crh�1 to

recover the di�erential syndrome array �S for the received array ~�. However, unlike the

decoding procedure in Section 4, we do need here to recover the full contents of �S and

not just the locations of the nonzero rows; this is done through the iterative computation of

an error-evaluator polynomial
(z) for each column of �S, together with the error-locator

polynomial �(z). Once we have the array �S, we regard each row in �S as a syndrome

and apply the decoder of Ch to attempt to correct up to � errors in the respective row in ~�.

Decoding will succeed if there are at most � corrupted entries in that row in ~�. If there are

more, then, by (33), the decoder will detect that with su�ciently high probability and mark

that row as an erasure. The erasures will then be recovered by Cv.

23

rrrrrrrrrrrr

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
r
r
r

rr

r

r

r
rr

rrr
rrrrrrrrrr

r

?
rv
6
?

6

kv

?

6

nv

� -nh
� -rh� -kh

?

r0v

6

?

r0v

6

� -r0h

Figure 4: Array structure in Construction 3.

Appendix A

We summarize here several properties of codes that satisfy the MDS supercode property.

Recall that a linear [n; n�r] code C satis�es the MDS supercode property if there exist codes

C = Cr � Cr�1 � . . . � C0 = F n (36)

such that each Cj is a linear [n; n�j] MDS code.

We �rst make a connection between such codes and covering radius [14, p. 172]. We denote

the covering radius of a code C by �(C).

Lemma 4. (The Supercode Lemma [5, Proposition 1].) Let C1 and C2 be two distinct codes

such that C1 � C2 and let d2 be the minimum Hamming distance of C2. Then �(C1) � d2.

Corollary 2. Let C be a linear [n; n�r] MDS code. Then �(C) = r if C is a subcode of some

linear [n; n�r+1] MDS code, and �(C) < r otherwise.

Proof. First, it is well-known [5, Proposition 2] that the covering radius of every linear

[n; n�r] code is at most r. This, with Lemma 4, implies the �rst part of the corollary.

24

On the other hand, suppose that C is not contained in any linear [n; n�r+1; r] code. Then,

for every vector e of length n, the coset C + e contains a word of Hamming weight less than

r. This, in turn, implies that �(C) < r.

It follows from Corollary 2 that a linear [n; n�r] MDS code C satis�es the MDS supercode

property if and only if all codes in the chain (36) except C0 have covering radii that equal

their redundancy; as such, each of these codes has the largest (and therefore the worst)

covering radius among all codes with the same length and dimension.

A linear [n; n�r] MDS code C is called maximum-length if adding any column to a parity-

check of C results in a parity-check matrix of a linear [n+1; n+1�r] code which is not MDS.

Maximum-length MDS codes are extensively studied in projective geometry over �nite �elds,

where they are called complete arcs [9],[10].

We next make a connection between the MDS supercode property and maximum-length

MDS codes.

Lemma 5. A linear [n; n�r] MDS code C is maximum-length if and only if �(C) < r.

Proof. Let C be an [n; n�r] MDS code over a �eld F and let H be an r � n parity-check

matrix of C over F . Clearly, �(C) < r if and only if every (syndrome) vector h 2 F r can be

obtained as a linear combination over F of less than r columns in H. On the other hand,

[H h] is a parity-check of an [n+1; n+1�r] MDS code if and only if h cannot be obtained

as a linear combination of r columns in H.

Combining Corollary 2 and Lemma 5, we conclude that a linear [n; n�r] MDS code C satis�es

the MDS supercode property if and only there is no code in the chain (36) (except C0) which

is maximum-length.

It is known that every linear [q+1; q�1] MDS code over GF (q) is maximum-length [14,

Ch. 11]. Hence, there exist linear [n; n�r] MDS codes over GF (q) that satisfy the MDS

supercode property only if n � q or r � 1. The equality n = q can be attained by extended

Reed-Solomon codes.

Appendix B

We analyze here the Bernoulli row-error channel that was considered in Section 3.3. We �rst

improve on the value of rh in (21) by obtaining bounds on �T (r) which are tighter than (17).

