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We present a computationally simple and fully
automatic method for creating virtual views of a scene
by interpolating between sets of images obtained from
different viewpoints.  The technique is intended to give
an immersive experience and a sense of viewing a real
environment. The method uses correspondence points
identified in the primary images.  The matching of
corresponding locations in the images has two stages.
The first is based on ‘corner points’ and is used to
extract the epipolar geometry that relates the images,
then a second stage of edge matching recovers a more
complete set of correspondences.  These edge
correspondences are then interpolated and used in an
efficient morphing algorithm that operates one scan-
line at a time to perform image synthesis.
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1. Introduction

The worlds of 3D computer graphics and digital video processing are rapidly converging.
Separate traditional domains such as CAD, virtual environments and interactive 3D games
on the one hand and video conferencing, video post-production and non-linear editing on
the other are giving way to hybrid approaches that combine technologies [0, 2, 3, 4]. The
emergence of standard graphic and video enabled computing/entertainment platforms
coupled with the growth of high bandwidth communications infrastructure will only
increase this trend toward interactive digital media capabilities in both the home and office
computing appliances.

A growing number of researchers are exploring the generation of static and temporally
varying immersive scenes using real world image data alone. One approach is to capture
all viewpoints at a single point and use these as an environment map [5, 6, 7] to be applied
as a texture on some imaging surface. Particular viewpoints can be generated by projecting
the texture onto the imaging plane corresponding to the users current view. Environment
maps can be obtained as panoramas composed from multiple images and composted as
cylindrical projections [8] or based upon lens and/or mirrors designed for all round capture
onto a single imaging array [9, 10]. A number of commercial systems, including QTVR
(Apple Computer), PanoramIX (IBM), IPIX (Interactive Picture Corporation) and
Realspace (Live Picture) have been developed. Methods for morphing between
environment maps have also been proposed [11, 12]. Good overviews of image mosaic
generation to capture virtual environments are available in [13, 14, 15].

It is possible to go beyond the exploration of 2D worlds (where the viewer is constrained
to a single, or predetermined set of discrete, locations in the 3D environment) by directly
representing the light field in the vicinity of an object [16, 17]. The light field in regions of
free space is a 4D function of radiance against position (2 parameters; as all points along a
single light ray have the same radiance) and direction (2 parameters). The light field can be
constructed from the dense set of images captured over a planar grid (an image of
images). However it proves difficult to capture in practice (precise calibration and camera
positioning are required) and has onerous memory requirements.

Another approach to viewpoint synthesis is to recover a dense 3D model or depth map
from multiple discrete images or a video sequences and to employ standard texture
mapping technique to view that surface from an alternative viewpoint [18, 19, 20, 21].
This approach also requires precise calibration, especially if the viewer is to be allowed to
transform the object far from the original viewpoints. Furthermore, occlusion proves a
particular problem for the construction of a dense depth map. Depth estimates will be
inaccurate along depth discontinuities and absent altogether in extended occluded regions.
A frequently employed approach is to compensate for occlusion by combining depth
estimates from a large number of image pairs.
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The work described here follows a simple approach. It uses image morphing techniques to
synthesise viewpoints between a small number of original images. The approach owes
much to the work of Seitz and Dyer [22,  23] in particular the implementation is an
extension of that developed in [22]; the method is automatic and relies on edge based
stereo processing to identify a set of sparse edge correspondences between the original
images. New views are constructed by linearly interpolating the matched edges and
efficiently rendering individual rasters on the basis of the interpolated edges that cross
them.

This approach gives surprisingly high quality image reconstruction over the viewing
regions between original camera positions provided that their camera geometry is not too
dramatic. The approach has a number of advantages over alternative schemes. It does not
require accurate camera calibration; sufficient information for edge matching can be
recovered from the images themselves. The sparse edge data has only a low overhead over
the original images. The raster based rendering algorithm gives the impression of surfaces
sliding behind one another at occlusions and is robust to missing edge data. The method
leads naturally to the development of an immersive video media type in which multiple
video tracks are augmented with a morphing track to allow the viewer to alter their
viewpoint with respect to the video sequence in real time.
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2. Geometry

Consider the parallel camera geometry shown in  Figure 1 (recreated from [23]). It shows
a pair of cameras with optical centres C0 and C1 displaced in a direction orthogonal to the
common direction of the principal axes. Note that the focal lengths of the cameras need
not be preserved. In such cases linear interpolation of the 2 images, I0 and I1 is shape
preserving and results in viewpoints along the line C0 C1 joining the optical centres of the
2 cameras. For example the image, I0.5, of a third parallel camera at the mid-point C0.5 with
the mean focal length is given by the mean projection of image locations in the 2 images.

C0

C0.5

C1

p0

p1

(p0+p1)/2

P

I0

f0
I0.5

I1

f0.5

f1

Figure 1: Parallel Binocular Cameras
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Here we extend this approach to 3 cameras as shown in Figure 2. Again the principal axes
of each camera are parallel, orthogonal to the plane that passes through the 3 optic centres
and all the image planes have the same orientation. Choosing the origin of the co-ordinate
frame at C0 aligned with the image plane and principal axis of the first camera  then the
projection of a point P in the world is given by
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Figure 2: Parallel Trinocular Cameras
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Linear interpolation amongst [ ]p0 = x Z y Z0 0 ,  [ ]p1 1 1= x Z y Z and
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image interpolation therefore produces a new view whose projection matrix is a linear
interpolation of the original 3. Hence interpolating images from parallel cameras produces
the illusion of moving the camera on the plane through the optical centres. More generally
this approach applies wherever the 3rd row of the three transformation matrices is
constant.
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Let us assume that the cameras can be approximated with an affine model (see, e.g., [24]).
Let us refer to Figure 3 and consider a point  P=[X,Y,Z,1]  in the space imaged by three
affine, uncalibrated  cameras defined by affine projection matrices A0, A1 and A2 scaled
such that Ai(3,4) =1 (i=0..2). The projections of a  point P onto the image planes of the
cameras  are given
by  p0=[x0 y0 1]T=A0P,  p1=[x1 y1 1]T=A1P and p2=[x2 y2 1]T=A2P.
Let the interpolation of these three points in  image plane coordinates be given by:

ps=
PAPAPAPA

ppp
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=++−−
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βααβ
))1)((1(
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where
210s AAAA βααβ ++−−= ))1)((1( . Thus interpolation in the image plane produces

the same effect as having an another affine camera As.

