[ =acianc

Operating System Support for the
Sandbox Method and Its Application
on Mobile Code Security

Qun Zhong, Nigel Edwards, Owen Rees
Networked Systems Department

HP Laboratories Bristol

HPL-97-153

December, 1997

E-mail: [qz,nje,ore]@hplb.hplhp.com

mobile code security, This paper discusses the problems arising when
sandbox, developing secure applications from both the
compartmented security and the system engineering points of view.
mode workstation, This paper demonstrates how Mandatory Access
reference monitor Control and the related privilege management

mechanism can solve these problems by providing
the non-bypassable security reference monitors to
sandbox unsafe applications and by shifting the
responsibilities of managing the security from the
end-user to the security administrator. It
introduces one of the available operating systems
that provide these security features. It also
describes how to use these features to solve the
problems of implementing and using mobile code
security through the example of a secure browser
architecture we have implemented.

Internal Accession Date Only

© Copyright Hewlett-Packard Company 1997



Operating System Support for the Sandbox Method and Its
Application on Mobile Code Security

Qun Zhong, Nigel Edwards, Owen Rees
Hewlett Packard Labs, Bristol
Filton Road, Stoke Gifford
Bristol, BS12 60Z
< gz, nje,ore@hplb.hpl.hp.com>
Abstract

This paper discusses the problems arising when developing secure
applications from both the security and the system engineering points
of view. This paper demonstrates how Mandatory Access Control and
the related privilege management mechanism can solve these problems
by providing the non-bypassable security reference monitors to
sandbox unsafe applications and by shifting the responsibilities of
managing the security from the end-user to the security administrator.
It introduces one of the available operating systems that provide these
security features. It also describes how to use these features to solve
the problems of implementing and using mobile code security through
the example of a secure browser architecture we have implemented.

1 Introduction

Global connectivity introduced by the Internet provides exciting opportunities for
sharing resources on a large scale. Mobile code technology allows us to utilize these
resources and collaborate with each other efficiently. With this technology, we can
automatically load programs from the network and run them on heterogeneous
platforms. This means that it is possible to build large applications consisting of
dynamically changing and cooperating components.

However, as well as making it feasible to build large scale distributed applications, the
Internet and Mobile Code technology also expose us to various attacks from the
unsafe public network. Not only can malicious mobile code attack the local host, but it
can also bypass corporate firewalls to attack the internal network. Since almost all of
our current network security products such as firewalls are not designed to resist
attacks from the internal network, the security risk of using mobile code is significant.

The exciting potential of this technology has resulted in lots of research work in the
security area. However, most of this work focuses on the security issues alone. It is
difficult to convert the results to the real business applications for two reasons.

Firstly, using them requires substantial knowledge of security. The end-user also has
to spend great effort to configure and maintain them. It is difficult for a security naive
end user to correctly configure and activate them. Additionally, these users are more
likely to be subject to so-called social engineering attacks since they are less aware of
the security implication of a request made by the application than the experienced and
well informed security experts.



Secondly, it is difficult to guarantee that the final system will remain secure due to the
bugs introduced in the implementation. The experience of Java security has shown
that many security problems reported are not the problems of the Java security model
itself [1] [2]. These problems not only come from bugs in the implementation of the
security mechanism but also come from the programs that directly use the Java Virtual
Machine(JVM), since the security check built into JVM can be by passed.

Unfortunately, it is almost impossible to eliminate bugs from any non-trivial
engineering projects. What is feasible is to mitigate the damage caused by
implementation bugs and malicious code. The sandbox method, a concept previously
introduced in fault isolation [3], is deployed to meet the requirement. By providing a
restricted environment to execute the unsafe code and confine its behaviour in a
suitable way, it is possible to reduce the security breach to an acceptable degree. In
addition, this method can accommodate errors introduced in the application
development.

Through the concrete example of the vaulted browser we have implemented, this
paper demonstrates how to use operating systems with Mandatory Access Control
(MAC) and privilege management security features to support the sandbox concept.
More importantly, we suggest that only through the operating systems with these
security features, is it possible to provide a non-bypassable restricted execution
environment.

