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We present a range of coding schemes for OFDM
transmission at high code rates wusing binary,
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adaptively with varying channel constraints and
evolving system requirements.
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1 The envelope power problem in OFDM transmission

Orthogonal frequency division multiplexing (OFDM) is a method of transmitting data simulta-
neously over multiple equally-spaced carrier frequencies, using Fourier transform processing for
modulation and demodulation [10]. The method has been proposed or adopted for many types
of radio systems such as wireless Local Area Networks [2] and digital audio and digital video
broadcasting [1, 39]. OFDM offers many well-documented advantages for multicarrier transmis-
sion at high data rates, particularly in mobile applications. Specifically, it has inherent resistance
to dispersion in the propagation channel [6]. Furthermore when coding is added it is possible
to exploit frequency diversity in frequency selective fading channels to obtain excellent perfor-
mance under low signal-to-noise conditions [38]. For these reasons OFDM is often preferable to
constant envelope modulation with adaptive equalisation (and indeed is arguably less complex to
implement [29]).

The principal difficulty with OFDM is that when the sinusoidal signals of the n carriers add
mostly constructively the peak envelope power is as much as n times the mean envelope power.
If the peak envelope power is subject to a design or regulatory limit then this has the effect of
reducing the mean envelope power allowed under OFDM relative to that allowed under constant
envelope modulation. If battery power is a constraint, as is typically the case with portable
equipment, then the power amplifiers required to behave linearly up to the peak envelope power
must be operated inefficiently (with considerable backoff from compression). Digital hard limiting
of the transmitted signal has been shown to alleviate the problem [26], but only at the cost of
spectral sidelobe growth and consequent performance degradation.

This gives a clear motivation to find other ways of controlling the peak-to-mean envelope power
ratio (PMEPR) of the transmitted signal. A promising method which has attracted considerable
interest, introduced in [25] and developed in [45], is to use block coding to transmit across the
carriers only those polyphase sequences with small PMEPR. As originally described, this entails
exhaustive search to identify the best sequences and requires large look-up tables for encoding
and decoding. Several authors, for example [15, 46], have proposed simpler implementations
of this method using systematic (or at least constrained) methods of coding. Nonetheless [15]
declares that “...there are no known rules concerning selection of the allowed signals [having
PMEPR below a certain threshold] in a structured way”. Moreover these schemes do not address
the problem of error correction at all. An alternative method [24] instead takes the transmitted
codewords from a coset of a linear error-correcting code, choosing the coset representative or
“mask vector” by computationally intensive search in order to reduce the PMEPR. In this way
the error correction properties are assured but the appropriate choice of linear code and coset
representative for optimal PMEPR remains an open problem.

In this paper we present a highly flexible coding scheme for binary, quaternary, octary and
higher-order modulation which incorporates aspects of both of the above methods. It uses theoret-
ical considerations to guarantee low PMEPR and simultaneously to provide good error correction
capability. It allows simple changes to properties such as code rate, PMEPR and error correc-
tion capability to deal adaptively with varying channel constraints, and provides a clear evolution
path for physical systems from binary to quaternary to octary modulation. In all cases we provide
straightforward and efficient algorithms for encoding and decoding.

The remainder of the paper is structured as follows. Section 2 motivates the use of Golay
sequences (i.e. sequences belonging to Golay complementary pairs) as a first solution to the
envelope power problem in OFDM. We explicitly determine a large class of Golay sequences over
Zgn of length 2™ in terms of generalised Boolean functions. Section 3 shows that in the binary case
h = 1, these Golay sequences occur as cosets of the first-order Reed-Muller code within the second-
order Reed-Muller code. This connection between Golay sequences and Reed-Muller codes has not
previously been recognised, and is a key result leading to the practical and flexible OFDM coding
schemes of this paper. For the non-binary cases h > 1 we introduce two new linear codes over the
ring Z,» as generalisations of the Reed-Muller code and demonstrate a corresponding connection
with the non-binary Golay sequences previously determined. We establish the minimum Hamming



and Lee distance of these new codes as measures of their error correction capability. Section 4
proposes an OFDM coding scheme, based on the Golay sequences of Section 2, involving cosets of
one generalised Reed-Muller code within another. We then show that by varying the set of cosets
of the first generalised Reed-Muller code within the second we can obtain a much more general
range of solutions to the envelope power problem, not necessarily restricted to Golay sequences.
In this way we can make trade-offs between PMEPR, code rate, and error correction capability.
The essential observation is that partitioning the second-order Reed-Muller code into cosets in this
way appears naturally to isolate those codewords with large values of PMEPR. Section 5 presents
highly efficient decoding algorithms for all of the proposed coding schemes. These algorithms
apply the fast Hadamard transform repeatedly in a novel manner. For background on classical
coding theory, see [27] or [28].

Some of the results of this paper, in particular the connection between Golay sequences and
second-order Reed-Muller codes, were announced without proof in [12]. An overview of the coding
schemes of this paper, including Tables 4, 5 and 6, was given in [22]. There is limited overlap
between the results in Sections 2 and 3 of this paper and recent independent work on OFDM.
Translated into the notation of the present paper, van Nee [32] essentially shows how to obtain re-
cursively a subset of the Golay sequences of Corollary 2.4 corresponding to m cosets of RMyx (1, m),
and Ochiai and Imai [33] do likewise but for a subset corresponding to a single coset rather than
to m. In contrast Corollaries 3.1 and 3.4 explicitly identify m!/2 such cosets within a specified
linear code, and Theorem 2.3 and Corollary 2.5 show how to arrange the identified sequences into
Golay complementary pairs. Moreover [32] and [33] do not make the crucial connection between
Golay sequences and Reed-Muller codes and consequently do not identify the range of coding
options presented here and their attendant advantages. We also note that the claim of [33], that
the method announced in [12] “...seems to be valid only for binary sequences”, is emphatically
incorrect; in fact the principal example of [33], contained in equations (16) and (18) of that paper,
consists of the quaternary length 8 sequences 2(z1z2 + z213) + 22:1 ¢k +c for ¢, ¢, € Z4, which
occur as a simple special case of Theorem 2 of [12].

2 Golay sequences

We represent the value assigned to the ith carrier of an OFDM system during a given symbol
period as an element a; of the ring Zg for some H > 2, where ¢ = 0,1,...,n — 1. In each symbol
period, the Zy-ary sequence (ag, a1, . ..,a,—1) across the n carriers forms a codeword. Codewords
in successive symbol periods belong to a code whose alphabet is Zg, and in the cases H = 2,
4 or 8 the code is called binary, quaternary or octary respectively. In signal processing, it is
more common to consider the sequence of complex modulated values (£%0,£%,...,£%~1), where
¢ = exp(2mv/—1/H) is a primitive H-th root of unity. (In some implementations this sequence
is multiplied by the constant exp(my/—1/H).) This modulation is called H-phase shift keying,
which in the cases H = 2 or 4 is also known as binary phase shift keying or quadrature phase shift
keying respectively.
The transmitted OFDM signal is the real part of the complex envelope
n—1
s(t) = Zgai(t)-}—Hfit’ (1)

i=0
where f; is the frequency of the ith carrier and a;(t) is constant over a symbol period. In order
to ensure orthogonality the carrier frequencies are related by

fi=f+iAf (2)
for some constant f, where Af is an integer multiple of the OFDM symbol rate. The instantaneous
envelope power of the signal is the real-valued function P(t) = |s(t)|?, and substitution from (1)
and (2) gives

P(t) = gut-a O+ )AL 3)

i)j



Let the constant value of a;(t) over a symbol period such as 0 < Aft < 1 be a;, and call
the resulting continuous function P(t) over the symbol period the envelope power P,(t) of the

sequence a = (ag,a1,...,an—1). Then by putting j = ¢ 4+ u in the expression for P,(t) given by
(3) we obtain
P,(t)=n+ Z Z gae-—ai+u—HuAft, 4)
u#0 1

where here and in (5) below the summations are understood to be over only those integer values
for which both 7 and 7 + u lie within {0,1,...,n — 1}. Since the aperiodic autocorrelation of a at
displacement u is by definition
Ca(u) =) €% %+, (5)
1
we can rewrite (4) as
Py(t) =n+ ) Co(u)e~Mua%, (6)
u#0

The peak envelope power (PEP) of the sequence a is the supremum over a symbol period of P,(t).
From (5) and (6), the mean envelope power of any sequence a over a symbol period is n, and so
the peak-to-mean envelope power ratio (PMEPR) of a is the ratio PEP/n. Alternative names for
PMEPR are peak-to-average power ratio [30] and peak factor [42]; the square root of the PMEPR
is called the crest factor [7]. A PMEPR of R is often expressed as 10log;, R dB. From (6) we see
that Po(t) <n+32,0|Ca(u)|- 1 <n+ ZZZ;%(n — u) = n?, so the PEP of any sequence a is at
most n?2 and the PMEPR is at most n. (See [42] for a similar argument giving a general upper
bound on the PEP of a in terms of C,(u), and [16] for the derivation of a lower bound on the
PMEPR of a from (6).)

The upper bound of n for PMEPR is attained by the sequence a = (0,0,...,0), which can
occur in an uncoded OFDM system. But by restricting the set of allowed sequences to Golay
sequences we can reduce the PMEPR from its maximum value of n to at most 2, as we now show.

Definition 2.1 Let a = (ag,a1,---,0n-1) and b = (bo,b1,...,bp_1), where a;,b; € Zy. The
sequences a and b are called a Golay complementary pair over Zy of length n if Co(u) +Cp(u) =0
for each u # 0. Any sequence which is a member of a Golay complementary pair is called a Golay
sequence.

Theorem 2.2 The PMEPR of any Golay sequence is at most 2.

Proof: Let a and b be a Golay complementary pair, so that by definition Cp(u) + Cp(u) = 0 for
each u # 0. Then from (6), P,(t)+Py(t) = 2n and since Py(t) = |sp(t)|? > 0 we deduce P,(t) < 2n.
The result follows from the definition of PMEPR. (1

Theorem 2.2 was obtained by Popovié¢ [36] (in terms of the crest factor of the real-valued
signal envelope) by generalising earlier work of Boyd [7]. Golay complementary pairs over Zs were
introduced by Golay [17, 18] in connection with infrared multislit spectrometry and have since
found application in fields such as optical time domain reflectometry [31] and acoustic surface-
wave encoding [43]. They are known to exist for all lengths n = 24109267, where a, 8, > 0 [44],
but do not exist for any length n having a prime factor congruent to 3 modulo 4 [13]. For a survey
of results on non-binary Golay complementary pairs, see [14, Chap. 13].

Henceforth we impose the restriction n = 2™ so that the sampled OFDM signal corresponding
to the continuous function (1) can be easily generated using the inverse fast Fourier transform.
We also assume that H = 2" for some kA > 1 and then in each symbol period the OFDM signal
contains exactly h code bits per carrier. We now give an explicit form for a large class of Golay
complementary pairs over Zqx of length 2™, and deduce the form of a set of Golay sequences. We
first require some notation.