Figure 3: General Trinocular Geometry
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But what does this interpolated affine matrix look like?  Ullman and Basri [25]show the
conditions under which linearly interpolating orthographic views produces other veridical
views. Chen and Williams [1] used interpolation between range data to synthesise
intermediate views and again found that valid views are produced only under some
circumstances.

Since, as we shall see later, our approach does not explicitly use parallel camera
rectification as in, we have to understand what an interpolated affine camera matrix
represents.

An affine transformation can be seen as a parametric mapping from 23 ℜ→ℜ

( ) ( )yxzyxiii SSSttt ,,,,,,,, ψϑθAvAA ==

function of the camera reference frame orientation and position, plus a shearing and two
scaling components, respectively.

Now, since the tranformation is linear in translation, scaling  and shearing, if no rotation
between the cameras A0 , A1  and A2 is involved, As  represents a perfectly valid new
viewpoint V.

On the other hand, when rotation is involved this is no longer true. However, provided
the relative rotations cameras between the cameras are small, there is a near-linear
relationship between changes in the elements of the affine matrices and changes in the gaze
angles.  Hence, under these conditions  in general we can write:

( )( ) ( )( ) ( )( ) ( )( )210s vvvAA βααβ βααβ ffff ++−−≈ 110

where ( )ααf ( )ββf  are non-linear functions of α  and β . Thus the synthesised

viewpoint, neglecting second order effects, simulates the camera being on the hyper-plane
through v0, v1 and  v2.

In summary our approach is to use linear image interpolation to approximate the change in
viewing position amongst an initial set of imaging locations. This does not require
knowledge (through calibration or otherwise) of the actual locations of the cameras,
provided they have sufficiently similar orientations and the camera baseline is reasonably
small with respect to viewing distance (i.e. more than 5::1).
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3. System Architecture

The overall system architecture is illustrated in Figure 4. It allows either two or three
image sources (still images, or corresponding frames from video streams) captured from
spatially displaced locations to be processed.

There are 2 main components to the
processing architecture:

• capture: up to the extraction
of strings of matched edge
points.

• rendering: using the matched
edge data to morph the
images.

While it is possible for both capture
and rendering to be performed in real
time, capture is currently the more
computationally demanding part of
the problem and can for some
applications be performed off line. In
any case, some form of image and
edge compression can be used
between capture and rendering to
reduce bandwidth for transmission,
broadcast or long term storage

3.1 Capture
The first requirement is the
simultaneous capture of two or more
views of a given scene. Then, using
some standard image processing
techniques on the captured images, an
edge map is determined for each view.

Using the edge maps and the original images, stereo matching is performed to determine
which edges in one image correspond to which edges in the remaining images. In order to
perform this stereo matching the epipolar geometry that relates the cameras is required
[26].

Stereo matching is somewhat simplified in the context of three or more (even weakly)
calibrated cameras [27, 28 and 29]. In general each new camera provides additional

Edge
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Image
Capture

Edge
Detection

Edge
Linking

Image
Capture

Edge
Detection

Edge
Linking

Image
Capture

Edge
Interpolation

Capture

Rendering

Raster
Rendering

potential compression for network delivery or storage

Figure 4: Immersive Video Processing
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constraints on the stereo matching problem. While edge matching is under-constrained for
two views, the addition of a third view allows potential matches identified between the
first two images to be verified. Our edge matching scheme is able to work with two
images but is more robust when working with three.

3.2 Rendering
The rendering stage is essentially a two phase process, firstly a new ‘line sketch’ is
generated, which is an interpolated version of the captured edge maps, then a scan line
rasterisation is used that ‘colours in’ the sketch using re-sampling and image morphing of
the original image data.
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4. Image Capture

The actual details of the physical image capture are highly specific to the capture devices
and computer architectures involved. We have experimented with colour digital still
cameras, genlocked monochrome video sources digitised directly on a PC and multiple
digital video camcorders.

Since one aim of the work was to create an immersive video effect by interpolating views
from multiple video sources, one demanding problem was the physical capture of three
simultaneous videos to disk at a reasonable frame rate. Although simple in principle, the
limitations of affordable hardware give rise to a number of technical problems.

The problems we encountered were notably:

1. Very few (and expensive) video grabbers allow the capture and store three RGB
images simultaneously, and those which do rely on theoretical PCI-bus bandwidth,
which is rarely attainable in practise.

2. Compression methods are not yet the norm for video grabbers, so data was kept in
raw format, which only served to increase the bandwidth limitations.

3. The PC memory-to-disk transfer rate is practically 5-7 Mb/s even on the most up-to-
date machines, which is utterly inadequate for frame-rate video storage.

Although these limitations could have been overcome by the application of expensive
custom hardware, we opted instead for a trade-off that allowed us to keep costs
dramatically down while nonetheless substantially achieving our aims.  The figure below
shows the diagram of the capture set-up we have used.