The vaulted browser architecture described in this paper adopts several specialized
application level reference monitors to control the resource access instead of building
one big and complex reference monitor. This feature reduces the size and complexity
of each reference monitor so the code of the reference monitor can be thoroughly
studied. ‘

By shifting the security configuration and activation of the vaulted browser
architecture to the security administrator, the system usability and security can be
greatly enhanced. This ability allows the security policies to be enforced consistently
across the enterprise network. Consequently, the risk of inconsistent security policy
can be greatly reduced. Additionally, this ability also liberates the security naive end-
users from managing the mobile code security themselves, and thus, enhances the
system usability and reduces the risk of social engineering attacks.

2 Mandatory Access Control and Privilege Management

This section introduces Mandatory Access Control (MAC) and Privilege
Management. MAC is based on the lattice security model [4]. It was developed and
used to support information flow control. Its purpose is to enforce administration
security policies. However, Mandatory Access Control alone is not sufficient to
confine the behaviour of an application while at the same time provides the flexibility
that the application needs to function. We need both MAC and the related privilege
management mechanism to provide what we need to support the sandbox method
from the bottom-up.

Operating systems providing these additional features are typically developed to meet
or exceed the B level trusted operating system defined in the Trusted Computer



System Evaluation Criteria (TCSEC) [5]. HP-UX/CMW is one of these operating
systems. It was developed to meet the Compartmented Mode Workstation Evaluation
Criteria (CMWEC)[6]. CMWEC is a related but different evaluation criteria from
TCSEC. CMWEC'’s criteria contain all the B1 security features as defined in TCSEC
with some extra features. These security features are standard and independent to the
operating system architecture so they can be integrated into various operating system
platforms.

The descriptions of these security features and the vaulted browser we implemented
are based on HP-UX/CMW, which is a security enhanced HP-UX operating system
previously supplied to government and military departments. Most applications and
shared libraries developed on HP-UX can be run without modification on HP-
UX/CMW.

2.1 Mandatory Access Control

Mandatory Access Control is the administration imposed access control. It is enforced
by the operating system through comparing the sensitivity labels of the subject (such
as a process or a user) and the object (a system resource such as a file or device) of a
system operation. This security check is in addition to the normal Discretionary
Access Control (DAC) check that is available on most of the operating system today.
These MAC labels are defined by the system administrator and are not changeable by
the users who do not have certain privilege.

Sensitivity labels are a combination of hierarchical classification and non-hierarchical
compartments. The relationship of two sensitivity levels A and B is defined as:

e Aisequal to B if:
1. A’sclassification is the same as B’s, and
2. A’s compartment sets are the same as B’s.
e A dominates B if: .
1. A’s Classification is greater than or equal to B’s, and
2. B’s compartments are a subset of A’s.

For example, if we have two compartments: inside (I) and outside (O) and two
classifications: unclassified (U) and confidential (C) (C greater than U). We get
following dominance relationship between the possible sensitivity labels:

Figure 1 Dominance Relationships



For example, IC dominates IU and C as well as itself. But IC does not dominate OU.

The MAC rules CMW used are more restrictive than the rules specified by TCSEC:
Subject A can read object B only if A’s sensitivity label dominates or is equal to B’s
sensitivity label; Subject A can write object B only if A’s sensitivity label equals B’s
sensitivity label. It guarantees the information flow cannot breach both information
confidentiality and integrity.

MAC provides an efficient way to achieve information separation that is critical in
sandbox model. By labeling processes and system resources into different
compartments and classifications, we can separate the subjects and the resources that
will otherwise be achieved through expensive hardware separation. As a result, every
non-default resource access has to go through a proxy that has the necessary privileges
to overwrite the MAC rules. This provides excellent support to build the non-
bypassable security reference monitors of the resources we want to protect.

2.2 Privileges and Privilege Management [7]

In CMW there is no concept of an all-powerful super-user (e.g. root or administrator),
rather the power of such a user is divided into approximately 50 privileges, which can
be grouped into three sets. These privileges are the trust tickets given to the subject to
enable them to perform certain sensitive system operations. For example, when a
MAC/DAC check fails, the operating system checks to see whether the subject has the
necessary privilege to override this check before deciding to reject the operation. One
set of privileges is used to override MAC rules. For example, “allowmacread”
privilege enables a process to read data of different sensitivity label. Another set of
privileges is used to override DAC check. Others are used to enable various privileged
system operations such as binding to a privileged network port. Any operations that
need privilege to perform are subject to system audit.

