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Abstract

The contest between code-makers and code-breakers has been going on
for thousands of years. Recently, quantum mechanics has made a remarkable
entry in the field. On the one hand, it is generally accepted that quantum
cryptography can provide absolute security for communications between two
users. On the other hand, code-breakers in possession of a quantum com-
puter can easily break popular encryption schemes such as RSA and Data
Encryption Standard (DES) which are essentially intractable by any classical

computer.

I. INTRODUCTION

Coded messages have a long history in military applications. [1] With the proliferation
of the Internet and electronic mail, the importance of achieving secrecy in communica-
tions by cryptography [2]—the art of using coded messages—is growing each day. Amaz-
ingly, quantum mechanics has now provided the foundation stone to a new approach to
cryptography—quantum cryptography. [3] It has been claimed that quantum cryptography
can solve many problems that are impossible from the perspective of conventional cryptog-
raphy. Here I survey the physical principles behind quantum cryptography together with its
triumphs and defeats. This is followed by a discussion of the power of a quantum computer
in code-breaking. Finally, I give some thoughts for the future.

* Cryptology is the art of secure communications. It consists of cryptography, the art of code-making
and cryptanalysis, the art of code-breaking.

tTo appear as Chapter 4 of Introduction to Quantum Computation and Information, eds. H.-K.
Lo, S. Popescu and T. Spiller, World Scientific Press (1998), http://www.wspc.com.sg/.



II. NOVEL PROPERTIES OF QUANTUM INFORMATION

In my opinion, the essence of quantum cryptography can be understood by considering a
single question: Given a single photon ! in one of the four possible polarizations: horizontal,
vertical, 45 degrees and 135 degrees, can you distinguish between these four possibilities with
certainty? Surprisingly, the answer is no. This is due to the novel properties [4] of quantum
information. First, there is a physical law in quantum mechanics known as the quantum
‘no-cloning’ theorem [5] which states that an unknown quantum state cannot be cloned.
Second, given a quantum system prepared in one of two prescribed non-orthogonal states,
any attempt to distinguish between the two possibilities necessarily leads to disturbance.
Third, a measurement on an arbitrary unknown quantum state is an irreversible process
which introduces disturbance to the state. As a result of these three properties, passive
monitoring of quantum signals is impossible. Therefore, eavesdroping on quantum channels
necessarily disturbs the signal and is exceedingly likely to be detected. In what follows, I
will discuss these three properties [4] in more detail.

A. Quantum No-Cloning Theorem

Owing to the linearity of quantum mechanics, there is a quantum no-cloning theorem [5]
which states that an unknown quantum state cannot be copied.? A proof by contradiction
goes as follows: Suppose the contrary. Then a quantum Xerox machine exists and can copy
an unknown state. Considering the unitary evolution of the composite system with two
orthogonal states |0) and [1) respectively as the input, one finds that

0) ® [u) — |0) ® |0) ® |vo) 1)
and
1) ®[u) = 1) @ [1) ® |v1) (2)

where |u) is the initial state 3 of the Xerox machine, |vy) and |v;) are the final states of the
system excluding the original and the duplicate. |vp) and |v;) may be non-orthogonal. Now
suppose that the input is, in fact, a linear superposition a|0) + b|1) (a,b # 0) of the two
orthogonal states. Then by the linearity of quantum mechanics, one obtains from Egs. (1)
and (2) that

'Just like matter is made up of indivisible atoms, light is made up of photons, which are indivisible
without a change of frequency. A photon is the smallest unit or quantum of light which can be
thought of as a tiny, oscillating electromagnetic field. The direction of the electric oscillation is
known as its polarization, which can be probed by using a polarizer or a calcite crystal.

?Andy Steane says: “Even though one can clone a sheep, one cannot clone a single photon.”

*lu) is independent of the input state (|0) or [1)) because the Xerox machine is assumed to have

no prior knowledge of the state.