By limiting the capture to monochromatic video each source could be captured to one
channel of a cheap RGB capture board (the METEOR-RGB in this case). The cameras are
genlocked, that is one synchronises the other two, which are configured in external sync

V I S T A

V I S T A

V I S T A

Matrox Meteor RGB

Camera #1

Camera #2

Camera #3

sync

sync

Camera #1 genlocks camera #2 and  camera #3

Figure 5: Video Capture Hardware
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mode. The cameras used, (VISTA 230),  do not have automatic gain control and were
fitted with 6mm lenses witch give a field of view of about 60 degrees.

A further benefit of restricting the system to monochromatic channels is the lower
bandwidth when transferring data to disk. A CCIR  image of 576x768x8 pixels is about
350 Kbytes and three of them make about 1 Mbytes of data per frame, which allows us to
capture and store three video streams at 5-7 frames per second. Were we dealing with
colour images, say PAL,  we would have had three times as much data (if not four due to
32 bit word alignment) and so the storable frame-rate would have dropped to an
unacceptable 1.2-1.7 frames/s.

In order to bypass the disk bandwidth problem, we also tried storing all frames in system
memory and then saving them to disk at the end. Using 128 Mbytes RAM  enabled the
capture of about 4 seconds of videos at full frame rate.
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5. Capture Processing

Capture processing involves:

• epipolar geometry recovery, to determine the model that relates the cameras.
• edge detection and linking: the identification of pixel locations that represent

the locus of edges in the image and their subsequent grouping into extended edge
strings.

• edge matching: the identification of corresponding edge points between the
image streams.

5.1 Epipolar Geometry Estimation
The epipolar geometry [26] is the model that relates two images taken from either a single
moving camera or a pair of cameras. This needs to be determined only when the cameras
move with respect to each other, so for two video streams from static cameras this
expensive step could be performed once at set-up, and then reused for each frame.

For any feature in one image, captured with a pinhole camera, the corresponding feature in
the other image will lie on an epipolar line. Historically epipolar geometry was used for
calibrated cameras [30] but recent developments have extended the concept to the case of
un-calibrated cameras for which only image measurements are known. The relationship
between two corresponding points  p0 and p1 is given by p1

T F p0 = 0 where F is called
Fundamental Matrix.  The matrix F is a 3x3 matrix of rank 2 and relates features in one
image to the corresponding epipolar lines in the other. If complete camera calibration is
known (focal length, aspect ratio, principal point) then the fundamental matrix allows the
recovery of the spatial transformation between the two cameras positions.

Several techniques have been proposed to estimate the fundamental matrix in general
cases. For our application we have however focused on a recent method proposed by
Zhang [31]. The method has two distinct stages. The first one deals with recovering a
large number (several dozen) of matching points and the second more specific one uses
these points to recover the fundamental matrix by robustly fitting the equation p1

T F p0 = 0
to the data.

The following two sections explains these two stages more in detail.

5.1.1 Establishing  feature correspondence
For extracting the epipolar geometry from two intensity images captured using two
arbitrarily displaced camera positions we first need to establish the correspondence
between features in the two images. This is an extremely challenging research problem.
Technically speaking the problem consists in finding image points in both images that
originate from the projection of the same point in the scene; as it can be imagined, the loss
of one dimension due to the projectivity makes this problem ill-posed.
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The method that we have employed consists of  three distinct stages, namely  i) feature
detection,  ii) search for candidate features  and  iii) the  relaxation process to iteratively
select candidates that are deemed globally optimal to achieve a final 1:1 feature mapping.

Firstly, points of interest (henceforth called corners) are extracted from both images using
a method proposed in [32] for which the code is publicly available, although we recognise
that other methods such as the Harris corner detector [33] would be equally appropriate
for the job.

The next stage consists of building a list of candidate matches for each corner. A candidate
list for a corner Ii of one image consists of all the corners Ji in the other image that are
within a given window about the co-ordinates of Ii and that have high enough “similarity”.
In our implementation the search window is about one quarter the size of the image and
the similarity measure is the classic normalised intensity correlation of nxn patches centred
on corners. The normalised correlation Cij ranges from -1 (completely uncorrelated
corners) to 1 (identical). To accept candidates, we have adopted an empirical similarity
threshold of 0.7, which is low enough to cater for images with different aperture and
affine/perspective image distortion but not so low as to cause the candidate list to become
unnecessarily large and hamper the relaxation stage.

The final and most important stage is the relaxation procedure which upon completion
yields 1:1 correspondences from the initially redundant list of candidates. Our problem in
particular can be cast as a discrete relaxation labelling as we are trying to assign labels
(matches) to objects (corners) choosing from a finite set of possibilities (the candidates).
Operationally, the method works by updating the labels according to some semi-local
consistency criteria (henceforth called support measure) computed at each iteration.
Relaxation allows the candidate matches to re-organise themselves by propagating some
constraints such as continuity and uniqueness through the neighbourhood, assuming that if
a match is a good one we will have many consistent matches in the corresponding
neighbourhood of the two matching points.

The outline of the relaxation procedure is the following:

1. Until no 1:1 match is selected:
2. Compute a support measure for each candidate match.
3. Sort all best matches of each candidate list by support measure and ambiguity .
4. Select the q percent best ones as good 1:1 matches.
5. Remove them from the candidate lists.

The strength of the method lies in the powerful support measure used for matching. For a
given candidate match, the support is a function of the number of other consistent (in
terms of similar disparity vector) candidate matches found in its neighbourhood weighted
by their relative distance to the said matching corners and their normalised intensity
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correlation. These heuristic criteria actually implement the three all-important similarity,
proximity and exclusion principles which are essential to establishing reliable and
consistent 1:1 mappings.

In the second step, all the matches are put in two tables and sorted according to their
support measure and their ambiguity, which we pragmatically define as the difference
between  its support and the support of the second best in the same of the candidate.

In the third step only the matches that are among the first q percent in both tables are
chosen as good 1:1 matches. We also put a threshold on the ambiguity measure in order to
reject matches that that, although scoring well, are too ambiguous to be selected at this
stage.