We do this next using the well-known Cherno� bounding technique.

Let x 7! U(x) be the step function which equals 1 when x � 0 and equals 0 otherwise.

Clearly, U(x) � ��x for every 0 < � � 1. Recalling the de�nition of �T (r) in (12), we have

�T (r) = q�r � ETf q
T (2T�1) j T � r g

25

= q�r � 1
ProbfT�r g

� ETf q
T (2T�1) � U(r � T)g

� q�r � 1
ProbfT�r g

� min
0<��1

ETf q
T (2T�1) � �T�rg

� 1
ProbfT�r g

� min
0<��1

n
(q�)�r

�
ETf (2q�)

Tg � ETf (q�)
Tg
� o

:

Hence, we obtain,

�T (r) � ProbfT � r g � min
0<z�q

z�r
�
ETf (2z)

Tg � ETf z
Tg
�
: (37)

(The same upper bound holds also for �T (r; J) in (19), except that the range of z becomes

0 � z � qJ .)

We now demonstrate the application of (37) to the Bernoulli row-error channel. Recall that

in this channel, each row gets a�ected with probability � = �=nv, independently of the

other rows. Therefore, T is the sum of n = nv independent Bernoulli random variables

Y1; Y2; . . . ; Yn, where ProbfYi = 1g = � and ProbfYi = 0g = 1��. By (37) we have

�T (r) � ProbfT � r g < min
0<z�q

z�rETf (2z)
Tg

= min
0<z�q

z�r � EY1;Y2;...;Ynf (2z)
Y1+Y2+...+Yng

= min
0<z�q

z�r �
nY
i=1

�
EYif(2z)

Yig
�

= min
0<z�q

z�r � (1�� + 2z�)n : (38)

The minimum in (38) is attained at z = minfzmin; qg, where

zmin =
r

n�r
�
1��

2�
:

For the sake of having simpler expressions in the sequel, we will substitute for z the following

value

z0min =
r+1

n�r�1
�
1��

2�
;

which is slightly larger than zmin. We will also assume from now on that z0min � q, since this

is the case for typical values of q, n = nv, r = rv and � = �=n. We thus obtain the bound

�T (r) � ProbfT � r g < (z0min)
�r � (1�� + 2z0min�)

n

=
nn

(r+1)r(n�r�1)n�r
� �r(1��)n�r � 2r : (39)

Next we identify portions of the bound (39) with the Cherno� bound on ProbfT > r g. The

latter bound is very similar to (38) and is obtained as follows. Recalling the de�nition of

26

x 7! U(x) herein,

ProbfT > r g = ET

n
U(T � (r+1))

o
� min

0<��1
�r+1 � ETf �

�T g

= min
0<��1

�r+1 �
nY
i=1

�
EYif�

�Yig
�

= min
0<��1

�r+1 � (1�� + ���1)n :

The minimum here is attained at

�min =
n�r�1

r+1
�

�

1��

(in our case r+1 will be at least � = n� and so �min � 1). Substituting � = �min yields

ProbfT > r g �
nn

(r+1)r+1(n�r�1)n�r�1
� �r+1(1��)n�r�1 : (40)

Note that the bound (40) is rather tight, since, by the Stirling formula we have

ProbfT = r+1 g =

n

r+1

!
�r+1(1��)n�r�1

= O(1) �

s
n

(r+1)(n�r�1)
�

nn

(r+1)r+1(n�r�1)n�r�1
� �r+1(1��)n�r�1 :

Hence, we set rv to a value r for which the right-hand side of (40) is at most p=2. In this

case the bound (39) implies

�T (rv) <
p=2

1�(p=2)
�
1��

�
�

rv+1

nv�rv�1
� 2rv ; (41)

provided that the value of rv that we have chosen is such that z0min � q, namely,

� � rv+1 �
2q�

1�� + 2q�
: (42)

Furthermore, since typically p=2 � � and 1
nv

+ 1
q�1

� 1
rv+1

, then, under those assumptions

and (42), it follows from (13) and (41) that we can take rh to be the value in (24) in

Section 3.3.