(al0) + b]1)) ® |u) — d|0) ® |0) ® |vo) + b[1) ® |1) ® |v1)- (3)

Notice that the state of the original is now entangled with the duplicate. However, for
quantum cloning the resulting state should be a direct product

(al0) +0]1)) ® (al0) +b]1)) & [v') (4)
instead. Since

al0) ® |0) ® |vo) + b|1) ® |1) & |v1)
# (al0) + b]1)) ® (al0) +b]1)) ® [v') (5)

whenever a, b # 0,* one concludes that an unknown quantum state cannot be cloned.’®

B. Information Gain =— Disturbance

Another unusual property of quantum mechanics is that, in any attempt to distinguish
between two non-orthogonal states, information gain is possible only at the expense of
introducing disturbance to the signal. A proof goes as follows: Suppose one is given a
particle in one of two possible non-orthogonal states |¢) and |¢). The most general evolution
involves the attachment of an ancillary quantum system say in a prescribed state |u) and
a unitary transformation of the composite system. Assuming that the evolution leaves the
state of the particle unchanged, one finds that

9) ® [u) = [8) ® |v) (6)
and
[9) ® [u) = [¥) @ |v') (7)

where |v) and |v') denote the final states of the ancilla in the two situations. Since the inner
product is preserved by unitary transformations, one takes the inner product between the
above two equations and finds that

4This can be verified by considering a simple example, say a = b= 1/v/2.

5The above discussion shows that cloning violates the linearity of quantum mechanics. Since
unitary transformations are linear, cloning also violates unitarity. Furthermore, cloning violates
causality. Historically, it was suggested by Herbert [6] that cloning can be used to transmit signals
faster than the speed of light. Suppose Alice and Bob share an EPR pair of photons. If Alice
would like to send a ‘0’, she measures the polarization of her photon along the rectilinear basis.
If she would like to send a ‘1’, she measures it along the diagonal basis. Now her measurement
will project Bob’s photon into one of the four possible polarizations—vertical, horizontal, 45-
degree and 135-degree. If cloning were possible, immediately after Alice’s measurement Bob could
generate a sequence of photons all in one of the four possible polarizations. Bob could determine
the polarization of his photons and thus the basis measured by Alice immediately, thus implying

transmission of signals faster than the speed of light.

3



((ul @ (8]) (I¥) ® [u)) = ((v| @ (¢]) (1) ® [v'))
(ulu) - (Blv) = (v[v') - (81¥)
1= (v) (®)

where the last line follows from the fact that (¢|¢) # 0 for non-orthogonal states. Therefore,
one concludes that |v) is the same as |v'). In other words, any process that causes no
disturbance to any two non-orthogonal states must give no information in distinguishing
between the two. Thus, information gain in distinguishing between two non-orthogonal
states is possible only at the expense of disturbing the state of the system.

These two properties—the quantum no-cloning theorem and the tradeoff between infor-
mation gain and disturbance—imply that, given a photon in one of the four polarizations
(horizontal, vertical, 45-degree and 135-degree), there is no way to distinguish between the
four possibilities with certainty.

C. Irreversibility of Measurements

One might ask: What if one makes a measurement and copies the result of the mea-
surement? Doesn’t it allow one to make copies? The answer is no because measurements
generally disturb the state of an object under observation. Consequently, the result of a
measurement is generally different from the initial state and the copying will be unfaithful.
To understand this point, it suffices to consider the above example of a photon in one of
the four possible polarizations.® A birefringent calcite crystal can be used to distinguish
with certainty between horizontally and vertically polarized photons. As shown in Fig. 1a,
horizontally polarized photons pass straight through whereas in Fig. 1b vertically polarized
photons are deflected to a new path. Photons originally in these two polarizations are,
therefore, deterministically routed. However, the law of quantum mechanics says that if a
photon polarized at some other direction enters the crystal (Fig. 1c), it will have some prob-
ability of going into either beam. It will then be repolarized according to which beam it goes
into and permanently forget its original polarization. For instance, a diagonally (i.e., 45-
or 135-degree) polarized photon is equally likely to go into either beam, revealing nothing
about its original polarization.