The fourth step is a simple one but nonetheless important, because removing accepted
matches may cause some other candidates of other corners to be unlocked and therefore
candidates for selection at successive iterations.

These steps are repeated until no more 1:1 matches are selected.

At the end of this relaxation loop we have a set of matching corners that hopefully
correspond to the same features in the scene and that will be used to recover the epipolar
geometry. As we shall see, the pairings are almost never perfect so the fitting algorithm
must be able to cope with a certain percentage of outliers.

5.1.2 Fitting the Epipolar Geometry
Once we have a number of matching points available, the epipolar constraint expressed by
p1

T F p0 = 0  can be used to recover the unknown fundamental matrix: F.
The epipolar constraint can be rewritten in terms of the 9 coefficients, that is

 where:

and u v1 1,   and u v2 2,  are the co-ordinates of the points in the respective images.

In order to recover F  reliably, ones has to use many points in a least-squares framework.
There have been several methods presented in the literature on how to reliably implement
the fitting of the fundamental matrix to a set of point matches. The main problems
encountered are that F  is of rank 2 and that the orthogonal (ordinary) least squares
method fares poorly in presence of outliers and noise.
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Probably the best method to cope with a relatively high percentage of unstructured
outliers is the RANSAC method which consists of: “using as small subset of data as
possible to estimate F (seven), and repeat the process enough times on different subsets
to ensure that there is a, say, 95% chance that one of the subsets will contain only good
data points. Once done that, the best solution is that which maximises the number of
points whose residuals is below a threshold. Once the outliers are removed, the set of
points identified as non-outliers may be combined to give a final solution” [34].

In order to avoid technical hurdles (namely the solution of Kruppa equations to enforce
rank 2), rather than using seven points to estimate the fundamental matrix for each
iteration, we used eight points, which requires the use of higher numbers of subsets.

There are several other technicalities to properly perform RANSAC that we have
implemented which are beyond the scope of the present report (see [31] for details) but
the essence is that its use on the estimation of the epipolar geometry leads to a high
resilience to outliers and good final estimates.

A final important note regards degenerate cases in the estimation:  when the
transformation between two images  is not fully perspective (i.e. it is either affine or simple
translation) the epipolar constraint represents a lower-dimensional manifold in 9
dimensional space of the coefficients of F . These situations are rather complicated to
detect (see [34] for details) but are nonetheless essential if the fundamental matrix is to be
used to recover 3D structure or motion. In our case however, these degenerate situations
do not seem to be detrimental  as we only need the epipolar to match edges.

5.2 Edge Detection and Linking
Only monochrome edges are required for matching and viewpoint synthesis. In our
experiments with colour images the green channel was used as it is closest of the 3
primaries to the human perception of intensity.

The edge detection used here is based upon the Canny edge detector [35];  it involves the
3 stages of image smoothing, gradient measurement and non-maximal suppression to
find individual pixels that best represent the locus of the edge. Smoothing the image by
convolving it with a Gaussian kernel has the effect of selecting the scale of the edges that
are detected. As the Gaussian convolution  kernel is separable the 2D smoothing is
performed as two one-dimensional Gaussian convolutions, first horizontal along each row
of the image, followed by a vertical convolution along the columns of the resulting image.

Simple numerical differentiation, horizontally and vertically, gives a gradient estimate for
each pixel in the image. This includes the absolute magnitude and orientation of the local
gradient. Further analysis of the gradient field results in the identification  of those pixels
whose magnitude is above a minimum threshold and is locally maximal in the direction
orthogonal to their orientation. These points constitute the ‘edges’ in the image and are
shown in Figure 9 for images 1 and 2 of our reference example.
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Edge linking is performed in 2 stages. The first involves only local 8-neighbour operations
and determines the local connectivity of each edge pixel. The second groups edges into
extended edge strings with an explicit starting and ending locations (which are the same
point in the case of a loop). Each edge within the string is given an explicit label which
provides an index to the string description within a string table.

As shown in Figure 6 it is convenient to represent the edge image as a 2D array of 32 bit
words. The bits in each word represent orientation, contrast, local connectivity and string
index associated with each edge. Where edges are not present the whole word is null.
Within the string table entry associated with each edge (which is common for all the edges
in the same edge string) are the locations in the edge image array of the first and last edge
elements in the string.

5.3 Edge Matching
The goal of edge matching is to provide sequences of matched edge points, each of which
represent the approximate location of the same scene point with respect to each of the
views. This task is complicated by the fact that, due to the vagaries of the image
formation, edge detection and edge linking processes, the topology of the edge strings in
each of the constituent views may differ even for relatively small changes in viewpoint. For
this reason the edge string connectivity of the matched edges is determined with respect to
a single master image that is in effect a dominant viewpoint. It would however be
preferable to have a more symmetric approach in which the final connectivity of matched
edges was determined from the combination of the viewpoints, integrating edge string
connectivity from each of the views.

string index connectivity orientcontrast
   31                                    20                           12                   6                    

String Table

  Other Info         start   end

Figure 6 Edge String Representation
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Edge matching is performed in two stages. First matches are sought for the individual
edges from one image, these are then refined and combined into connected strings with
respect to the underlying edge strings of that image.

Initial edge matching is performed one (epipolar) row at a time and uses a version of the
Viterbi dynamic programming method developed for speech wave-form matching and
used extensively for edge and image based stereo matching and other aspects of computer
vision [36, 37, 38]. The basic idea is that the order of edges along a pair of corresponding
epipolar image rows is preserved. This ordering constraint of stereo vision is only violated
when a foreground object is so far in front of the background that it is possible to see the
same portion of the background on different sides of it with respect to the different views.
This is generally only a problem for objects of small extent with respect to the difference in
the viewpoint.