On the other hand, for Construction 0 and Construction 1 we require

ProbfT = rv g � rv � q
�rh � p=2 : (43)

27

By the Stirling formula we have

ProbfT = r g =

n

r

!
�r(1��)n�r =

r+1

n�r
�
1��

�
�

n

r+1

!
�r+1(1��)n�r�1

= O(1) �
1��

�
�
r+1

n�r
�

s
n

(r+1)(n�r�1)
�

nn

(r+1)r+1(n�r�1)n�r�1
� �r+1(1��)n�r�1 :

Hence, if the right-hand side of (40) equals p=2 for r = rv then

ProbfT = rv g = O(1) �
1��

�
�
(nv(rv+1))

1=2

(nv�rv�1)3=2
� (p=2) :

This, with (43) implies that we need to set rh in Construction 0 and Construction 1 to the

value in (25) in Section 3.3.

7 References

[1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, National Bu-

reau of Standards Applied Mathematics Series 55, 1964.

[2] E.R. Berlekamp, Algebraic Coding Theory, Second Edition, Laguna Hills, Englewood

Cli�s, California, 1984.

[3] R.E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley, Reading,

Massachusetts, 1983.

[4] E.L. Blokh, V.V. Zyablov, Coding of generalized concatenated codes, Problems of

Inform. Trans., 10 (1974), 218{222.

[5] G.D. Cohen, M.G. Karpovsky, H.F. Mattson, Jr., J.R. Schatz, Covering

radius | survey and recent results, IEEE Trans. Inform. Theory, 31 (1985), 328{343.

[6] P.G. Farrell, A survey of array error control codes, Europ. Trans. Telecommun. Rel.

Tech., 3 (1992), 441{454.

[7] S. Hirasawa, M. Kasahara, Y. Sugiyama, T. Namekawa, Certain generaliza-

tions of concatenated codes | exponential error bounds and decoding complexity, IEEE

Trans. Inform. Theory, 26 (1980), 527{534.

[8] S. Hirasawa, M. Kasahara, Y. Sugiyama, T. Namekawa, Modi�ed product

codes, IEEE Trans. Inform. Theory, 30 (1984), 299{306.

[9] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, Oxford University

Press, Oxford, 1979.

28

[10] J.W.P. Hirschfeld, J.A. Thas, General Galois Geometries, Oxford University

Press, Oxford, 1991.

[11] M. Kasahara, S. Hirasawa, Y. Sugiyama, T. Namekawa, New classes of binary

codes constructed on the basis of concatenated codes and product codes, IEEE Trans.

Inform. Theory, 22 (1976), 462{467.

[12] T. Inoue, Y. Sugiyama, K. Ohnishi, T. Kanai, K. Tanaka, A new class of burst-

error-correcting codes and its application to PCM tape recording systems, Proc. IEEE

National Communications Conf., Part II, Birmingham, Alabama (1978), 20.6/1{5.

[13] S. Lin, D.J. Costello, Jr., Error Control Coding, Fundamentals and Applications,

Prentice-Hall, Englewoord Cli�s, New Jersey, 1983.

[14] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North-

Holland, Amsterdam, 1977.

[15] J.L. Massey, Shift-register synthesis and BCH decoding, IEEE Trans. Inform. Theory,

15 (1969), 122-127.

[16] T. Nishijima, H. Inazumi, S. Hirasawa, A further improvement of the performance

for the original iterated codes, Trans. IEICE, E-72 (1989), 104{110.

[17] R.M. Roth, Probabilistic crisscross error correction, submitted to IEEE Trans. Inform.

Theory.

[18] V.A. Zinoviev, Generalized cascade codes, Problems of Inform. Trans., 12 (1976),

2{9.

[19] V.A. Zinoviev and V.V. Zyablov, Decoding of nonlinear generalized cascade codes,

Problems of Inform. Trans., (1978), 110{114.

[20] V.A. Zinoviev and V.V. Zyablov, Correcting bursts and independent errors by

generalized concatenated codes, Problems of Inform. Trans., 15 (1979), 125{134.

29