CMW also has a well-designed privilege management mechanism to guarantee the
safe transfer of privileges with great flexibility. This mechanism greatly reduces the
damage caused by compromised privileged processes in following ways. Firstly, the
privileges of the users and executable files, which are assigned by the system
administrator, are safely transferred to the processes. For example, if a user does not
have necessary authorization that is assigned by the system administrator, the
processes he or she started will not get the privileges the executable file has.
Secondly, the privilege inheritance between parent and child processes is not
automatic. As a consequence, even if the process is compromised and spawns
malicious child processes, these child processes will not acquire the privileges their
parent processes have. Finally, a program is able to check whether its parent process is
a “trusted process”, which means this parent process should hold a certain privilege at
the time it started the child process. This ability lets the child process decide whether
it should carry on or not. Consequently, a compromised application is prevented from
executing the privileged executable file the user is authorized.

In addition, “trusted programming style” as set out in [7] employs the concept of
“privilege bracketing”. This style requires the programmer to raise the necessary
privileges just before the sensitive system operation and remove them as soon as it is
not needed. Programs written in this style are more reliable as the programmer can



browser and hence the mobile code it downloads and runs are isolated by labeling
them with “System Middle”.
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The browser’s executable file, the files, directories and other resources that the
browser read but not write such as the configuration files are given the label "System".
The result is that these resources are protected by the Mandatory Access Control so
that users, a broken browser or malicious mobile code cannot bypass the security
administration by overwriting them with their own copies of these files. Other files
that need to be both read and written by the browser, such as bookmark file, history
files and cache, are labelled as "System Middle".

The browser and all the mobile code it executes in the System Middle do not have any
privileges so that they cannot access any resource labelled with different
compartments unless it requests them through a proxy. Therefore, the behaviour of the
browser and mobile code is encapsulated in the “System Middle” compartment and
the local resource access control is enforced by the operating system.

TPO acts as the Reference Monitor to the network resources. It enforces the network
access control according to the policies set up by the system security administrator. It
is a small program that has the necessary privileges that allow it to pass data between
different sensitivity labels. The browser’s Socks [7] proxy is configured as TPO to
enable the browser and the mobile code to gain access to the network resources.

TPI acts as the Reference Monitor of the display resources. It has the privileges that
all it to relay all the display messages to the display servers labelled as “system
inside” using X protocol. These display servers are workstations running X servers,
for example, Xterms or WindowsNT workstations running Xserver emulators. If the
users are not working on the CMW machine, they can still browse the Internet safely
since the display messages is relayed by TPI to reach the user’s machine.

In a more generalized form, the vaulted browser takes following form:



pay more attention to study the privileged code segments to make sure bugs would not
be likely in these areas. As a result, the chance of the failures happening in the
privileged area will be substantially reduced.

By providing fine-grained privileges, CMW lets us grant the subject the least
privileges it needs to perform its task. As a result, we can make use of this ability to
confine the behaviour of the subject. For example, if we do not want a process to
access certain resources but still be able to perform certain sensitive system
operations, labeling the process and the resources with sensitivity labels that do not
dominate each other and withhold the MAC privileges from the process will achieve
the goal.

With the privilege management and trusted programming, we can program our critical
trusted programs securely and reliably. The privileged trusted programs that
implement the vaulted browser architecture described in section 3 make use of these
security facilities and follow this programming style. They check whether they are
started by the authorized parent process with proper privileges. This enables the small
trusted programs that act as the reference monitors to be tamperproof.

3  Security Architecture of Vaulted Browser

This section describes how to make use of MAC and privilege management to provide
a restricted executing environment for the WWW browser and the mobile code by
preventing them from pretending to be local trusted processes and forcing them to
pass through the reference monitors to access critical system resources. We will
describe the security architecture first. Then we will describe an implementation of
this architecture on HP-UX/CMW operating system. Finally, we will describe how
this architecture can prevent various attacks on Java and the extra advantages it
provides.

The prototype is implemented on HP-UX/CMW 10.09 with Netscape 3.0. However,
this security architecture can be implemented on any operating systems provided they
have similar MAC and privilege management with any browser that supports Socks
[8] protocol.