5.3.1 Binocular Row Matching
First we discuss epipolar edge matching in the case of just two images labelled 1 and 2
which we will assume are displaced in a roughly horizontal direction. Epipolar rows are
enumerated with respect to the intersection of the central column of image 1. This will be
the dominant viewpoint for subsequent edge and string matching. For alternative
viewpoint displacements we would chose a different axis of intersection; one that was
approximately orthogonal to the dominant epipolar orientation.

Given the fundamental matrix F12  relating a pair of images then a point p1 in image 1
defines an epipolar line l2 in image 2 according to l2 = F12 p1. Such that the components of
the vector l2 are (a, b, c) and define the line by way of the equation ax + by + c = 0. Each
and every  point pi on the epipolar  line l2 in image  2 defines the same corresponding
epipolar  line in image 1 according to l1 = F12 

Tpi.
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Figure 7 shows a set of corresponding epipolar pairs that are defined by the 4 corners of
image 1. Note that these do not necessarily correspond to the corners of image 2. The
intersection of  each epipolar with the central column (x = w/2, where w is the width of the
image) of image 1 gives the range of epipolar intersection points with respect to that
column that are required to define the set of epipolars that span the whole of image 1.
Choosing a point along the central column between these extremes defines an epipolar pair
as illustrated in Figure 8.

Given this pair of epipolar lines we intersect the pixels of the edge image to find the set of
edges through which it they pass. This is done using a standard line drawing technique

12

start row

end row

Figure 7: Defining the Epipolar Range

12

Figure 8: Defining Epipolar Pairs
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(e.g. see [39]) to find the loci of pixels through which the epipolar passes and hence obtain
an ordered list of edge pixels that lie along it. Often epipolar lines defined in this way will
intersect successive  edge pixels that belong to the same extended edge (i.e. they are
adjacent in the image) especially if the edge runs at an angle close to that of the epipolar
line. These extended edges are coalesced  prior to matching and replaced with the central
edge in the group.

Figure 9 shows edge images with corresponding epipolar lines superimposed. The list of
edges through which each epipolar passes are stored in respective edge tables in order
along the epipolar. Given 2 such tables of epipolar edge intersections it is possible to
postulate potential matches between edges from the 2 images. The objective is to find the
set of  matches between the two sets of epipolar edges that minimise an appropriate cost
function. For dynamic programming to work the cost function must be such that it is
monotonicly increasing/decreasing with the additions of new matched edges, which is why
order must be preserved [37].

5.3.2 Dynamic Programming
In our formulation we choose to pose the minimisation of cost as a maximisation of a
profit. In theory each edge from the epipolar edge table in image 1 could potentially match
with any edge from the corresponding epipolar edge table from image 2. This situation is
portrayed as a matching grid in Figure 10 with the axes of the grid representing the edges
from each table. Each grid intersection point (i, j) represents possible match between the ith

edge in the first epipolar edge table with the jth edge from the second. Satisfying the
ordering constraint requires that we choose a set of matches such that the path through
them ascends  from left to right. That is the path between potential matches must be
horizontal, vertical or diagonal up to the right. Such a path is shown in the figure.

Figure 9: Epipolar Intersection
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In the formulation we give a matching strength Sij to Mij, the match between the ith  edge
from image 1 and the jth edge from image 2, which indicates how similar the edges are.
Then we pose the optimisation problem as simply finding the path satisfying the ordering
constraint that has the greatest accumulated profit. That is for which the sum ∑Sij  is
maximal.

It is also necessary to exploit the ubiquitous uniqueness constraint [40] frequently
employed in correspondence matching. It insists that each edge from the first image can
only be involved in a single match with respect to the second and visa versa. Each
horizontal or vertical edge in the path corresponds to a violation of this uniqueness
constraint. Hence the match implied by the grid location reached by these transitions are
not allowed to contribute to the summation.

A number of quantitative matching constraints are also imposed. These prevent edges
from matching if they violate local similarity constraints with respect to each other. In
particular we impose constraints on absolute orientation, absolute contrast and the
Euclidean image displacement/disparity of an edges location between the two views.
When a quantitative constraint is violated between a pair of edges they are given a
matching strength of zero and are prevented from being assigned as matches even if the
optimum path passes through them.

Epipolar Edges
from Image 1

Epipolar Edges
from Image 2

i

 j

M

N

Figure 10: Dynamic Programming Table
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Dynamic programming is a computationally effective way of exploring the space of all
valid paths across the matching grid. If we consider the match Mij, the optimum path
across the grid that passes through it has three components.

• The optimum paths from the bottom left to the grid locations (i, j-1), (i-1,
j-1), (i-1, j).

• The strength Sij of the match itself.
• The optimum path from grid point (i, j) up to the top right.

Furthermore once the optimum path to grid location (i, j) has been evaluated then it is
known that the optimum path that includes (i, j) must also include the same sub-path up to
that point. We chose to denote the optimal accumulated matching strength (or cost/profit
for short) up to and including match Mij as Cij.

This gives a simple and efficient update scheme to calculate optimum paths up to each grid
location starting from the left hand column of the grid and working towards the right and
working along the columns from the bottom to the top.

At each step:

Cij  = max(Ci-1j, Cij-1, Ci-1j-1 + Sij)

where the first condition represents a vertical path from grid location (i-1, j) in which this
match is prevented by uniqueness with respect to image 2, the second indicates a
horizontal path from grid location (i, j-1) in which this match is prevented by uniqueness
with respect to image 1 and the third and final condition gives a diagonal sub-path from (i-
1, j-1) and indicates that this match is included in the optimum path up to and including
grid location (i, j).