A Boolean function is a function f from ZJ' = {(z1,%2,...,Zm) | z; € {0,1}} to Zy. We
regard each 0-1 variable z; as itself being a Boolean function f;(z1,z2,...,Zm) = z; and consider
the 2™ monomials

1, 1,T2,...,Tm, T1T2, T1T3,- -+, T—1Tm, - - -, L1Z2* * * Ty (7)

Any Boolean function f can be uniquely expressed as a linear combination over Z, of these
monomials, where the coefficient of each monomial belongs to Z, [28]. The resulting expression
for f is called the algebraic normal form [37]. We specify a sequence f of length 2™ corresponding
to f by listing the values taken by f(z1,z2,...,2Zm) as (z1,%2,...,Zm) ranges over all its 2™
values in lexicographic order. In other words, if (i1,%2,...,%m) is the binary representation of
the integer i = Z;’f__l ;2™ then the ith element of f (numbering the leftmost element as 0) is
f(i1,%2,...,%m). For example, for m = 3 we have

f = (£(0,0,0), £(0,0,1), £(0,1,0), £(0,1,1), £(1,0,0), f(1,0,1), f(1,1,0), f(1,1,1))

and so 1 = (11111111), x; = (00001111), x2 = (00110011), xg = (01010101), and x31x2 + X2X3 =
(00010010).

We define a generalised Boolean function to be a function f from Z3 to Zgn, where h > 1.
It is straightforward to modify the proof of the algebraic normal form result stated above to
show that any such function can be uniquely expressed as a linear combination over Zyn of the
monomials (7), where the coefficient of each monomial belongs to Zyx. As above, we specify a
sequence f of length 2™ corresponding to the generalised Boolean function f. For example, for
h =2 and m = 3 we have 3x; = (00003333), 2x;x2x3 = (00000002), and x1x2 + 3x2x3 +2-1 =
(22212232). (Technically, for such expressions to be valid we must embed the range space Z3*
of the monomials (7) in Z7}.) Henceforth we shall drop the distinction between a generalised
Boolean function and its corresponding sequence, and use the notation f to refer to both.

With this notation we are now ready to describe the Golay complementary pairs over Zy. of
length 2™.

Theorem 2.3 Let

m—1 m
fl@n, @2, om) = 2270 @ By + D Ck Tk (8)

k=1 k=1
where 7 is a permutation of the symbols {1,2,...,m} and cx € Zqn. Then the sequences
a(z1,22,. ., Tm) = f(Z1,Z2,...,Zm)+c and b(z1,22,...,Tm) = f($1,$2,...,Jtm)+2h‘_1$ﬂ-(1)+cl

are a Golay complementary pair over Zqn of length 2™ for any c,c’ € Zgn.

Proof: The case m = 1 is easily checked by hand, so assume m > 2 and fix u # 0. By the definition
of aperiodic autocorrelation (5), Cy(u)+ Cpy(u) is the sum over i of terms £% ~%+u 4+ ¢%~bitu  where
¢ is a primitive 2"-th root of unity. For a given integer 4, set 5 = i +u and let (i1,42,...,imn) and
(41,742, - - - » jm) be the binary representation of ¢ and j respectively. The sequence element a; is
given by a(i1,12,...,%m), as discussed above, which implies that

b —a; = 2h71iﬂ.(1) +cd —ec 9)

Case 1: jr(1) # in(1)- From (9), over Zon we have a; — aj — bi +b; = 2" (jr1) —ir)) = oh-1,
S0 €%~ [£bi=bi — §2h71 = —1. Therefore £%~% + ¢%=% = (.

Case 2: jra) = irq). Since j # i we can define v to be the smallest integer for which
in(v) 7 Ju(v)- Let i’ be the integer whose binary representation (i1, 2, ..., 1 =ir(y_1),-- - ,m) differs
from that of 7 only in position 7(v—1), and similarly let ' have binary representation (j1, jo2,...,1—
Jr(v=1)s -+ »Jm)- By assumption ir(y_1) = jr(y—1) and so j' = i’ +u. We have therefore defined an
invertible map from the ordered pair (z,7) to (7', '), and both pairs contribute to Cy(u) + Cp(u).
Now substitution for 7 and ¢’ in (8) gives fyr — f; = 2h_1i,r(v_2) +2h‘1i,r(1,) +Cr(v—1) = 2Cr(v—1)in(v-1)



(unless v = 2, in which case we just delete terms involving m(v — 2) here and in what follows).
Therefore a;—aj—ay+ajy = 2h_1(j7r(v—2)—iﬂ(v—2))+2h_l(j7r(u)_iw(v))_2c7r(v——l)(j7r('u—1) —iw(v—l)) =
2"—1 by the definition of v. Then (9) implies that b; — b; — by + by = a; —a; — ay + ajy =
2h=1. Arguing as in Case 1, we obtain £%7% 4 £/ =% = 0 and £%~% + ¢% =% = 0. Therefore
(04 +E5) + (€2~ €% h) = 0.

Combining these cases we see that Cgy(u) + Cp(u) comprises zero contributions (as in Case
1), and contributions which sum to zero in pairs (as in Case 2). Therefore a(z1,z2,...,%mn) and
b(z1,T2,...,%m) are a Golay complementary pair, by Definition 2.1. O

Corollary 2.4 For any permutation m of the symbols {1,2,...,m} and for any c,ck € Zan,

m—1 m
h—1
a(z1,z,...,Tm) =2 E Tr(k)Tr(k+1) T Z CkTk +C
k=1 k=1

is a Golay sequence over Zqn of length 2™.

Corollary 2.4 explicitly determines 2%(™+1) .m!/2 Golay sequences over Zox of length 2™ (using
the factor m!/2 rather than m! because the expression ka:_ll Tr(k)Tr(k+1) 1S invariant under the
mapping 7 — 7', where 7'(k) = m(m+1—k)). Numerical evidence suggests that there are no other
Golay sequences over Z,s of this length, although we do not have a proof of this. Theorem 2.3
also shows how to form sets of Golay complementary pairs:

Corollary 2.5 Let f = f(z1,a,...,2m) = 2P 17 Tr(k)Tr(k+1) + Dke1 CkTk, where T is a
permutation of the symbols {1,2,...,m} and ci € Zyr. Then any sequence in the set
A={f+c, f+2" 2xq) + Togm) + ¢ | ¢ € Zn} (10)

forms a Golay complementary pair over Zqn of length 2™ with any sequence in the set

B={f+ 2h"1x,,(1) +c, f+2" iy + | &€ Zogn). (11)

Proof: Consider a single sequence a of the form f + c. By Theorem 2.3, this sequence forms a
Golay complementary pair with each of the 2" sequences {f + 2"~ 'z,) + ¢ | ¢ € Zgn}. Now
if 7 is replaced by the permutation 7' defined by #'(k) = n(m + 1 — k), f + ¢ is invariant but
f 42" 20y + ¢ maps to f + 2" @) + ¢ Therefore a also forms a Golay complementary
pair with each of the 2" sequences {f + 2"~ (;) + ¢’ | ¢ € Zyn}. We have shown that a forms a
Golay complementary pair with each sequence b € B, and it follows from Definition 2.1 that for
each u, every sequence b € B has the same value of Cp(u).

Similarly we can show that a single sequence b of the form f + 2h‘1:v,r(1) + ¢’ forms a Golay
complementary pair with each of the 2°*1 sequences a € A and that, for each u, every sequence
a € A has the same value of C4(u). Therefore any sequence a € A forms a Golay complementary
pair with any sequence b € B. [J

Corollary 2.5 explicitly determines 22(A*+1) . 2hm=2 .4n1/2 Golay complementary pairs {a, b}
over Zyn of length 2™. It also suggests a natural partition of the Golay sequences of Corollary 2.4
into 2P™=2.m!/2 classes of size 2m+2 each class comprising a set A of 2*1 sequences of the form
(10) and a set B of 2"*1 sequences of the form (11).

However the true number of Golay complementary pairs {a,b} over Zsn of length 2™ can be
greater than that calculated above because in some cases Ca(u) = Ca(u), for all u, for two
distinct sets A, A’ of the form (10). For example, for h = 2 and m = 3, by Corollary 2.5 any of
the eight sequences in

A = {2(z122 + T223) + ¢, 2(z122 + T223) + 221 + 223 + ¢ | ¢ € Z4}



forms a quaternary Golay complementary pair of length 8 with any sequence in
B = {2(z122 + zox3) + 271 + d, 2(z1xo + zox3) + 2x3 + ' | ¢ € Zg}.
Similarly any one of the eight sequences in
A" = {2(zox1 + T173) + 372 + T3 + ¢, 2(z2z1 + T123) + T2 + 323 + ¢ | ¢ € Zy}
forms a Golay complementary pair with any sequence in
B' = {2(zax1 + 7173) + 29 + T3 + ¢, 2(z271 + T173) + 3z2 + 323 + ¢ | ¢ € Zyg}.

But in fact direct calculation shows that (Ca(u) |u =0,1,...,7) = (Car(u) |u =0,1,...,7) =
(8,-1,0,3,0,1,0,1), so these 32 sequences collectively give rise to 162 = 256 Golay complementary
pairs rather than the expected 2 - 82 = 128.

In 1961 Golay [19] gave an explicit construction for binary Golay complementary pairs of
length 2™ and later noted [20] that the construction implies the existence of at least 2™+1 - m!/2
binary Golay sequences of this length. These results correspond to the binary case h = 1 of
Theorem 2.3 and Corollary 2.4, and indeed our proof of Theorem 2.3 is modelled on Golay’s
original construction [19]. However the non-binary cases h > 1 of Theorem 2.3 have not been
constructed explicitly elsewhere. Moreover we shall prove in Section 3 the new result, announced
in [12], that the Golay sequences of Corollary 2.4 form a subcode of the second-order Reed-Muller
code (suitably generalised for non-binary cases).

Golay [19] also presented a recursive construction for binary Golay complementary pairs in-
volving concatenation and interleaving of sequences. BudiSin (8], building on earlier work of
Sivaswamy [41], gave a more general recursive construction for Golay complementary pairs and
showed that the set of all binary Golay complementary pairs of length 2™ obtainable from it
coincides with those given explicitly by Golay [19] (as described above). Paterson [34] has shown
that the set of all Golay complementary pairs over Zqn of length 2™ obtainable by Golay’s re-
cursive construction (h = 1) and by Budi§in’s (h > 1) coincides with those given explicitly in
Theorem 2.3.

We remark that [19] introduced a definition of equivalence of binary Golay complementary pairs
that was taken up by later authors, particularly when counting the number of such pairs of small
length by computer search. We believe that the underlying structure of Golay complementary
pairs over Zon of length 2™ is more apparent if this definition, and its obvious generalisation for

h > 1, is not used.

3 Reed-Muller codes

Binary Reed-Muller codes first appeared in print in 1954 and remain “...one of the oldest and
best understood families of codes” [28, p. 370]. They have good error correction properties,
provided the block length is not too large, and have the important practical advantage of being
easy to decode. The rth order binary Reed-Muller code RM(r, m) of length 2™ is generated by
the monomials in the Boolean functions z; of degree at most r [28]. This allows us to restate the
binary case h = 1 of Corollary 2.4 as:

Corollary 3.1 Each of the m!/2 cosets of RM(1,m) in RM(2,m) having a coset representative
of the form E;”:_ll Tr(k)Tr(k+1) COMPTISES 2m+1 binary Golay sequences of length 2™, where m is
a permutation of the symbols {1,2,...,m}.

Note that the PMEPR of a sequence depends on the order in which its elements occur, so here
and elsewhere we do not adopt the coding theory convention that regards two codes as equivalent
if one can be obtained from the other by a permutation of coordinates.

We wish to make an analogous statement to Corollary 3.1 for the non-binary cases h > 1 of
Corollary 2.4. To do this, we follow the landmark paper [21] and define a linear code over Zy



of length n to be a subset of Z% such that the sum of any two codewords is a codeword. (21]
demonstrates that defining linear codes in this way, over rings that are not fields, preserves many
of the properties of classical codes even though not every element of the code alphabet has a
multiplicative inverse. In particular such a code can be specified in terms of a generator matrix
such that the code consists of all distinct linear combinations over Z g of the rows of the matrix.
We now define two new linear codes over Z,, of length 2™ in terms of the generalised Boolean
functions z; described in Section 2.