3.1 The security architecture

The first goal we want to achieve is to prevent any process or thread started by the
browser from pretending to be local trusted code. Therefore, as soon as the data for
the browser, probably containing mobile code, arrives at the local host, we label them.
The operating system guarantees that this label is not changeable by anyone who does
not have the privilege, so the subsequent security decisions can be reliably based on
this label. The second goal we want to achieve is to force the processes to go through
the security check before they can gain access to the various resources. This is
achieved by labeling all the resources we want to protect with different labels.

Figure 2 is the security architecture of the Vaulted Browser in its simplest form. We
use one classification, “system”, and three compartments: Inside, Middle and Outside,
to label the resources and processes. All the hosts in the Intranet are labeled with
“System Inside”. All the hosts on the Internet are labeled with “System Outside”. The
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Where there are multiple middle compartments: SM1, SM2, ... , SMn. Each middle
compartment represents a browser and mobile code that can access a particular set of
resources. Different middle compartments can have different sets of trusted proxies
that allow the mobile code to access different services. For example, in the above
figure, TPI-1 can be used to provide limited access to CORBA services in the internal
network using IIOP [9].

3.2 The Implementation of the Architecture

The implementation of the above architecture consists of four components: Trusted
Browser Front End (TBFE), Trusted Proxy Inside (TPI), Trusted Proxy Outside
(TPO) and a browser. TBFE acts as a single point-of-entry to the vaulted browser. It
also terminates the whole process group when any single member terminates. TPI is a
display proxy. It manages the interaction between the real browser running in the
middle compartment and the display servers. It enforces the access control policy to
the display resources. TPO is a network access control proxy. It’s a modified Socks
server that enforces the network access control. Other than the browser, which is not
given any privileges, all the other three components are small and privileged programs
that are written in trusted programming style [7].

Figure 4 shows the relationship between these four components and the
communication protocols between them.
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Figure 4 Processes and the messages between them within the display machine and CMW

TBFE is started by the user who wishes to use the browser. It has the privileges that
allow it to start the browser and proxies in the correct compartments and pass them the
correct parameters. TBFE then waits for one of the child processes it spawned to
terminate. Usually this is the browser when the user finishes using it. Then TBFE
sends exit signals to its other child processes and exits cleanly.

TBFE can be started remotely by users that are not connected to the CMW machine
provided they have accounts on the CMW machine, they are authorized to use the
vaulted browser system and a X-server is running on their local machine. In addition,
a script that starts TBFE remotely, for example, by making use of remote execution
functions provided by UNIX such as 'remsh' or 'rexec', should be installed on their
machine.

When TPI is started by TBFE in System Inside, it waits for the connections from the
browser running in System Middle. When TPI receives a request for display, it
evaluates the request and makes a connection to the real display server the user is
using. If this connection is successful, it then pumps the messages between System
Middle and System Inside. Optionally, some X message filtering can be performed
here to prevent suspicious X-messages generated by the mobile code getting through.

When the TPO is started by the TBFE in the System Outside compartment, it waits
for the connections coming from System Middle. When a connection request arrives,
the TPO evaluates the request based on the destination and the label of the request to
decide whether the connection is allowed. If the connection is not allowed, it then
drops the connection. Otherwise, it will make the connection to the destination and
raise the necessary privileges to pass the data between the different sensitivity labels.

3.3 The Benefit and Security Analysis of the architecture

By providing the resource separation through MAC labels and dividing the whole
system’s reference monitor into several specialised reference monitors, this
architecture can protect us from the attacks through application and JVM
implementation errors and provides the potential to control the resource specific



attacks centrally. It also frees end users from managing and maintaining security
themselves.

3.3.1 Security Analysis of the Architecture

The security of the architecture relies on the security of underlying operating system.
However, the operating system is the only thing this architecture depends on. Directly
building security mechanisms on top of operating system without any support from it
also depends on the operating system’s security. In addition, this method depends on
the security of the applications that use these security mechanisms as well. As it is
very difficult to be sure that these applications do not contain bugs, it is difficult to
guarantee that compromised application can bypass these security mechanisms and
access resources via native operating system directly.

The degree of dependency to the operating system security is smaller than security
mechanisms without MAC and privilege management support. Unlike conventional
operating system, it is easy to achieve information separation on operating systems
with MAC. As many operating system attacks are through the bugs in privileged
system programs, keeping the unnecessary system programs away from processes in
middle compartments will reduce the security risk.