Upon completion of the whole grid, it is sufficient to back track along the optimal path
from the terminal grid node (M, N) to identify all the matching nodes. This requires that
the condition number (1, 2 or 3) under which the optimisation was updated at each grid
point be associated with that grid location at the time the grid node was updated. On this
basis it is possible to determine the local direction of the path and identify matches that are
prevented by the uniqueness constraint. If  at any node two conditions had equal maximum
cost then the one with lower condition number is chosen (this actually ensures that null
matches, which violate a local quantitative constraint, have lowest priority and will not be
included in the path as a horizontal-vertical pair will be preferred).

5.3.3 Weak Trinocular Consistency
In general adding a third image and two additional fundamental matrices F23  and F31

allows stronger matching constraints to be imposed [27], [28], [29]. Each potential match
between the first two image rows can be tested in the third image by generating pairs of
epipolar lines that correspond to the two edge points that constitute the match. If for
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example we have two matching points p1 and p2  from the first and second images
respectively, they will give rise to epipolar lines l3 = F31 

Tp1 and l’ 3 = F23 p2 in the third
image whose intersection gives the location of the point p3  in that image implied by the
match. Figure 11 shows how the epipolar pairs from the three images coincide for
common points in all three views. This gives rise to a powerful matching constraint; for
correct matches we expect to find support for the match in the third image while for
incorrect matches we do not.

For some camera arrangements, such as where the three views are (or are close to being)
collinear, adding a third image offers no additional constraint. In this case it is necessary
to employ full metrical calibration as the metrical properties can be employed to predict
the location of matched edges in the third view. More generally it is better if the views
roughly form the corners of an equal sided triangle as this gives most accurate prediction
of third image location.

The trinocular consistency constraint (weak or based upon full camera calibration) has
been exploited in many ways in numerous stereo algorithms. The strongest form of the
constraint is to limit potential matches between edges from images 1 and 2 to those for
which similar edges can be identified at the inferred location in image 3. This greatly
reduces the number of potential matches and in many cases eliminates ambiguity
altogether. We prefer a more conservative use of the constraint in which the strength of

P2 P1

P3

Figure 11: The Weak Trinocular Matching Constraint
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each match is determined from all 3 views. This has the advantage that it does not
critically depend upon finding consistent edges in the 3rd view.

Figure 12 schematically  shows how the trinocular edge similarity estimate is computed.
About the location of the matched points further pairs of points are chosen a fixed
distance (4 pixels in our experiments) along each epipolar. At each location we take the
closest image pixel as an approximation of the intensity at that point, labelled Iij  and I’ ij in
the figure for corresponding points on each epipolar pair, where i is the number of the
epipolar (1, 2 or 3 and occurs in 2 of the 3 images) and j is the number of the point (1 or
2) which indicates on which side of the edge it is.

These are then compared with equivalent values on each of the corresponding pairs of
epipolars. The contribution to the matching strength has 2 components the first based on
intensity similarity:

SI = ∑i  SIG(|I’ i1 - Ii1|) + ∑i  SIG(|I’ i2 - Ii2|)

and the second based upon edge contrast similarity

SC = ∑i  SIG( |(I’i2 - I’ i1)) - (Ii2 - Ii1)|)

The overall match similarity measure combines these as

I’ 11

I’ 12

I11

I12

I’ 21

I’ 22

I21

I22

I31 I32

I’ 31

I’ 32

12

3

Figure 12: Trinocular Similarity Measure
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S = SI + γ SC

Where SIG(g) is a sigmoid (a Gaussian with standard deviation of 20 grey levels) look up
table function that returns a weight between 0 and 1 from the absolute grey level intensity
difference provided. Zero intensity difference will give a weight of 1 and contribute
maximally while large intensity differences will barely contribute at all. The overall weight
S receives components based upon similar image intensities to one side of the edge or both
and from similarity in edge strength which makes it more robust to local occlusions and/or
exposure variations.

Dynamic programming can then proceed as in the binocular case.

5.3.4 Matching Edge Strings
The individually matched pixels that exist for a subset of edge points are processed to
recover matched edge strings. We exploit edge string coherence (also called figural
continuity by Mayhew and Frisby [41]) to resolve ambiguity in the results of the initial
epipolar matching. To use the terminology of Ohta and Kanade [38] we are moving from
intra epipolar scanline consistency to also exploit inter epipolar scanline consistency.

We use the following algorithm.
While edge strings remain:

1. Identify the best global edge string matches for each
edge string in image 1 and image 2.

2. Rank edge string matches in ascending order of the
number of edge points matched.

3. Select the best edge string match
4. Select matches that are consistent with the edge string

match and eliminate matches that are inconsistent
marking all edge strings touched

5. Re-compute best edge string match for all marked edge
strings

The best edge string match for each edge string is determined from the longest run along
the edge string of successive matches that each map to the same edge string in the other
image. The inclusion of the edge string index label within the edge representation, as
illustrated in Figure 6, makes it straightforward to determine to which edge string an
individual matched edge element belongs. The initial run of consistently matched edge
elements is extended at either end to include further matches to the same edge string
provided that the interval of inconsistently matched edge elements is not too long.

When selecting consistent matches, as well as eliminating inconsistent matches for this
edge string we also eliminate inconsistent matches for the matched edge string in the other
image. This situation is shown in Figure 13. If the best edge string match is that of string
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A in image 2 with string C in image 1 then as well as selecting the matches between those
strings matches of A to D and C to B are also eliminated.

Upon completion matched edge strings are combined if an underlying edge string connects
them in one or other image and the disparity measured between their endpoints satisfies a
similarity constraint.

To overcome fragmentation in the edge detection and matching process all matched edge
strings are extended a few pixels at each end point by interpolating the underlying edge
data in either image. This considerably improves the final results of image rendering as it
prevents unsightly edge leaking.