Definition 3.2 For h > 1 and 0 < r < m, the rth order linear code RMyx(r,m) over Zgn of
length 2™ is generated by the monomials in the z; of degree at most .

Definition 3.3 For A > 1 and 0 < r < m+ 1, the rth order linear code ZRMy (r,m) over Zqgn of
length 2™ is generated by the monomials in the x; of degree at most v — 1 together with 2 times the
monomials in the x; of degree r (with the convention that the monomials of degree —1 and m + 1

are equal to zero).

The code RM,x (r,m) generalises the binary Reed-Muller code RM(r, m) from the alphabet Z,
(the case h = 1) to the alphabet Z,.. Likewise the code ZRM,x (r,m) generalises the quaternary
Reed-Muller code ZRM(r, m) defined in [21] from the alphabet Z4 (the case h = 2) to the alpha-
bet Z,n. In both cases the formal generator matrix is unchanged as h varies, but the alphabet
over which it is interpreted changes. The number of monomials in the z; of degree r is (T),
so RMyx (1, m) contains 20 Zi=0 () codewords and ZRM,x (r,m) contains 2" iz (7). o-1)(T)
codewords. Note these generalisations of the Reed-Muller code are distinct from the Generalised
Reed-Muller code GRM(r,m) [35], which is defined over a field, and the quaternary Reed-Muller
code QRM(r,m) [21], which generalises the quaternary representation of the Kerdock code.

For example, RM,x(1,4) has the generator matrix

1111111111111 1171 1
00000O0OO0OO0OT1TI1T1T1TT1T1T1]1 T
000O01111000O01111 T2 (12)
0011001100110011 T3
0101010101 01O0101 T4

and contains 2°* codewords for A > 1, and ZRM,x(2,4) has the generator matrix

1111111111111111 1
0 00000O0OO0OTI1IT1T1TTI1TI1T1T11 z1
0000111100001 111 2
00110011001 10011 T3
010101010101 0101 T4
0 000O0OOOO0OO0OO0OO0Z22 2 2] 21170
0 000OO0OO0OOOOZ2200 2 2] 2173
0 000O0O0OO0OOO2O0 2020 2] 27124
0 000O0O02200O0O0O0O0Z2 2] 2z2m3
00 0002020000020 2| 2z2m4
|00 0200020002000 2] 2r3m4

and contains 2% . 26(h=1) ¢odewords for h > 1.

We are particularly interested in the code ZRM, (2, m), comprising 2(+=Dm(m=1)/2 cosets of
the subcode RM,x (1,m), each coset containing 2Mm+1) codewords. We can restate the cases h > 1
of Corollary 2.4 in terms of these codes as:

Corollary 3.4 Each of the m!/2 cosets of RMan (1, m) in ZRMyr (2, m) having a coset representa-
tive of the form 2"—1 E;"___"ll T (k) Ta(k+1) COMPTISES gh(m+1) Golay sequences over Zqyn of length 2™,
where 7 is a permutation of the symbols {1,2,...,m} and h > 1.



We have seen in Theorem 2.2 that the PMEPR of any Golay sequence is at most 2, and
Corollaries 3.1 and 3.4 give concise and structured representations for large sets of Golay sequences
in the cases h = 1 and h > 1 respectively. These representations readily lend themselves to
implementation in an OFDM coding scheme having tight envelope power control. If we did not
wish to consider using sequences other than Golay sequences for OFDM transmission then it
would be more natural to replace the multiple 2 in Definition 3.3 by the multiple 21 and to
extend the definition of ZRM,x (r,m) to the case h = 1; in that case Corollary 3.4 would hold for
all cases h > 1. However by taking more cosets of RMgx(1,m) in ZRMyr(2,m) we can increase
the rate of OFDM transmission at the cost of progressively larger values of PMEPR, as we discuss
in Section 4. To allow such design freedom, our objective in defining ZRMyx(r,m) was that the
linear code ZRM,x (2, m) should be the largest superset of the Golay sequences of Corollary 2.4
which does not compromise the minimum Hamming or Lee distance, as we now describe.

Let a = (ag,a1,..-,an—1) be a sequence over Zy of length n. The Hamming weight of a is the
number of nonzero a; and the Lee weight [35] of a is ?;01 min(a;, H — a;). The Hamming (or
Lee) distance between two such sequences a and b is the Hamming (or Lee) weight of a —b (when
written as a sequence over Zg). The Hamming distance measures the number of positions in
which a and b differ, whereas the Lee distance takes into account the magnitude of the difference
over Zy at each position; these coincide in the binary case H = 2. For example, the Hamming
distance between the sequences (5,7,0,1) and (3,7,7,6) over Zg is 3 whereas the Lee distance is
24+0+1+3 = 6. The minimum Hamming or minimum Lee distance of a code, which is taken over
all pairs of distinct codewords, is a measure of its error correction capability: if the (Hamming
or Lee) minimum distance is d then we can always correct errors of (Hamming or Lee) weight
less than d/2. If the transmission channel renders all H — 1 possible errors for a given codeword
position equally likely then the traditional Hamming distance metric is an appropriate measure.
However if errors involving a transition between adjacent values in Z g are much more likely than
other errors in a given position then the Lee distance metric is more appropriate [35]. We consider
both metrics to be useful measures of error correction capability for OFDM transmission and so we
now derive the minimum Hamming and Lee distance for the codes RMyx (r, m) and ZRMgx (1, m).
The method uses the fact that the minimum Hamming distance of the binary code RM(r,m)

is 2m7T.
Theorem 3.5 The following hold for 0 < r < m:

‘ RMyn (1, m) l ZRMagh (1, m)

(h>1) (h>1)
minimum Hamming distance am-r m=r
minimum Lee distance m-=r gm-—r+l

Proof: For any linear code the minimum distance equals the minimum weight of the nonzero
codewords, in both the Hamming and Lee case. For each of the four values required by the
theorem we derive a lower bound on the minimum distance and then exhibit a codeword whose
weight equals that lower bound.

We firstly use induction on h > 2 to establish the minimum Hamming and Lee distance of
ZRM, (r,m). The case r = 0 is trivial and can be excluded. Let a = (ag,ay,...,azm 1) be any
nonzero codeword in ZRM, (r,m) and define b = (bo, by,...,bam_1) by b; = a; (mod 2°7') and
b; € Zyn-1 for each i. Now b is a codeword in ZRMyn-1(r,m) if h > 2 and is a codeword in
RM(r —1,m) if h = 2.

Case 1: b = 0. In this case a = 2" 'a’ for a nonzero codeword a’ in RM(r,m), so a’ has
Hamming weight at least 2™~ ". Therefore a has Hamming weight at least 2™ " and Lee weight
at least 2h—1.Qm-7 > gm—r+1

Case 2: b # 0. In this case b has Hamming weight at least 2" and Lee weight over Zgn-1 at
least 2™ "1 using the induction hypothesis if A > 2. Therefore a has Hamming weight at least



2m=T and has Lee weight over Zo at least 2™~ 7! (since min(a;, 2" — a;) > min(b;, 271 — b))

when a; = b; or b; + 2h71).
Furthermore the codeword 2" 1z zy---z, has Hamming weight 2™ ", and the codeword
T1Z9 - Tr—1 (or 1 if r = 1) has Lee weight 2™ "+!. This completes the proof for ZRMy (r,m).
By a similar induction on kA the minimum Hamming and Lee distance for RMyx (r,m) is at
least 2™7, and the codeword z,z3 - - - z, has Hamming and Lee weight 2™7". [J

The proof of Theorem 3.5 demonstrates our earlier claim that the minimum Hamming and
Lee distance of ZRMya (r,m) is not compromised by using the multiple 2 in Definition 3.3 instead
of the multiple 271,

We conclude this section with a short discussion of bent functions, which will be useful
when describing encoding options in Section 4. For m even, a bent function is a Boolean func-
tion f(z1,x2,...,Tm) for which all the Hadamard transform coefficients of the +1 /—1 sequence

(—1)/(@1,22,,m) have magnitude 2m/2 A bent function is equivalent to a Hadamard difference
set in the group Z%*. The function E;n:/ f Tok_1T9k i bent, and any affine transformation of a
bent function is also bent. A Kerdock code of length 2™ is the union of 2™~ cosets of RM(1,m)
in RM(2,m), where m > 4 is even. One of the coset representatives is 0 (so RM(1,m) itself is
contained in the code), and all the others are bent functions having the property that the sum
of any two of them is also a bent function. The minimum Hamming distance of any such code is
om-1 _ 9(m=2)/2  For details of these and other results, see [28]. We now show that for m even,
all the binary Golay sequences of Corollary 3.1 are bent functions; since these sequences occur as
cosets of RM(1,m) in RM(2,m), some may also belong to a Kerdock code.

Theorem 3.6 For m even, each of the m!/2 cosets of RM(1,m) in RM(2,m) having a coset
representative of the form ZZ;I Tr(k)Tr(k+1) COMPTISES 2m+1 pent functions, where T is a per-
mutation of the symbols {1,2,...,m}.

Proof: We show that the function 7! Tr(k)Tr(k+1) + Dhe1 CkTk + ¢ can be obtained from
Z;Cn:/f Tok_1T2k by a sequence of affine transformations, for any c,cx € Zs. The linear transfor-
mation 71 — Z; + T3, T3+ T3+ Ts, ..., Tm-3 > Tm-3 + Tm—1, and z; = z; for all other z;,
maps Z,T:/f Tok_1Tok tO ZZ’;ll TTr+1. Then the linear transformation z; — T (;) +b;, where each
b; € Z4 is determined by a single ¢k, maps this to E;":_ll Tr(k)Tr(k+1) T 2okt CkTk + b for b=cor
¢ + 1. If necessary, we can apply a translation to add 1 and so obtain the required function. [J

4 Encoding

The combination of the new results of Sections 2 and 3 immediately suggests a practical OFDM
coding scheme using 2"-phase shift keying: allow as codewords only those Golay sequences de-
scribed in Corollaries 3.1 (for h = 1) and 3.4 (for A > 1). This simultaneously confers tight
envelope power control, by Theorem 2.2, and good error correction capability, by Theorem 3.5.
The Golay sequences in question occur as m!/2 cosets of RMyx(1,m) and for convenience of im-
plementation we use 2% of these cosets, where 2 is the largest integer power of 2 no greater than
m!/2. Under this scheme we encode w + h(m + 1) information bits per OFDM symbol period.
We use w bits to encode the choice of coset representative using a look-up table. The remaining
h(m + 1) bits are converted to m + 1 information symbols u1,u2, ... unm,u € Z by taking each
consecutive group of h bits to be the binary representation of an element of Zy.. The informa-
tion symbols are then used to form the linear combination ) ;- u;z; + u, in which each symbol
multiplies one row of the standard generator matrix for RMyx (1, m). This linear combination can
be calculated in hardware in 2™ clock cycles using the encoding circuit for RM(1,m) given in [28,
p. 420]. The sum (over Zyn) of this linear combination with the selected coset representative
is the OFDM codeword (ag,a,-..agm—1), which is modulated prior to transmission according
to (1). The code rate, namely the ratio of the number of information bits to the number of coded
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bits, is (w + h(m + 1))/(2™h), and we define the information rate to be h times the code rate.
The information rate describes the increased rate at which information bits are encoded when we
change the code from binary to quaternary, from quaternary to octary, and so on.