If a photon is known to be rectilinearly (horizontally or vertically) polarized, by a simple
modification—adding two detectors, such as photomultiplier tubes, that can record single
photons along the two paths—an observer Bob can reliably distinguish between the two
possibilites. This set up will, however, randomize the polarizations of diagonal (45- or
135-degree) photons, thus failing to distinguish between the two possibilities. In order to
distinguish between diagonal photons, one should rotate the whole apparatus (calcite crystal
and detectors) by 45 degrees. The rotated apparatus is, however, powerless in distinguishing
between vertical and horizontal photons.

In conclusion, when a photon in one of the four polarizations (horizontal, vertical, 45-
degree and 135-degree) is received, a naive process of measure-and-copy will disturb

The discussion here is based on an excellent exposition in Ref. [3].
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FIG. 1. A calcite crystal is used to distinguish between horizontal and vertical photons. (a)
Horizontally polarized photons pass straight through. (b) Vertical polarized photons are deflected
to a new path. (c) Diagonally polarized photons will have equal probability of coming out vertically

or horizontally polarized.

the signal and fail to distinguish between the four possibilities: A measurement that
distinguishes rectilinear photons will disturb diagonal photons. Similarly, a measurement
that distinguishes diagonal photons will disturb rectilinear photons. As the last two sub-
sections demonstrate, this fundamental limitation in distingushing between non-orthogonal
states is due to the basic principles of quantum mechanics and thus it applies not only to
the particular measuring apparatus described here, but also to any measuring apparatus.

I remark that these three novel properties of quantum information—1) no cloning, 2)
information gain implies disturbance and 3) measurements are irreversible—are closely re-
lated. Indeed, the first and third properties can be regarded as corollaries of the second. It
would, thus, be interesting to work out a quantitative theory of the second property. (7]



III. AN ILLUSTRATIVE EXAMPLE: QUANTUM MONEY

It was first appreciated by Stephen Wiesner [8] that quantum mechanics may be useful for
cryptography. In a seminal manuscript written in about 1970 which remained unpublished
until 1983, Wiesner showed that quantum mechanics can, in principle, be used to make
bank notes 7 that are physically impossible to counterfeit. The idea is that, in addition
to a unique serial number in a bank note, one stores on it a sequence of isolated two-state
physical systems. For instance, one can imagine trapping photons with perfectly reflecting
mirrors. Each of the trapped photons should be randomly and independently chosen to be in
one of the four polarizations (vertical, horizontal, 45-degree and 135-degree). In the bank, a
record of the serial numbers together with the actual polarizations is kept. See Fig. 2. Now
the key point is that the polarization basis (rectilinear or diagonal) used for each photon
is kept secret. When a customer deposits a bank note, the bank with its knowledge of the
polarization basis can verify the polarizations of the sequence of photons without introducing
any disturbance. On the contrary, a counterfeiter who is ignorant of the polarization basis
has absolutely no way of counterfeiting a bank note faithfully.

Quantum Money

101101 /IO Money

101101 Vv 45° 13 H H Bank Record

FIG. 2. In addition to a serial number, a sequence of single photons are kept in a bank note.
The polarizations of those photons are a secret which is kept in the bank record.

For illustration, let me consider a simple measure-and-copy strategy. Suppose that,
for each photon, a counterfeiter simply chooses one of the two (rectilinear or diagonal)
bases to perform a measurement and makes copies according to his measurement result.
There is a probability 1/2 that a wrong basis is chosen in which case the polarization of
the photon will be randomized. Each of those randomized photons has only a probability

" Actually, it is morc appropriate to call it a quantum check because a verification step with the

bank is needed for each transaction.