The architecture satisfies the three design requirements of reference monitors [4].
Firstly, the configuration files of these reference monitors are labeled with “system”
which means that they are not changeable by the end-user or malicious mobile code.
In addition, these reference monitors will check whether the process started them has
the necessary authorization. These mean that these reference monitors are tamper
proof since only the authorized process will be able to start them and they will be
started with authorized configuration files. Secondly, the reference monitors such as
TPI and TPO are not by-passable because only though them the resources labelled
with another sensitivity label can be reached. Finally, as their tasks are mostly
checking the sensitivity labels to see whether the data flow is allowed or not and not
processing the data itself, they are very small can be thoroughly tested and analyzed.

Since all the access control checks are based on the immutable sensitivity labels and
nothing else, there is no way that a piece of code can gain any excess privileges or
access resources by bugs in applications and JVM. As a consequence, the attacks such
as “Slash and Burn” [2], which allow the mobile code to pretend to be the local trusted
code by exploiting the bugs or design flaws in the browser and JVM, will not be able
to access the extra system resources. Since mobile code does not have any privilege, it
cannot change its own label to let the TPI and TPO grant it extra resource access.
Even though they can break the security enforced by Java, they are still confined to
the “system middle” and able to cause only very limited damage to the resources
labelled as “system middle”. Attacks such as “Applets Running Wild”, “Casting
Caution to the Wind” and “You’re not my Type” [2], which penetrate the system
through exploiting type confusion and the security inconsistency in various pieces of
Java security “prongs”, will not collapse the whole system due to the same reason.

As all the access to a resource has to pass its reference monitor, this reference
monitors can be further enhanced to provide extra resource specific protection when



needed. For example, The TPI in our architecture can be enhanced to detect the
dangerous X-messages that mobile code sends out and filtering them out.

3.3.2 The Advantages of the Architecture

Not only does the architecture offer reliable security through several independent and
small reference monitors instead of a big and complex one, but it also enhance the
system security through reducing the inconsistency in enforcing security policies. If
different users define their own security policy according to their own understanding
and enforce these security policies separately, the chance of the inconsistent security
policies will be very big and the system will be much easier to compromise. In our
architecture, the security policy is defined by the system administrator who has better
knowledge of security than an ordinary end-user has. These security policies are also
enforced by the centralized reference monitors. Therefore, the risk from inconsistent
security is small.

The architecture further enhance the system security by reducing the risk of so-called
social engineering as the responsibility of maintaining security belongs to the system
administrators. Because they are more aware of security implications of a particular
application request than an ordinary end-user, they are less likely to hand out the
critical security privileges. Social engineering attacks on the end-user would not gain
unauthorized resource access. For example, in the above implementation, the mobile
code executing in a browser started directly by an internal end-user would not gain
access to the external network since TPO only accepts connections from the middle
compartments.

The system’s usability will also be enhanced as the result of freeing end-users from
managing and maintaining system security themselves. They do not need to have
extensive knowledge of network security to browse the Internet safely.

4 Conclusion

This paper demonstrates how the Mandatory Access Control model and the privilege
management mechanism can be used to support sandbox method. By labelling the
resources and process, MAC offers logical information separation that would
otherwise only be achieved through expensive hardware separation. These security
mechanisms also provide the necessary support to construct various tamperproof
security reference monitors and force all privileged resource accesses to pass through
these reference monitors.

The vaulted browser architecture described in this paper also demonstrates that MAC
and privilege management is a suitable platform to support administrative security
management. This ability allows us to shift the responsibility of defining and
maintaining system’s security from the end-users to the system security administrator.
Therefore, the risk of social engineering attacks and inconsistent security policies can
be greatly reduced. The system’s usability can also be enhanced.

The vaulted browser architecture described in the paper also introduces several
specialised security reference monitors. Not only does this method let us construct
small and reliable reference monitors by reducing the dependencies between various
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security “prongs”, but it also offers the flexibility to support various security policy
models.

In addition, because the concept of MAC and privilege management is independent of
operating system functionality, it can be integrated into various operating system
platforms. This also enables the method and the vaulted browser architecture
introduced in this paper to be deployed on many operating system platforms.
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