For example, consider the octary case with 16 carriers (h = 3, m = 4). The 12 coset represen-
tatives given by Corollary 3.4 are

© 0040040000 4440 4 = 4za+ 203+ T384),
(0 00 4040O0O0O0O044°0 4 4) = 4(.’L’1.’E2 + Tox4 + .’E3:L‘4),
0000044000440 40 4 = 4123+ z203 + 2234),
O0 04040000400 44 4) = 4z173+7374+ 2224),
0O 00O0O0440040400 44 = 4(z1T4 + ToT4 + T2T3),
(0 00 400 40040004 44 = 4zx4+z324+ IL‘2£L‘3),
0O 004000400404 40 4 = 4(z1T0 + T1T3 + T3T4),
© 0040004040040 4 4) = dz12+ 5124+ 374),
(0 000O0O0 4 4 0 4 40040 4 = 4zzz+z173+ Z1T4),
0 0000404044000 4 4) = 4zzat+z124+ z1T3),
O 00O0O04040044400 4 = 4(z1T3 + T1Z2 + T2Z4),
000000 440404400 4) = 4ao3+2172+7174),

of which we choose eight (say the first eight), so w = 3. The union of the eight cosets of RMg(1, 4)
having these coset representatives comprises the set of OFDM codewords, all of which have
PMEPR of at most 2. The code forms a subcode of ZRM3(2,4) and has minimum Hamming
and Lee distance 4 and 8 respectively. An error of Hamming weight 1 can always be corrected,
as can an error of Lee weight at most 3. The code rate is 3/8 and the information rate is 9/8.
Given 18 information bits, three are used to select one of the eight coset representatives and the
remaining 15 are regarded as the binary representation of five information symbols u1, u2, u3, u4, u.
The linear combination uz; + uaTe + u3Ts + ugxTs + u is calculated with reference to the gen-
erator matrix (12) for RMg(1,4) and added to the selected coset representative. Suppose the 18
information bits are 011101111011110110. The first three bits 011 select the coset representative
(0004040000400444) (labelling the first eight coset representatives 000,001, ...,111). The remain-
ing 15 bits select the linear combination 5z1 + 7z3 + 3z3 + 64 4 6 = (6417530631642053), so the
OFDM codeword is (6413570631242417).

The above coding scheme is restricted to the Golay sequences described in Sections 2 and 3.
These sequences occur as m!/2 “Golay cosets” of RMyx(1,m) within a second-order linear code,
where the second-order linear code is RM2(2,m) in the binary case h = 1 and is ZRMyx (2, m) in the
non-binary cases h > 1. We can increase the code rate, at the cost of progressively larger values of
PMEPR, by including additional cosets of RMx (1, ) within the same second-order code. These
additional cosets do not necessarily comprise or even contain Golay sequences. Nonetheless we
have found that partitioning the second-order code into cosets of RMyx (1,m) is an effective means
of isolating codewords with large values of PMEPR. Alternatively we can increase the minimum
Hamming distance, at the cost of a lower code rate, by choosing fewer than 2 of the original
m!/2 Golay cosets. In this way we can trade off code rate, PMEPR and error correction capability
to provide a range of solutions to the envelope power problem. For implementation convenience
we use 2% cosets of RM,x(1,m) for some integer w' to encode w' + h(m + 1) information bits,
storing the coset representatives in a look-up table. We can determine the possible options for
given h and m by arranging all the cosets of RMyx(1,m) (within the appropriate second-order
code) in increasing order of their maximum PEP over the 2h(m+1) codewords in the coset, as we

now illustrate.

4.1 The binary case

Consider the binary case with 16 carriers (h = 1, m = 4). Table 1 lists the om(m=1)/2 — 64 cosets
of RM3(1,4) in RM3(2,4) in increasing order of their maximum PEP over the 32 codewords in the
coset. The PEP of each codeword is calculated using 27 times oversampling, finding P(t) = |s(t)|?
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from (1) at each sample point ¢t = i/(2™t Af) for i = 0,1,... ,2m+J — 1 and taking the largest
sample value of P(t). The value of j is increased until the maximum calculated PEP over the coset
is stable. The first 12 cosets of Table 1 are the m!/2 Golay cosets of Corollary 3.1, each of which
has a maximum PMEPR of at most 2 (since PMEPR = PEP/n and we have fixed n = 2™) in
accordance with Theorem 2.2. The final coset in the list is RM2(1,4) itself, which has a maximum
PMEPR of 2™ since it contains the sequence (0,0, ...,0). The remaining cosets have intermediate
values of maximum PMEPR. Observe that the maximum PMEPR for the cosets in the first half
of the list is no greater than 4; we remark that this property holds for the binary case with 8 and
32 carriers too.

Table 4 summarises some possible options for binary coding for 16 and 32 carriers, most of
which are derived from the ordered list given in Table 1. The reference option for 16 carriers
is Option 3, which uses the first eight (Golay) cosets of this ordered list. Option 4 uses the 32
cosets in the first half of the list and trades an increase in code rate for an increase in maximum
PMEPR from 2 to 4. Option 1 uses just the first coset of the list and trades an increase in
minimum Hamming distance from 4 to 8 for a reduction in code rate. Option 2 is a compromise
between Options 1 and 3, based on the Kerdock code of length 16 whose coset representatives
are [27]2 0, £172 + T1T3 + T3T4, T1T3 + T2T3 + T2T4, T1T2 + T2T4 + T34, T1T4 + T2T3 + T3Z4,
T1Z3 + T1Z4 + ToTq, T1To + T1ZT4 + T2x3 and T1T2 + T123 + 104 + T2T3 + T2T4 + T3T4. Six of these
eight coset representatives are of the form E;”;ll Ty (k)T (k+1) (and so appear in the first 12 places
of the list), and by choosing any four of the six we obtain a minimum Hamming distance of 6.

The ordered list for binary coding with 32 carriers (not shown here) contains 1024 cosets of
RM,(1,5) in RM2(2,5) and is headed by the 60 Golay cosets of Corollary 3.1. The reference
option for 32 carriers is Option 7, which uses the first 32 of these 60 cosets. Option 6 uses just the
first coset of the list. (We could derive a compromise between Options 6 and 7 having minimum
Hamming distance 12 based on a Kerdock code of length 32. Although we have given only the
classical definition of a Kerdock code, for m > 4 even, [21] defines a corresponding Kerdock code
for m > 3 odd which can be represented as the union of 2! cosets of RM(1,m) in RM(2,m)
and which has minimum Hamming distance 2™! — 2(m=1)/2 " The number of information bits of
this compromise option will be determined by how many of the 16 Kerdock cosets are also Golay
cosets.) Comparing Options 1 and 3 with Options 6 and 7 respectively, we see that doubling the
number of carriers from 16 to 32 incurs a penalty in terms of code rate. However it carries the
advantage that intersymbol interference in the transmitted signal will be reduced and consequently
delay spread in the channel will also be reduced.

Alternatively we can maintain the code rate as the number of carriers doubles, at the cost
of increased PMEPR. It is straightforward to show that if @ and b are sequences over Zp of
length n having PMEPR at most R then the sequence formed by interleaving or concatenating the
elements of @ and b has PMEPR at most 2R. For example by encoding according to Option 1 twice
independently, and either interleaving or concatenating the resulting codeword elements, we obtain
the composition coding scheme of Option 8 having the same code rate but a maximum PMEPR
of 4. Decoding is likewise carried out by regarding the received codeword as two independent half-
length codewords, which is indicated in Table 4 by writing the minimum Hamming distance for
Option 8 as 8;8 (see also Section 5). Examples of this technique of interleaving or concatenating
codewords to maintain code rate and to control PMEPR for OFDM transmission have been noted
previously [3, 32, 40]. Option 10 is similarly derived from Option 3, with the following modification
to improve the code rate slightly. Recall that there are 12 cosets listed in Table 1 having PMEPR
at most 2, of which Option 3 uses the first eight. We can therefore form 27 < 12-12 ordered pairs
of length 16 coset representatives to be added to the respective length 16 linear combinations in
RM;(1,4) prior to interleaving or concatenating. In this way Option 10 encodes 7+ 2-5 = 17
rather than 2 -3 + 2 - 5 = 16 information bits. Likewise Option 2 uses four cosets chosen from
six, and since 2° < 6 - 6 we can encode 5 + 2 -5 = 15 information bits in the composition coding
scheme of Option 9. Finally, Option 5 is a composition coding scheme based on a single Golay
coset of RM»(1, 3).
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4.2 The quaternary case

For the non-binary cases h > 1 we form similar ordered lists of the o(h=D)m(m=1)/2 cosets of
RM,(1,7m) in ZRM,.(2,m). Consider the quaternary case with 16 carriers (b = 2, m = 4).
Table 2 lists the 64 cosets of RMy(1,4) in ZRM4(2,4) in increasing order of their maximum
PEP over the 1024 codewords in the coset, headed by the 12 Golay cosets of Corollary 3.4. The
maximum PMEPR for the cosets in the first half of the list is no greater than 4 (as in the binary
case), and the same is true for 8 and 32 carriers. Table 2 contains a striking feature not present
in Table 1: the maximum PMEPR over each coset is an exact power of 2, and the same is true
for 4, 8 and 32 carriers.

Table 5 summarises options for quaternary coding for 16 and 32 carriers, mostly derived from
the ordered list of Table 2. These options are determined in similar manner to those having the
corresponding option number in Table 4. A similar method to the proof of Theorem 3.5 shows
that if m > 4 is even and the set of cosets {g; + RM2(1,m)} is a Kerdock code of length 2™
then the minimum Hamming distance of {2"1g; + RMyx (1,m)} over Zg is 2™ — 2(m=2)/2 for
h > 1. Option 2 exploits this result, using coset representatives whose values are twice those of
the binary Option 2. Option 5a is a composition coding scheme based on three Golay cosets of
RM4(1,3). Error correction for this option can be done with respect to Lee distance (though not
always with respect to Hamming distance, which is why it does not occur in Table 4). Comparison
of Tables 4 and 5 demonstrates that choice of modulation scheme is a further component of design
frcedom. The quaternary schemes have up to twice the information rate of the corresponding
binary schemes for the same minimum Hamming distance, together with enhanced error correction
capability based on Lee distance. Their disadvantage is that quaternary modulation leads to a
smaller minimum Euclidean distance than binary modulation and so their transmission error rate
is larger.

4.3 The octary case

Consider the octary case with 16 carriers (h = 3, m = 4). Table 3 lists the 4096 cosets of RMg(1, 4)
in ZRMg(1,4) in increasing order of their maximum PEP over the 32768 codewords in the coset.
The list is headed by the 12 Golay cosets of Corollary 3.4, followed by 48 cosets whose maximum
PMEPR is exactly 3. The maximum PMEPR for the cosets in the first quarter of the list is no
greater than 4; for 8 carriers this is true for the first half of the list. Table 6 summarises options
for octary coding for 16 and 32 carriers, the option numbers corresponding to those in Table 5.
Option 2 uses coset representatives whose values are four times those of the binary Option 2.
Option 4 has smaller maximum PMEPR than the quaternary Option 4 because it uses 12 Golay
cosets together with 20 of the 48 cosets having maximum PMEPR of 3. The parameters of Option
5 coincide with those proposed independently in [3, 32].