The final edge strings are represented as arrays of 4 or 6 tuples of image co-ordinates for
2 and 3 image interpolation respectively. Each pair within the tuple gives that x and y co-
ordinates of the edge point with respect to the corresponding image. For the case of three
image interpolation the third image co-ordinate pair within the 6 tuple is obtained by the
epipolar intersection point rather than an actual edge point. This is redundant information
that can be deduced from the other two pairs of co-ordinate values and the fundamental
matrices that relate the views.

Eliminate

A

B

C

D

12

Figure 13: Edge String Consistency
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6. Rendering

Rendering is based upon the simple interpolation of matched edges, which forms a virtual
line sketch of the new view.

Figure 14 shows interpolated edge data at a number of viewpoints within the original
triple. Each string of matched edges is interpolated according to the parameter pair (α, β)
that specify the location V of the new view with respect to the original set. Physically α
specifies a view between views 1 and 2 and β specifies the location between that point and
the location of the third image. Figure 15 illustrates how the individual edge points of a
matched edge string are interpolated. It shows that the ith edge point along the string has
projection into the 3 views at Pi , Qi and Ri  and into the synthesised view at location Ii.
Using simple linear interpolation:

Ii = (1-β)((1-α)Pi+αQi) + βRi.

α = 0
β = 0

α = 0.5
β = 0

α = 1.0
β = 0

α = 0
β = 0.5

α = 0.5
β = 0.5

α = 1.0
β = 0.5

α = 1.0
β = 1.0

Figure 14: Interpolating Matched Edge Strings
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The overall rendering architecture is shown in
Figure 16. It is a two phase process with initial
edge interpolation preceding raster based
rendering. In the latter, each raster of the
synthesised view is rendered based upon the
image projections of the interpolated matched
edge strings that intersect it.

Figure 17 shows the intersection of a single
interpolated edge string with raster j, in the
synthesised image associated with the virtual

viewpoint. The point of intersection is approximated using the following linear relationship

  I’
j = Ii +  (Ii+1-Ii)(j-Iiy)/(Ii+1y-Iiy)

Where Ii is the first interpolated edge point above raster j and Ii+1 is the first below.
Further, Iiy is the y component of interpolated edge at location Ii.

Pi
Qi

Ri

Ii

α 1-α

β

1-β

V

Figure 15: Edge Interpolation

PHASE 1
Matched Edge

Strings

Edge String
Interpolation

(α, β)

Rendering  Control Parameters

Intersection
Table

Colour
Image 1

Colour
Image 2

Colour
Image 3

Raster
Rendering

Image
Display

Raster
Intersection

PHASE 2

Figure 16: Rendering Architecture

Ii

Ii+1

Raster jI’
j

Figure 17: Raster Intersection
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It follows that an interpolated edge string can be traversed in order along the matched
edges that comprise it. Whenever successive interpolated edge locations span a raster of
the virtual image the intersection with that raster can be computed along with
corresponding locations in each of the primary views. These are approximated analogously
with the interpolated edge intersection using the following weighted combinations of
primary edge locations

P’
j = Pi +  (Pi+1-Pi)(j-Iiy)/(Ii+1y-Iiy)

Q’
j = Qi +  (Qi+1-Qi)(j-Iiy)/(Ii+1y-Iiy)

R’
j = Ri +  (Ri+1-Ri)(j-Iiy)/(Ii+1y-Iiy)

In this way all the information required for raster-based rendering is compiled into a raster
intersection table (see Figure 18) associated with the rasters of the synthesised image. It
comprises an ordered set of entries for each raster of the interpolated edge strings that
intersect it. Each entry consists of four sets of image co-ordinates that represent the point
of intersection of the raster with the edge string with respect to the current virtual view
and each of the three primary images. The y component of the virtual view co-ordinate is
of course guaranteed to be the raster location itself, but this is not generally true for the
other images.

Raster Index

Intersection Table

Virtual/Primary Image

Figure 18: Raster Intersection Table
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6.1 Raster Rendering
The interval between each successive pair of edge intersections is filled using a
combination of the image data obtained from corresponding intervals in the primary
images. Similar results have been demonstrated by Sietz and Dyer [22] for binocular
images obtained from parallel camera geometry’s (obtained from more general viewing
geometry’s by image re-projection/rectification), it is not straightforward however to
extend their approach to situations involving more than two cameras.

Figure 19 shows, on the left a selected raster within a virtual viewpoint of which the
section between a pair of successive interpolated edges has been marked. On the right the
corresponding intervals in the primary images have also been marked. These values are
obtained from successive entries in the intersection table. The pixels in the raster interval
are thus obtained by blending the pixels from the intervals in the primary images. As with
standard image morphing techniques [42] the blend of the pixel contributions from each of
the three images is linearly weighted  according to the viewpoint parameter pair (α, β).

Figure 20 show the details of how we morph the intensity data from the 3 views to create
the virtual image. Consider the ith and ith+1 edge crossing virtual raster j. Let them have
interpolated image locations I’

j,i  and I’
j,i+1 respectively. And let the corresponding position

pairs in each of the primary images be given by (P’
j,i,P

’
j,i+1), (Q’

j,i, Q
’
j,i+1) and (R’

j,i, R
’
j,i+1).

Consider now the pixels in the virtual image that lie on scanline j  between I’
j,i  and I’

j,i+1.
The x component of their image positions will be:

    k’ = I ’
j,ix+k; k ∈ (0,….,K-1)

Blend
Images 
Between
Successive
Edges

Figure 19: Raster Rendering
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where K = I’
j,i+1x - I’

j,ix and I’
j,ix is

the x component of image location I’
j,i.

The operators   and   have their
usual meanings as the integer ceiling
and floor of a floating point number
respectively. Each pixel in this range
has a corresponding sub-pixel image
location in each of the primary images.
For example, in image 1 the sub-pixel
location of the kth pixel in the interval
is given by linear position interpolation
as

   XP,k = P’
j,i + (P’

j,i+1 -P’
ji )(k’-

I ’
j,Ix)/( I’

j,i+1x - I’
j,ix)

where X and P are vector quantities
(co-ordinate pairs).