1/2 of passing the bank’s subsequent verification step. For each photon a measure-and-
copy strategy, therefore, gives a total probability 1/2 + 1/2(1/2) = 3/4 of success for the
counterfeiter. If the total number of photons in each bank note is /N, a duplicate has
only a probability (3/4)N of passing the bank’s verification step. When N is large, this
probability becomes exponentially small. For this reason, a measure-and-copy strategy fails
miserably for counterfeiting quantum money. The security of quantum money against more
sophisticated counterfeiting strategies is guaranteed by the quantum no-cloning theorem.
Wiesner’s work was so far ahead of his time that it was largely ignored in the 1970s.
However, in the 1980s and 90s, various quantum cryptographic protocols including quantum
key distribution were proposed. Before I come to them, I shall first introduce the subject of

cryptography.
IV. CRYPTOGRAPHY

Suppose a sender, Alice, would like to send a receiver, Bob, a message. A basic problem
in cryptography [2] is to make sure that an evil eavesdropper, Eve, cannot read it. (See
Fig. 3.) This can be done by encryption. The idea is to scramble the message so that it
becomes unintelligible to anyone except the intended recipient. In modern cryptography,
the encryption algorithm itself is public information and the security lies on the users’
knowledge of a secret string of information, known as the ‘key’. Everyone can make copies
of the encrypted message, but only the intended recipient who possesses the correct key can

unlock form it the original message. See Fig. 4a.
D
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 Eve
FIG. 3. Alice sends a message to Bob through a channel while the eavesdropper Eve is listening

to their conversation.

If Alice and Bob share a key of the same length as the message, a perfectly secure scheme
of communications is the one-time pad shown in Fig. 4b. It was invented by Vernam in 1918:
For ease of discussion, the message is converted to binary. Suppose both the sender and the
receiver possess a copy of a random sequence of 0’s and 1’s. The sender Alice can encode a
message by combining the message and the key using the exclusive OR operation bitwise.
See Fig. 4b. In other words, each message bit is flipped if and only if the corresponding
key bit is 1. The encrypted form of the message is then transmitted to Bob. Bob decodes
by combining the encrypted message and the key with a similar application of the exclusive

OR operation bitwise.
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FIG. 4. (a) A message is encrypted by Alice using a key into a ‘ciphertext’, which is unin-
telligable to the eavesdropper. Bob, sharing the same key with Alice, can, however, decrypt the
ciphertext to recover the original message. (b) One-time pad.

The one-time pad is secure because the encrypted message, being formed by the exclusive
OR of the message with the random secret key, is itself totally random. Anyone intercepting
the message and not having the encryption key knows that the message exists and how long
it is, but will not be able to know anything about its meaning. It is crucial to the security
of the one-time pad that the length of the key is the same as the message. In other words,
the key in a one-time pad should never been re-used.® Otherwise, an eavesdropper Eve can
reduce her ignorance of the message to that of the key.

So, what is the catch with the one-time pad? The catch is the following: The above

8Encryption schemes with key lengths shorter than those of the messages also exist and are widely

used. They do not give perfect security.



discussion presupposes the possession of a common secret key by Alice and Bob. In practice,
Alice and Bob need a second channel to transmit the key. A key problem in conventional
cryptography is the key distribution problem. In classical physics, an evil eavesdropper can
always passively monitor the key distribution channel and make copies of the transmitted
key. Consequently, she can decode the message successfully. Worse still, there is, in principle,
no way for the users to detect such a passive eavesdropping attack.

In conventional cryptography, the key distribution problem can be solved through either
1) trusted couriers or 2) ‘public key’ schemes.? At the conceptual level, both methods are
unsatisfactory: In the first case, the danger in the deflection or capture of couriers by the
adversaries cannot be under-estimated. In the second case, the security of public key schemes
is based on computational assumptions, i.e., on the difficulty of solving certain hard problems
such as the factoring of large integers. [See Appendix A for a discussion on RSA, which is
the most popular public key crypto-system. The security of RSA is based on the difficulty of
factoring large integers.] These computational assumptions may be defeated by exhaustive
computer analysis or by the discovery of better algorithms for solving the problems on which
they are based. For instance, Shor [10] has constructed efficient quantum algorithms for both
factoring 10 and the ‘discrete logarithm problem’. Therefore, if a quantum computer is ever
built, many public key cryptosystems in use today will become unsafe. Worse still, this will
lead to a retrospective total security break with catastrophic consequences.