4.4 Comments

The coset ordering process illustrated for binary, quaternary and octary modulation can clearly
be applied to larger values of h. Since these coding schemes are all based on the same formal
generator matrix for RM,x (1, m), interpreted over different alphabets Zqs, it is simple to change
adaptively between coding options according to the propagation channel and evolving system
requirements. In this way we obtain flexible coding schemes which combine tight control of
PMEPR with powerful error correction capability and structured encoding. Efficient methods of
decoding will be discussed in Section 5.

The numerical results presented demonstrate, at least for small values of h and m, that par-
titioning the codewords of RM3(2,m) (in the case h = 1) or ZRMgx(2,m) (in the cases h > 1)
into cosets of RMyn (1,m) is an effective method of isolating those codewords with large values of
PMEPR. Indeed, the maximum PMEPR over the entire second-order code space is 2™, and yet
for small values of h and m we typically need reduce this space by a factor of only two or four
(losing just one or two encoding bits) to reduce the maximum PMEPR to at most 4.
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Based on numerical evidence for the quaternary case we speculate that for all m the maximum
PMEPR over any coset of RM4(1,m) in ZRM4(2,m) is an exact power of 2. Cammarano and
Walker [9] have shown that the Golay coscts of Corollary 3.4 always attain the upper bound of 2 on
their maximum PMEPR, which establishes this speculation for m!/2 of the gm(m=1)/2 quaternary
cosets. ([9] also shows that the binary Golay cosets of Corollary 3.1 attain the upper bound of 2
on their maximum PMEPR when m is odd and [34] contains further results along these lines.)

We further speculate that a coset of RM4(1,m) in ZRM4(2,m) having maximum PMEPR
of 2% comprises sequences belonging to a Golay complementary 2*-tuple (defined analogously to
the case a = 1 given in Definition 2.1). A straightforward modification of Theorem 2.2 would then
give the correct maximum PMEPR. Paterson [34] has made significant progress on this question
by showing that each such coset comprises sequences belonging to a Golay complementary 2°-
tuple for some 3 > «, and that 3 = « in certain cases. These results allow tables such as Table 2
to be predicted at least in part. They also imply good upper bounds, at least for small m, for
the values in the corresponding binary tables such as Table 1 without the need for intensive
numerical calculation (because the binary coset g +RMa(1,m) in RM3(2,m) can be embedded in
the quaternary coset 2g + RM4(1,m) in ZRM4(2,m)). [34] also identifies further coding schemes
based on cosets of RMyx (1, m).

5 Decoding

An important attraction of the binary Reed-Muller code for applications purposes is that it is
easy to decode. In particular, the first-order code RM;(1,m) can be decoded very efficiently by
means of the fast Hadamard transform (FHT). In this section we give a fast decoding algorithm
for RM,x (1, m) for any h > 1, requiring h FHTs and h encoding operations in RMgx(1,m). This
algorithm acts as a decoder for RMga(1,m) with respect to both Hamming and Lee distance: it
always corrects errors of Hamming or Lee weight less than the limit dj2 = 2m=2 guaranteed by
the minimum Hamming or Lee distance d = 2™~! of the code (see Theorem 3.5). In fact the
class of errors which can always be corrected by the algorithm includes many whose Hamming
or Lee weight greatly exceeds this limit. The algorithm can be used for soft-decision as well
as hard-decision decoding. It is scalable in the sense that the decoder for RMan+: (1,m) can be
obtained directly from the decoder for RMjx(1,m) simply by including one additional iteration.
We also extend the decoding algorithm, while maintaining its favourable properties, to deal with
an arbitrary union of cosets of RMyx(1,m) in ZRMja(2,7m). This extension efficiently decodes
any of the coding schemes of Section 4.

We remark that Ashikhmin and Litsyn [5] give an extension to non-binary cases of the standard
FHT method for decoding RMy(1,m) but their extension applies to GRM(1,m) rather than to
RM,: (1,m) (see Section 3). We also note that van Nee [32] implicitly gives a hard-decision decoder
for RMyn (1,3) with respect to Hamming (and therefore, by Theorem 3.5, Lee) distance but does
not analyse which errors of Hamming weight greater than 1 can be corrected by this decoder and
makes no mention of Lee weight.

We begin by summarising the standard FHT method for decoding RM(1,m), as described

in [28].

Definition 5.1 The Sylvester-Hadamard matrix Hom = (H;j) of order 2™ is given by H;j =

(=1)Zk=1%Jk fori,j € Zom, where (i1,%2,. . .,im) and (j1,J2,- - -,Jm) are the binary representation
of i and j respectively. The Hadamard transform of the row vector y = (Yo, Y1y ---,Yyam—_1) 1
Y =yHom.

The Hadamard transform ¢ of a sequence y of length 2™ can be calculated rapidly by representing
Hym as the product of m sparse matrices; we then call § the fast Hadamard transform (FH T)
of y. The FHT can be implemented in software with m2™ additions, and in hardware using the
Green machine with m stages.
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If a is a sequence of length n we shall denote by (a); the ith element of a fori =0,1,...,n—1.
We shall write (—1)® for the sequence whose ith element is (=1)(®) and write a mod 2F for the
sequence whose ith element is (a); mod 2¥ (namely the integer j € Zy« satisfying (ai—=3 =0
(mod 2)).

Now suppose the codeword ¢ of RMz(1,m) is received in error as r = (¢ + e) mod 2, where
e is a sequence over Zy. The decoding procedure for RM3(1,m) calculates the FHT ¢ of (—1)"
and determines a value of j € Zom for which (§); is an element of § of largest magnitude. It
then sets w = 0 or 1 according as (§); is positive or negative, takes (w1, wa, ..., wn) to be the
binary representation of j, and decodes r as (3~ w;z; +w) mod 2. (By truncating intermediate
results of the FHT this procedure can actually be implemented in software with fewer than m2™
additions [4].) The decoding procedure relies on the fact that the columns of Ham together with the
columns of —Haym comprise 2™F! sequences of the form (—1)¢, where a ranges over the codewords
of RMj(1,m). So, in the absence of errors, (§); is +£2™ for a unique value j = J and is 0 for each
j # J. The effect of the error e, having Hamming weight wt(e), is to reduce the magnitude of (§),
from 2™ by exactly 2 wt(e) and to increase the magnitude of (§); for each j # J from 0 by at most
the same amount 2wt(e). Therefore provided wt(e) < 2™ 2 the decoding procedure correctly
decodes r to c. (See Section 2 for a discussion of the relationship between Boolean functions and
binary representations.)

The following definition will be useful in describing the decoding algorithm for RM,. (1, m).

Definition 5.2 Let a = (ag,a1,.-.,an—1) be an integer sequence and let 1 be an integer. We
define wtqk (i) to be min(i mod 2¥, 2% — (i mod 2K)) and wtyk (a) to be ?;01 whok (a;).

wtok (a) is equal to the Lee weight over Zok of the sequence a mod 2% (see Section 3).

We now introduce the decoding algorithm by outlining the octary case h = 3. Suppose the
codeword ¢ € RMg(1,m) is received in error as r = (c + €) mod 8, where e is a sequence over Zsg.
Write ¢ = (3%, uiz; + u) mod 8, where u;,u € Zg. Let (vi2,vi1,v40) be the binary representation
of u; and let (vq,v1,v0) be the binary representation of u, so that u; = 4v;9 + 2v;1 + vip and
u = 4v9 + 2v; + vg. Then

¢ = (4f2 +2f1 + fo) mod 8, (13)
where
fo = (i vioT; + v2) mod 2, (14)
i=1
o= (i vi1z; + v1) mod 4, (15)
i=1
fo = (i vioT; + vo) mod 8. (16)

=1
Write the error e uniquely as e = 4es + 2€; + €9, where each ey, is a sequence over Zs, so that
r = (4(f2 + e2) + 2(f1 + e1) + (fo + eo)) mod 8. (17)

Using the FHT, the decoding algorithm recovers the value fo by reducing modulo 2, then (assuming
fo has been determined correctly) the value f; by reducing modulo 4, and finally (assuming fo
and f; have been determined correctly) the value fy; ¢ is then recovered from (13).

Now 7 mod 2 = (fo mod 2 + ep) mod 2, and we know from (16) that fo mod 2 is a codeword
in RM3(1, m). Therefore provided wta(eg) < 2m=2 we can use the standard binary decoder for
RM,(1,m) to recover the binary coefficients v, vo for fo mod 2, and then calculate fo from (16).

We next set r; = (r — fo) mod 8. From (17), r; mod 4 = (2(f; mod 2) + (2e; + €g)) mod 4.
From (15), f1 mod 2 is a codeword in RM3(1,m). We define the sequence y by (y); = 1—wt4((r1):)
fori =0,1,...,2™ — 1 and take § to be the FHT of y. Now if eg = 0 then y = (—1){f1ter) mod 2
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and so this stage of the algorithm simply decodes f; mod 2 in the presence of the error e; using
the standard binary method; §; is £2™ for a unique value j = J and is 0 for each 7 # J.
However if eg # 0 then (y); = 0 for all positions ¢ such that (ep); = 1. This effectively removes
from consideration those elements of y identified as error positions by the FHT from the previous
stage. We shall show that the effect of the error e is to reduce the magnitude of (§)s from 2™ by
exactly wtq(2e; + €o), and to increase the magnitude of (§); for each j # J from 0 by at most the
same amount wt4(2e; + €g). Therefore provided wty(2e1 + €g) < 2m~1 we can recover the binary
coefficients v;1,v; for fi mod 2 from the position and sign of the transform sequence element of
largest magnitude, and then calculate fi from (15).

The last stage of the decoding algorithm is to set ro = (r1 — 2f1) mod 8. From (17), vy =
(4(f2 mod 2) + (4ez + 2e1 + €)) mod 8, and from (14), f2 mod 2 is a codeword in RMz(1,m). We
define the sequence y by (y); = 2—wtg((r2);) fori =0,1,...,2™ —1 and take § to be the FHT of y.
If ey = ¢ =0 then y = 2(—1)(f2+e2) mod 2 g that this stage reduces to the standard decoding of
fo mod 2 in the presence of the error ez. Otherwise (y); takes the value 1, 0 or —1 for all positions ¢
such that (2e; + eg); # 0; this modifies the result of the FHT according to the error positions
identified by both of the previous FHTs. We shall show that provided wtg(4ez+2e1 +eg) < 2.o2m-1
we can recover fy mod 2 and hence f.

Finally we recover ¢ from (13). The conditions for correctly decoding ¢ + e to c are: wta(e) <
2m=2 wty(e) < 2™, and wtg(e) < 2™.

We now give a formal description of the decoding algorithm for any value of h > 1.

Algorithm 5.3 (Decoding algorithm for RMjn(1,m))
1. Input the received codeword r as a sequence over Zigh of length 2™. Set k =0 and o = .
9. Define the sequence y by (y); = 2871 — wtges1 ((rg)i) fori=0,1,...,2™ — L.

3. Let § be the FHT of y and determine a value of j € Zam for which (9); is an element of
§ of largest magnitude. Let w be 0 or 1 according as (9); is positive or negative, and let
(w1, wa, . .., wn) be the binary representation of j. Set fr = >Cn, wiz; + w) mod 2h—k,

4. If k = h—1 then output the decoded codeword (2h1 fp_ 1 4+ 2072 f,_o+...+ fo) mod 2" Else
set Tpy1 = (1 — 25 fr) mod 2", then increment k and go to Step 2.

Theorem 5.4 Let ¢ be a codeword of RMyn(1,m) and let e be a sequence over Zn. Given the
input (c+e) mod 2", Algorithm 5.3 outputs ¢ provided wtqe+1(e) < om+k=2 for k =0,1,...,h—1.