Figure 21 shows, for image 1, how the
primary intensities are computed using
bilinear image interpolation based
upon their sub-pixel location. The
interpolated image location XP,k will
have in general 4 pixel neighbour that
surround it. Lets call them A, B, C and
D for the top-left, top-right, bottom-
left and bottom-right pixels respectively.
The sub-pixel offset of the XP,k with
respect to the neighbours is given by (x,
y) where

    x  = XP,k(x) - XP,k(x)

and

    y  = XP,k(y) - XP,k(y)

Bilinear interpolation uses the offsets to
approximate the intensity at the sub-pixel
location as

   GP,k = A(1-x)(1-y) + Bx(1-y) + C (1-
x)y + Dxy

V

I’
j,i I’

j,i+1

P’
j,i

P’
j,i+1

R’
j,i

R’
j,i+1

Q’
j,i

Q’
j,i+1

1-β

α 1-α

β

GI,k

GP,k
GQ,k

GR,k

Figure 20: Pixel Rendering
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 P’
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XP,k

A B

C D

y

Figure 21: Intensity Interpolation
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In this way we label the kth  pixel in the specified interval along the raster of the
synthesised virtual image as GI,k and the corresponding interpolated intensity values from
the three primaries GP,k, GQ,k and GR,k. They are linearly related according to

    GI,k = (1-β)((1-α)GP,k+αGQ,k) + βGR,k

The whole raster can be rendered in this way to give an approximate rendition of it. It is
approximate because the world does not generally project as according to the numerous
linear interpolations used. More usually it will involve perspective elements if there is a
substantial element of depth over the interval. This is not apparent, however, as the
regions between interpolated edges are largely free from notable texture and any local
variations in depth will not show up in the image.

Figure 22 shows synthesised images for the set of viewpoints between the 3 images also
shown in Figure 14. While a number of minor image defects are visible (due to the effects
of occlusions in the scene) the result gives an effective illusion of an images captured from
intermediate locations.

α = 0
β = 0

α = 0.5
β = 0

α = 1.0
β = 0

α = 0
β = 0.5

α = 0.5
β = 0.5

α = 1.0
β = 0.5

α = 1.0
β = 1.0

Figure 22: Synthesised Images
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Real time rendering can be achieved in software under Windows on a 200MHz Pentium
PC at a rate of over 10 640 by 480 frames a second (simplifying the renderer to warp to
only the single closest image and exploit simple nearest pixel image sampling rather than
using bi-linear interpolation). This allows the viewer to smoothly change their viewpoint
with respect to the underlying scene.

The method has been successfully applied to short video sequences of animated objects
(people). Each frame is processed afresh to recover matched edge strings. The whole
sequence can then be played and the viewpoint with respect to it changed in real time.
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7. Violating Monotonicity

The preservation of monotonicity (which comes down to a constraint on the order of edge
intersections in each view) limits the scope of the approach and prevents extrapolation of
the viewpoint beyond the limits of the original images. Within these limits edges visible in
all 3 views which have the same order with respect to the epipolar geometry in each are
guaranteed to interpolate without violating order. This is not true, however, if we
extrapolate our viewpoint outside the region within the original image triple (i.e. if we
violate either of the conditions 0≤α≤1 and 0≤β≤1). Given that the linear image
interpolation constraint is valid for some way beyond the original image viewpoints a
rendering scheme that did not rely on monotonicity proves to be desirable.

We have also developed a more complex raster rendering scheme that analyses all the
edges that intersect a single raster. They are ordered in terms of depth (back to front)
based upon a disparity metric. Each edge then renders up to the next, furthest along the
raster, edge intersection whose projection into the three views satisfies order and for
which the line joining the projection of the two points is free from other occluding edges.

Figure 23 shows two versions of the rendered image from a viewpoint given by (α=1.5,
β=0). This results in order violations of the interpolated edges; particularly noticeable
between the head and features from the background wall. For the image on the left which
uses the straight-forward rendering technique reordering results in unsightly edge
fragmentation while the corrected image on the right is free from distortion. In both cases
values of α and β used for intensity morphing are clamped at 0 and 1 as appropriate.

Figure 23: Improved Rendering
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8. Discussion and Conclusions

Image-based rendering has in the past few years become a viable alternative to range data
in applications such as photo-realistic immersive environments, entertainment and even
graphics HW architectures. In this context, this paper presented a method for the
automatic reconstruction of images at virtual viewpoints using linear interpolation between
uncalibrated image triples. A low complexity image renderer has been developed and a
real time image browser implemented.

The method has a number of advantages with respect to methods that have recently been
presented. Notably it uses a sketch interpolation and colouring technique that made it
possible to extended the approach to three images and achieve fast rendering, a key factor
if special HW is not available or too expensive.

Although results are hard to appreciate just from snapshots when a small baseline is used,
the effect while “navigating” the view range with a fast renderer we used is compelling,
giving a true sense of three dimensionality, both it terms of object deformation and motion
parallax.

The method works best if the baseline between the cameras is relatively small with respect
to the viewing distance. This improves the quality of stereo matching, reduces the number
and degree of occlusions and reduces artefacts due to the fact we are using linear
transforms to approximate changes in perspective.

The method has also been successfully applied to a number of short video sequences of
animated objects (people). Each frame is processed afresh to recover matched edge
strings. The whole sequence can then be played and the viewpoint with respect to it
changed in real time.

We are currently investigating better edge matching strategies, in particular temporal
consistency constraints (edge tracking) that could be used to improve quality and
matching speed, and ways of smoothly switching between image triples towards achieving
a more extended navigable area.
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