Proof: Write ¢ = (3_1" ujz; + u) mod 2h where u;,u € Zon. Let (vip—1,Vih—2,---,Vi0) be
the binary representation of u; and let (vp_1,vp—2,.-- ,v9) be the binary representation of u, so
that u; = 2h_1’0i’h_1 + 2h—2vi,h,2 +...4+v0 and u = 2h_11)h_1 + Zh_2'vh~2 + ...+ vy. Then
c= 2" 1+ 2h=2f, o4 ...+ fo) mod 2k where

m
fe = (O vikw: + vg) mod 2hk (18)
i=1
for k=0,1,...,h — 1. Write the error e uniquely as
e = 2h71€h_1 + 2h~26h_2 + ...+ eq, (19)
where each ey is a sequence over Za, so that the received codeword r = (c+e) mod 2" is given by
r= (2" (fho1 + en_1) + 2" 2 (fn—2 + en—2) + ... + (fo + eo)) mod 2", (20)

The algorithm has h passes 0,1,...,h — 1, and on pass k we determine the value of fg.
Assume that the values fg, f1,..., fr_1 have been correctly determined. Then Step 4 shows that



16

rp mod 26+1 = (r — fo — 21 — 22fo — ... — 2671 f5_y) mod 2¥*1, and by (19) and (20) we obtain
i mod 2841 = (2%(fx mod 2) + e mod 2¥*1) mod 25*1. Now it is straightforward to verify the
identity

261 — wgrs1 (28 + B) = (—1)2 (257! — wtoes1(B)) for all & € Za, B € Zokn

for any integer k > 0. Therefore by Step 2 we have (y); = (—1)re mod 2)i (2k=1 — wt ity ((e);)).
Since (9); = ZZm_l(y)iHi]-, where H = (H;;) is the Sylvester-Hadamard matrix of order 2™, we

1=0
then have
2m—1 2m—1
(@); = 26703 (~1)Urmed iy, 3 (=1)Urmed i By wigia ((e)s)
=0 _ =0
= 2P (=) T med2HY); — N dij wigen ((€):), (21)
i=0

where each d;; = (—1){k mod 2)1'Hij takes the value 1 or —1. Since fy mod 2 is a codeword in
RMz(1,m), ((—1)fk mod 2H)j is 2™ for a unique value j = J and is 0 for each j # J. Therefore
either d;y = 1 for all 4 or d;; = —1 for all . We then see from (21) that the effect of the error e
is to reduce the magnitude of (§); from 2k—1.9™ by exactly wtor+1(e) for a unique value j = J,
and to increase the magnitude of (§); for each j # J from 0 by at most the same amount. By
assumption wtyk41(€) < o2m+k=2 50 we can recover the binary coefficients vi, vk for fr mod 2 from
the position and sign of the transform sequence element of largest magnitude, and then calculate
fr from (18). O

Note that when k = 0, Step 2 of Algorithm 5.3 sets y = (—1)" mod2 /9 so pass 0 of the
algorithm is the standard binary decoder for RMz(1,m) except that the values +1/2 are used
instead of £1. For implementation convenience we can choose to work with 2y instead of y on
pass 0. Note also that we can choose in Step 3 to calculate fx modulo 2" rather than modulo Qh—k
without affecting the result.

Corollary 5.5 Algorithm 5.3 acts as a decoder for RM,n (1, m) with respect to Hamming distance
and with respect to Lee distance.

Proof: Let ¢ be a codeword of RMyx (1,m) and let e be a transmission error having Hamming
weight wt(e). By Theorem 3.5 it is sufficient to show that Algorithm 5.3 correctly decodes (¢ +
e) mod 2" to ¢ provided that wt(e) < 2™72. This follows from Theorem 5.4 by noting that
wtoret1(e) < 28 wt(e) for k=0,1,...,h—1. O

The full power of Algorithm 5.4 is demonstrated not by Corollary 5.5 but by Theorem 5.4.
For example, consider the octary case h = 3 with m = 4. Theorem 3.5 and Corollary 5.5
guarantee only that an error of Hamming (or Lee) weight at most 3 can be corrected and
yet by Theorem 5.4 the error e = (4002101000760400), having Hamming weight 7 and Lee
weight 15, can be corrected using Algorithm 5.3 because it satisfies wta(e) = 3, wta(e) = 7
and wtg(e) = 15. We now illustrate the use of the decoding algorithm for these values of
h, m and e, taking the codeword c to be 5z; + 7z + 3z3 + 6z4 + 6 = (6417530631642053).
The received codeword is 7o = (¢ + €) mod 8 = (2411631631522453). On pass k = 0 we find
2y =(1,1,-1,-1,1,-1,—1,1,—1,~1,-1,1,1,1,~1,~1) and

2y = (~2,-2,6,6,—2, -2, —2,-2,2,2,2,2,2,2,10,-6).

We therefore set fo = (1 + ©2 + z3) mod 8 = (0011112211222233) and

= (7‘0 — f()) mod 8 =
(2400527420300220). On pass k = 1 we find y = (—1,1,1,1,0,-1,0,1,-1,1,0,1

,1,—-1,-1,1) and

g = (37 —57 —5a3a 3’ —5) _17 _9, 1’ la _3a —33 17 17 1a 1)
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We therefore set f; = (ro+z3+z4+1) mod 4 = (1223233012232330) and r2 = (1 —2f1) mod 8 =
(0042141404724440). On pass k = 2 we find y = (2,2,-2,0,1,-2,1,-2,2,-2,1,0,~2,-2,-2,2)

and
7 =(-3,51,9,9,1,9,1,3,3,11, -5, -1, 17,3, 3).

We therefore set f2 = (z1+z2+z4+1) mod 2 = (1010010101011010). The output of the decoding
algorithm is (4f2 + 2f1 + fo) mod 8 = (6417530631642053), which is the original codeword.

Under the encoding schemes of Section 4 information symbols u;, u € Zon are used to form the
codeword (3", uijz; + u) mod 2" of RMas (1,m). These information symbols can be recovered
directly using the above decoding algorithm: in the above example the output is determined
as (4(z1 + T2 + x4 + 1) + 2(z2 + T3 + T4 + 1) + (21 + 22 + 73)) mod 8 = (521 + Tzo + 323 +
6z4 + 6) mod 8. Furthermore the binary representation of the information symbols u;,u gives
the original information bits, so these can also be recovered directly from the algorithm as the
coefficients v, vk for k = 0,1,...,h — 1. Now pass k of the algorithm can incorrectly determine
the value f if the error e does not satisfy wtor+1(e) < om+k=2 If this happens then subsequent
passes can incorrectly determine the values fi41, fx42,- -+ fn—1 so that the decoded codeword can
have large Lee distance from the original codeword. However provided the values fo, f1,.-., fk—1
are all correctly determined then at least k(m + 1) information bits (namely the coefficients v;j, v;
fori=1,2,...,mandj =0,1,...k—1) out of the original h(m + 1) will be correctly determined.

The principal computational requirement for Algorithm 5.3 is h integer-valued FHTs and
h summations of the form (3%, w;z; + w) mod 2k Each summation can be calculated using
whatever software or hardware procedure is used to encode the information symbols u;,u as the
element (3.7, u;z; + u) mod 2" of RMyx (1,m).

We have presented Algorithm 5.3 as a hard-decision decoder (acting on a sequence whose ele-
ments are integers in Zo), but it can also be used as a soft-decision decoder (acting on a sequence
whose elements are real numbers in the range [0,2")). We simply need to extend Definition 5.2
for wt,k (i) to deal with real-valued i by taking 7 mod 2k to be the real number j in the range
[0,2F) satisfying s —j =0 (mod 2F).

Algorithm 5.3 can be modified as follows. Replace the definition of y in Step 2 by v =
(rx mod 2F+1)/2% and y = (—1)?, calculate ex = (v + fx) mod 2 at the end of Step 3, and replace
the equation for ryy; in Step 4 by rx41 = (Tk — 28 (fr + ex)) mod 2h. Then on pass k, assuming
fo, f1,- .-, fr—1 have been determined correctly, Step 2 sets y = (—1)(eter) mod 2 and Step 3 uses
the standard binary decoder for RMy(1,m) to find fx mod 2 (and hence fi) and ex. The modified
conditions for correcting the error e defined by (19) are wta(ex) < 2m=2 for k = 0,1,...,h — 1.
Both the original Algorithm 5.3 and this modification act as decoders for RMjn (1, m) with respect
to Hamming and Lee distance; beyond the limit guaranteed by the minimum distance of the code
both perform well but neither one is uniformly better than the other.

We now extend Algorithm 5.3 to decode efficiently the non-binary (h > 1) coding schemes
of Section 4, most of which involve the union of several cosets of RMjyx(1,m) in ZRMyn (2,m).
The supercode decoding method for decoding the union of cosets of a code C, as described in [11]
for binary codes, involves subtracting each possible coset representative in turn from the received
codeword and decoding the result as an element of C; the best decoding result in C' determines
the coset representative. We shall modify this method by interleaving the subtraction of the coset
representatives with the h passes of Algorithm 5.3 to give a substantially faster algorithm than
would be obtained by applying Algorithm 5.3 in full to each coset of RMax (1, m).

Algorithm 5.6 (Decoding algorithm for a union of cosets of RM,i (1,m) in ZRMyn(2,m))

1. Input the received codeword r as a sequence over Zyn of length 2™ and input the predetermined
set G = {g} of coset representatives of RMyn(1,m) in ZRMyi(2,m). Set k=0 and ro =r.

2. Let {uy,us,...,us} be the distinct values of g mod 2k+1 g5 g takes all values in G. Setl =1
and Y = 0.

3. Define the sequence y by (y); = 287! — whor1 ((rg — w);) for i =10,1,...,2™ — 1.
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4. Let §j be the FHT of y and determine a value of j € Zam for which (9); is an element of §
of largest magnitude.

5. If |(9)j] > |Y| then set Y = (9);, J =j and L = L.
6. If |[Y| > 3-2m+k=3 or | = s then go to Step 7. Else increment | and go to Step 3.

7. Let w be 0 or 1 according as Y is positive or negative, and let (wy,ws, ..., wn) be the
binary representation of J. Set fi = (>, wiz; +w) mod 2h—k  Remove from G each coset
representative g for which g mod 2k+1 Ly

8. If k = h — 1 then output the decoded codeword (g + oh=1f, L +202f o4 ...+ fo) mod 2"
for the single remaining g € G. Else set rp41 = (re — 2% fx) mod 2" then increment k and
go to Step 2.

Theorem 5.7 Let G = {g} be a set of coset representatives of RM,n (1,m) in ZRMan (2,m), let
¢ be a codeword of the code {g+RMyn(1,m) | g € G} and let e be a sequence over Zan. Given the
input (c + e) mod 2", Algorithm 5.6 outputs c provided that for k =0,1,..., h—1,

byen () < om+k=3 if G contains g,g' which are equal modulo 2k but distinct modulo 2F+1
Whaktt om+k=2  otherwise.

Proof: The proof is similar to that of Theorem 5.4. Write ¢ = (g + Yo, uiz; + u) mod 2k
where u;,u € Zor and g € G. Write g uniquely as g = 2" 'gp_1 + 2h=2g,_5 + ...+ go, where each
gk is a sequence over Zy. Then ¢ = (g+2""1fp_1 + 2h=2f, o+ ...+ fo) mod 2" and the received
codeword r = (c + €) mod 2" is given by

r=(2"Y(gho1 + fro1 + en_1) + 2" (g2 + fo—2 + €n_2) + ... + (g0 + fo + €0)) mod 2",

where fi and ey are as previously.

The algorithm has h passes 0,1,...,h — 1, and on pass k we determine the value of fx and
gk and discard any ¢’ € G for which g} # gx. On pass k Steps 3 to 6 perform a FHT for each
remaining group of coset representatives in G' having the same value modulo 25! and select one
such group by finding a transform sequence element of largest magnitude amongst all the FHTs.
If a sufficiently large magnitude is encountered then Step 6 truncates the selection procedure.
Assume that the values fo, f1,..., fk—1 and go,g1,---,gk—1 have been correctly determined. Note
that all the remaining coset representatives in G must be equal modulo 2k If they are also all equal
modulo 2¥*! then gy is determined and fi can be recovered as in the proof of Theorem 5.4 because
by assumption wtok+1(e) < 2™+*=2. Therefore assume that G contains a coset representative g’
for which ¢’ mod 2k+! = 2kg| + 2k—lg 1 +252g1 o+ ...+ go, where g} # gk

Suppose that Step 3 selects the value u; = g’ mod 2k+1  Then Step 8 shows that (ry —
w;) mod 251 = (2%((gy, — g; + fx) mod 2) + e mod 2%1) mod 2k+1 By a similar argument to that
used previously it follows that

2m—1
@); = 251 ((—1) ekt I med 2Ey N g wigin ((€)s), (22)
1=0

where each d;; = (=1)(or—gi+fs) mod 2)i [, takes the value 1 or —1 and H = (H;) is the
Sylvester-Hadamard matrix of order 2™. Now fi mod 2 is a codeword in RMj;(1,m) and we
see (by expressing g and g} in similar manner to (18)) that (gx — g;) mod 2 is a codeword in
RM,(2,m)\RMz(1,m). Since the minimum Hamming distance of RM2(2,m) is 2™~2 we conclude
that ((—1)(9k—9k+/K) mod 2 ). has magnitude at most 2™ —2-2™"% = 2m-1 for each j. (22) then
implies that (§); has magnitude at most 2m+k=2 4 Wtoes1(e) for each j.
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In contrast if Step 3 selects the value u; = g mod 2k+1 we know from the proof of Theorem 5.4
that (9); has magnitude exactly 2m+k=1 _ wtoi1 () for a unique value of j and has magnitude at
most wtok+1(€) for each other j. By assumption wtge+1(e) < om+k—3 and therefore we can recover
fr and gg. Furthermore if (§); has magnitude greater than gmtk—1 _ gm+k=3 — 3. gm+k=3 then
there is no need to consider any further values ujy1, Uj42,---,us. U

Corollary 5.8 Algorithm 5.6 acts as a decoder for an arbitrary union of cosets of RMyn (1, m) in
ZRM, (2, m) with respect to Hamming distance and with respect to Lee distance.

Proof: The proof for Hamming distance follows from Theorem 3.5 in similar manner to the
proof of Corollary 5.5. For Lee distance, note that the condition for k¥ = 0 in Theorem 5.7 is
wta(e) < 22 because all coset representatives of RMa (1, m) in ZRMya (2, m) are equal modulo 2.
The result follows from Theorems 3.5 and 5.7 since wtok+1(e) < wton(e) for k =0,1,...,h—1and
the Lee weight over Zos of e is wton(e). O

The number of encoding operations in RMyx (1, m) required by Algorithm 5.6 is h. The number
of FHTSs required is at least h and at most h+|G|—1: if g, g’ € G are equal modulo 2% but distinct
modulo 28*! then the algorithm can choose between them using two FHTs. In fact the expected
number of FHTS can be less than h+ (|G| —1)/2 because the algorithm can choose between groups
of coset representatives. For example, consider the code to be the union of the first 32 cosets of
RM;z(1,4) in ZRMg(2,4) listed in Table 3 (given as Option 4 in Table 6) and suppose the actual
coset representative is not one of the first twelve of the list. Since these twelve cosets are all equal
modulo 4 they can be eliminated from consideration with a single FHT on pass 1. Algorithm 5.6
can be further speeded up by calculating in parallel those FHTs which choose between groups of
coset representatives.

The decoded coset representative g can be output separately by Algorithm 5.6. The informa-
tion bits used in any of the encoding schemes of Section 4 to select a coset representative (or an
ordered pair of coset representatives, in the case of a composition coding scheme) can be found
by inverting the encoding look-up table.

For some codes the decoding procedure of Algorithm 5.6 can be applied with a stronger
truncation criterion in Step 6. Suppose that m > 4 is even and that each coset representative
in G is of the form 28~lg,_;, where the binary coset g,—; + RMa(1,m) belongs to a Kerdock
code of length 2™. Then for distinct 2h_1gh_1,2h_1g;l_l in G we know from Section 3 that
(gh-1 — gh_, + fr—1) mod 2 is a bent function and therefore that ((-—1)(9"“_9;1—1+f”‘1) mod 2 ),
has magnitude 2™/2 for all j. Then, following the proof of Theorem 5.7, the truncation criterion
takes effect only on pass h — 1 and can be improved to |Y]| > 2h=3(2m + 2™/2): the conditions for
correcting the error e are

whoer (€) < 2h=3(gm — 9m/2) for k=h —1
b gmtk—2 for k=0,1,...,h—2.

For example, Option 2 of Table 6, described in Section 4, is derived from such a code with h =3
and m = 4. The truncation criterion for pass 2 of the decoding algorithm for this coding scheme
can be taken as |Y| > 20 instead of |Y| > 24 and the conditions for correcting e are wta(e) < 4
and wt4(e) < 8 (as before), together with wtg(e) < 12 instead of wts(e) < 8.

Algorithm 5.6 can be used for soft-decision as well as hard-decision decoding. It can also be
modified, in similar manner to the modification of Algorithm 5.3 described earlier, to act as an
alternative decoder for a union of cosets of RMyx (1,m) in ZRMyn (2, m) with respect to Hamming
and Lee distance. Replace the definition of y in Step 3 by v = ((rx — w) mod 2k+1) /2K and
y = (—1)?, calculate ex = (v + fx) mod 2 at the end of Step 7, and replace the equation for ri4;
in Step 8 by ris1 = (rk — 28(fx + ex)) mod 2". The conditions for correcting the error e are then

9m=3 if G contains g, g’ which are equal modulo 2k but distinct modulo 25+1

t .
wha(ex) < { 2m=2  otherwise
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for k=0,1,...,h — 1.

The decoding procedure of Algorithm 5.6 can be used for an arbitrary union of cosets of
RM,x (1,m), not necessarily contained within ZRM,x (2, m), by modifying the truncation criterion
in Step 6 according to the error correction properties of the selected code.

6 Conclusion

The connection between Golay complementary sequences and second-order Reed-Muller codes,
together with the coset ordering process, are the keys to obtaining the range of OFDM coding
schemes with favourable properties described here. These schemes are highly suitable for practical
purposes owing to the efficient decoding algorithms involving multiple fast Hadamard transforms.

We have shown that linear codes over rings, as introduced in [21], arise naturally as solu-
tions to the OFDM power envelope problem. We have also shown that certain Golay sequences
possess a high degree of intrinsic structure, whereas many other sequences defined by aperiodic
autocorrelation constraints appear not to do so.

Jones and Wilkinson [personal communication, 1997] have demonstrated the potential im-
provement offered by certain of the OFDM coding schemes of this paper by simulating their
end-to-end system performance in a typical indoor radio environment. Jones, Wilkinson and Cas-
tle [23] have shown experimentally that a representative one of the coding schemes presented here
offers superior adjacent channel interference performance as compared with conventional OFDM
coding schemes. Paterson [34] has developed and extended many of the ideas of this paper and
has given a theoretical explanation for some of our numerical results.
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U1z U3 U4 U3 U4 U34 Coset representative Max PEP
1 0 0 1 0 1 (0001001000011101) . 31.59
1 1 0 0 0 1 (0001000100101101) 31.94
0 1 0 1 1 0 (0000011000110101) 31.95
1 0 0 0 1 1 (0001010000011011) 31.98
0 1 0 0 1 1 (0001010000100111) 31.98
0 0 1 1 0 1 (0001001001000111) 31.98
0 1 1 0 1 0 (0000010101100011) 31.98
1 0 1 0 0 1 (0001000101001011) 31.98
1 1 0 0 1 0 (0000010100111001) 31.99
1 0 1 1 0 0 (0000001101011001) 31.99
0 0 1 1 1 0 (0000011001010011) 32.00
0 1 1 1 0 0 (0000001101100101) 32.00
1 0 0 0 0 1 (00010001000]1110) 49.82
0 0 1 1 0 0 (0000001101010110) 49.87
0 1 0 0 1 0 (0000010100110110) 49.98
0 1 1 0 1 1 (0001010001110010) 50.88
1 0 1 0 1 1 (0001010001001110) 51.10
1 1 0 1 1 0 (0000011000111010) 51.12
1 0 0 1 1 1 (0001011100011000) 51.65
0 0 1 1 1 1 (0001011101000010) 51.76
1 0 1 1 1 0 (0000011001011100) 51.81
1 1 1 0 1 0 (0000010101101100) 52.87
1 1 1 1 0 0 (0000001101101010) 52.90
0 1 1 1 0 1 (0001001001110100) 53.47
1 1 1 0 0 1 (0001000101111000) 53.56
0 1 0 1 1 1 (0001011100100100) 53.82
1 1 0 1 0 1 (0001001000101110) 53.99
0 0 0 0 1 1 (0001010000010100) 64.00
0 0 0 1 0 1 (0001001000010010) 64.00
0 0 0 1 1 0 (0000011000000110) 64.00
0 0 1 0 0 1 (0001000101000100) 64.00
0 0 1 0 1 0 (00000101010]0000) 64.00
0 0 1 0 1 1 (0001010001000001) 64.00
0 1 0 0 0 1 (0001000100100010) 64.00
0 1 0 1 0 0 (0000001100110000) 64.00
0 1 0 1 0 1 (0001001000100001) 64.00
0 1 1 0 0 0 (0000000001100110) 64.00
0 1 1 1 1 0 (0000011001100000) 64.00
0 1 1 1 1 1 (0001011101110001) 64.00
1 0 0 0 1 0 (0000010100001010) 64.00
1 0 0 1 0 0 (0000001100001100) 64.00
1 0 0 1 1 0 (0000011000001001) 64.00
1 0 1 0 0 0 (0000000001011010) 64.00
1 0 1 1 0 1 (0001001001001000) 64.00
1 0 1 1 1 1 (0001011101001101) 64.00
1 1 0 0 0 0 (0000000000111100) 64.00
1 1 0 0 1 1 (0001010000101000) 64.00
1 1 0 1 1 1 (0001011100101011) 64.00
1 1 1 0 0 0 (0000000001101001) 64.00
1 1 1 0 1 1 (0001010001111101) 64.00
1 1 1 1 0 1 (0001001001111011) 64.00
1 1 1 1 1 0 (0000011001101111) 64.00
1 1 1 1 1 1 (0001011101111110) 98.95
0 1 0 0 0 0 (0000000000110011) 99.72
0 1 1 0 0 1 (0001000101110111) 101.43
1 1 0 1 0 0 (0000001100111111) 101.56
0 0 0 1 0 0 (0000001100000011) 105.60
1 0 0 0 0 0 (0000000000001111) 105.85
0 0 0 1 1 1 (0001011100010111) 106.22
0 0 0 0 1 0 (0000010100000101) 106.41
1 0 1 0 1 0 (0000010101011111) 106.69
0 0 0 0 0 1 (0001000100010001) 109.48
0 0 1 0 0 0 (0000000001010101) 109.75
0 0 0 0 0 0 (0000000000000000) 256.00

Table 1: Binary coding with 16 carriers: the 64 cosets of RM(1,4) in RM3(2,4), ordered by
maximum PEP over the coset. Coset representatives are <j Ui TiT; and the PEP of each
sequence is calculated using 256 times oversampling.
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w12 U13 U4 U3 U244  U34 Coset representative Max PEP
0 0 1 1 0 1 (0002002002000222) 32.00
0 1 0 0 1 1 (0002020000200222) 32.00
0 1 0 1 1 0 (0000022000220202) 32.00
0 1 1 1 0 0 (0000002202200202) 32.00
1 0 0 0 1 1 (0002020000022022) 32.00
1 0 0 1 0 1 (0002002000022202) 32.00
1 0 1 0 0 1 (0002000202002022) 32.00
1 0 1 1 0 0 (0000002202022002) 32.00
1 1 0 0 0 1 (0002000200202202) 32.00
1 1 0 0 1 0 (0000020200222002) 32.00
0 0 1 1 1 0 (0000022002020022) 32.00
0 1 1 0 1 0 (0000020202200022) 32.00
0 0 0 1 0 1 (0002002000020020) 64.00
0 0 0 1 1 0 (0000022000000220) 64.00
0 0 1 0 1 1 (0002020002000002) 64.00
0 0 1 1 0 0 (0000002202020220) 64.00
0 0 1 1 1 1 (000202‘2202000020) 64.00
0 1 0 0 0 1 (0002000200200020) 64.00
0 1 0 0 1 0 (0000020200220220) 64.00
0 1 0 1 0 1 (0002002000200002) 64.00
0 1 0 1 1 1 (0002022200200200) 64.00
0 1 1 0 0 0 (0000000002200220) 64.00
0 1 1 0 1 1 (0002020002220020) 64.00
0 1 1 1 0 1 (0002002002220200) 64.00
0 1 1 1 1 1 (0002022202220002) 64.00
1 0 0 0 0 1 (0002000200022220) 64.00
1 0 0 0 1 0 (0000020200002020) 64.00
1 0 0 1 0 0 (0000002200002200) 64.00
1 0 0 1 1 0 (0000022000002002) 64.00
1 0 0 1 1 1 (0002022200022000) 64.00
1 0 1 0 0 0 (0000000002022020) 64.00
1 0 1 0 1 1 (0002020002002220) 64.00
1 0 1 1 1 0 (0000022002022200) 64.00
1 0 1 1 1 1 (0002022202002202) 64.00
1 1 0 0 0 0 (0000000000222200) 64.00
1 1 0 1 0 1 (0002002000202220) 64.00
1 1 0 1 1 0 (0000022000222020) 64.00
1 1 1 0 0 0 (0000000002202002) 64.00
1 1 1 0 0 1 (0002000202222000) 64.00
1 1 1 0 1 0 (0000020202202200) 64.00
1 1 1 0 1 1 (0002020002222202) 64.00
1 1 1 1 0 0 (0000002202202020) 64.00
0 0 0 0 1 1 (0002020000020200) 64.00
0 0 1 0 0 1 (0002000202000200) 64.00
0 0 1 0 1 0 (0000020202020000) 64.00
0 1 0 1 0 0 (0000002200220000) 64.00
0 1 1 1 1 0 (0000022002200000) 64.00
1 0 1 1 0 1 (0002002002002000) 64.00
1 1 0 0 1 1 (0002020000202000) 64.00
1 1 0 1 1 1 (0002022200202022) 64.00
1 1 1 1 0 1 (0002002002222022) 64.00
1 1 1 1 1 0 (0000022002202222) 64.00
1 1 0 1 0 0 (0000002200222222) 128.00
0 0 0 0 0 1 (0002000200020002) 128.00
0 0 0 0 1 0 (0000020200000202) 128.00
0 0 0 1 0 0 (0000002200000022) 128.00
0 0 0 1 1 1 (0002022200020222) 128.00
0 1 1 0 0 1 (0002000202220222) 128.00
1 0 1 0 1 0 (0000020202022222) 128.00
0 0 1 0 0 0 (0000000002020202) 128.00
0 1 0 0 0 0 (0000000000220022) 128.00
1 0 0 0 0 0 (0000000000002222) 128.00
1 1 1 1 1 1 (0002022202222220) 128.00
0 0 0. 0 0 0 (0000000000000000) 256.00

Table 2: Quaternary coding with 16 carriers: the 64 cosets of RM4(1,4) in ZRMy(2, 4), ordered
by maximum PEP over the coset. Coset representatives are 2, <j Yij TiTj and the PEP of each
sequence is calculated using 1 times oversampling.
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w12 U3 U4 U23 U4 U34 Coset representative Max PEP
0 0 2 2 0 2 (0004004004000444) 32.00
2 0 0 0 2 2 (0004040000044044) 32.00
2 0 0 2 0 2 (0004004000044404) 32.00
2 0 2 0 0 2 (0004000404004044) 32.00
2 0 2 2 0 0 (0000004404044004) 32.00
2 2 0 0 0 2 (0004000400404404) 32.00
2 2 0 0 2 0 (0000040400444004) 32.00
0 0 2 2 2 0 (0000044004040044) 32.00
0 2 0 2 2 0 (0000044000440404) 32.00
0 2 0 0 2 2 (0004040000400444) 32.00
0 2 2 0 2 0 (0000040404400044) 32.00
0 2 2 2 0 0 (0000004404400404) 32.00
1 0 2 2 1 0 (0000024604042064) 48.00
1 2 1 0 2 0 (0000040402462064) 48.00
0 0 2 2 1 1 (0002024004060644) 48.00
0 1 2 2 0 1 (0002004604200464) 48.00
1 2 0 1 2 0 (0000042600442604) 48.00
0 2 0 1 2 1 (0002042000460464) 48.00
0 2 1 0 2 1 (0002040602400644) 48.00
2 0 0 1 1 2 (0004022000044664) 48.00
2 0 1 0 1 2 (0004020602064044) 48.00
2 1 0 1 0 2 (0004002600264404) 48.00
1 1 2 2 0 0 (0000004404262604) 48.00
2 1 1 0 0 2 (0004000402204664) 48.00
0 2 3 0 2 3 (0006040206400244) 48.00
2 0 0 3 3 2 (0004066000044224) 48.00
2 0 3 0 3 2 (0004060206024044) 48.00
2 3 0 3 0 2 (0004006200624404) 48.00
2 3 3 0 0 2 (0004000406604224) 48.00
3 2 0 3 2 0 (0000046200446204) 48.00
3 2 3 0 2 0 (0000040406426024) 48.00
3 3 2 2 0 0 (0000004404626204) 48.00
0 0 2 2 1 3 (0006024404020640) 48.00
0 0 2 2 3 1 (0002064404060240) 48.00
0 0 2 2 3 3 (0006064004020244) 48.00
0 2 0 3 2 3 (0006046000420424) 48.00
0 2 1 0 2 3 (0006040202440640) 48.00
0 3 2 2 0 3 (0006004204600424) 48.00
1 3 2 2 0 0 (0000004404622640) 48.00
3 0 2 2 3 0 (0000064204046024) 48.00
0 2 0 3 2 1 (0002046400460420) 48.00
0 1 2 2 0 3 (0006004204240460) 48.00
2 0 0 1 3 2 (0004062400044260) 48.00
2 0 1 0 3 2 (0004060202064440) 48.00
2 1 0 3 0 2 (0004006200264440) 48.00
1 0 2 2 3 0 (0000064204042460) 48.00
1 2 3 0 2 0 (0000040406422460) 48.00
0 2 0 1 2 3 (0006042400420460) 48.00
0 2 3 0 2 1 (0002040606440240) 48.00
0 3 2 2 0 1 (0002004604640420) 48.00
2 0 0 3 1 2 (0004026400044620) 48.00
2 0 3 0 1 2 (0004020606024440) 48.00
2 1 3 0 0 2 (0004000406244260) 48.00
2 3 1 0 0 2 (0004000402644620) 48.00
1 2 0 3 2 0 (0000046200442640) 48.00
3 0 2 2 1 0 (0000024604046420) 48.00
3 1 2 2 0 0 (0000004404266240) 48.00
2 3 0 1 0 2 (0004002600624440) 48.00
3 2 0 1 2 0 (0000042600446240) 48.00
3 2 1 0 2 0 (0000040402466420) 48.00
0 0 2 2 0 1 (0002004604060442) 54.63
0 2 0 0 2 1 (0002040600460442) 54.63

[4032 lines of table omitted]

0 0 0 0 0 3 (000600060006000 6) 218.51
0 0 0 0 0 0 (0000000000000000) 256.00

Table 3: Octary coding with 16 carriers: the 4096 cosets of RMg(1,4) in ZRMg(2,4), ordered
by maximum PEP over the coset. Coset representatives are 2 Yoic ; Uij TiT; and the PEP of each
sequence is calculated using 256 times oversampling.



Table 4: Binary coding options with 16 and 32 carriers. d;d describes minimum distance in a

# Max possible | Max actual Min # info Code Info
carriers PMEPR PMEPR | Hamming | bits per rate rate
(dB) (dB) distance | codeword
1 16 12.0 3.0 8 5 0.31 0.31
2 3.0 6 7 0.44 0.44
3 3.0 4 8 0.50 0.50
4 6.0 4 10 0.62 0.62
5 6.0 4;4 8 0.50 0.50
6 32 15.1 3.0 16 6 0.19 0.19
7 3.0 8 11 0.34 0.34
8 6.0 8;8 10 0.31 0.31
9 6.0 6;6 15 0.47 0.47
10 6.0 4;4 17 0.53 0.53

composition coding scheme.
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# Max possible | Max actual Min Min # info Code Info
carriers PMEPR PMEPR | Hamming Lee bits per rate rate

(dB) (dB) distance | distance | codeword
1 16 12.0 3.0 8 8 10 0.31 0.62
2 3.0 6 8 12 0.38 0.75
3 3.0 4 8 13 0.41 0.81
4 6.0 4 8 15 0.47 0.94
5 6.0 4;4 4;4 16 0.50 1.00
5a 6.0 2;2 4;4 19 0.59 1.19
6 32 15.1 3.0 16 16 12 0.19 0.38
7 3.0 8 16 17 0.27 0.53
8 6.0 8;8 8;8 20 0.31 0.62
9 6.0 6;6 8;8 25 0.39 0.78
10 6.0 4;4 8;8 27 0.42 0.84

Table 5: Quaternary coding options with 16 and 32 carriers.

# Max possible | Max actual Min Min # info Code Info
carriers PMEPR PMEPR | Hamming Lee bits per rate rate

(dB) (dB) distance | distance | codeword
i 1 16 12.0 3.0 8 8 15 0.31 0.94
2 3.0 6 8 17 0.35 1.06
, 3 3.0 4 8 18 0.38 1.12
4 48 4 8 20 0.42 1.25
! b) 6.0 4;4 4;4 24 0.50 1.50
5a 6.0 2;2 4;4 27 0.56 1.69
‘ 6 32 15.1 3.0 16 16 18 0.19 0.56
7 3.0 8 16 23 0.24 0.72
8 6.0 8;8 8;8 30 0.31 0.94
9 6.0 6;6 8;8 35 0.36 1.09
10 6.0 4;4 8;8 37 0.39 1.16

Table 6: Octary coding options with 16 and 32 carriers.