Ironically, quantum mechanics also comes to the rescue. As remarked earlier, an attack
that is notoriously difficult to defeat in conventional cryptography is passive eavesdropping.
The strength of this attack lies in the ability of the eavesdropper Eve to make identical copies
of the transmitted messages in order to perform extensive subsequent computer analysis off-
line. In conventional cryptography there is, in principle, nothing to prevent this attack. In
contrast, the quantum ‘no-cloning’ theorem forbids passive eavesdropping. As discussed in
the Section 2, information gain generally leads to disturbance. Consequently, eavesdropping
on a quantum channel will almost surely be detected due to the disturbance introduced to

9GS0 far, I have assumed that the encryption key is the same as the decryption key. As shown in
Fig. 4a, one can think of such a ‘symmetric’ algorithm as a safe and the key as the combination.
“Someone who knows the combination can open the safe, put a document inside and close it again.
Someone else with the combination can open the safe and take the document out. Anyone without
the combination is forced to learn safecracking.” [2] As the sender and the receiver must agree
on a secret key in using a symmetric key:algorithm, the key distribution problem is inevitable.
However, there exist schemes in which the sender and the receiver do not need to agree on a secret
key before they send messages. Indeed, in 1976 W. Diffie and M. Hellman [9] invented public key
cryptography. In a public key crypto-system, two different keys are used. The encryption key is
made public whereas the decryption key is kept private. It is supposed to be computationally hard
to deduce the decryption key from the encryption key. Therefore, one can think of a public key
crypto-system as a mailbox. Everyone can easily put mail in it, but getting the mail out is much
harder unless one has the (secret) private key. Public key crypto-systems avoid the key distribution
problem, but their security is based on some unproven computational assumptions.

10Gee Chapter Six for details on Shor’s efficient quantum algorithm for factoring.



the signals. This is the basic idea behind quantum key distribution, a subject that I will
come to in the next section.

V. QUANTUM KEY DISTRIBUTION

Quantum key distribution cannot prevent eavesdropping. However, it can detect eaves-
dropping. If eavesdropping is found (from the abnormally high error rate), the transmitted
random string of numbers is discarded. On the other hand, if the error rate is sufficiently
small, the two users have the peace of mind that the transmitted random string of numbers
is most likely to be secure and can be used as a secure key for subsequent communications.
Notice that, even in the case when the error rate is large, no useful information is leaked
to the eavesdropper. This is because, in this case, the string is simply discarded. Alice and
Bob postpone sending any valuable information until the security of the key is ascertained.

Notice that there is nothing, in principle, to prevent an adversary from jamming a quan-
tum channel. In this case, the two users will be forced to abandon using the key distribution
channel for the time being. However, the big advantage of quantum key distribution is to
avoid a false sense of security. When substantial eavesdropping has occurred, the two users
of a quantum key distribution scheme will be exceedingly unlikely to be fooled into believing
the security of the key.

A. Bennett and Brassard’s Scheme (BB84)

Various schemes for quantum key distribution have been proposed. For simplicity, I will
consider mainly the first and the most well-known quantum key distribution scheme BB84,
proposed by Bennett and Brassard [11] in 1984. The idea of BB84 scheme is not for Alice to
prepare a particular key and send it to Bob. Heuristically, Alice and Bob each independently
generate a random string of numbers. Afterwards, they go through some public discussion
to decide on the key.

Two channels between Alice and Bob are needed for BB84: First of all, a classical
communications channel is needed. It is assumed to be public but unjammable.!! In other

1An unjammable channel is, in principle, impossible to achieve. If one allows the eavesdropper
to attack the classical channel, some form of authentication process must be implicitly used in
order to verify that the two users are talking to each other rather than an eavesdropper in disguise.
Notice that authentication is needed even in conventional key distribution schemes. It can be done
only if the two users initially share some small amount of secret information. If Alice and Bob have
seen each other before, the information can be their outward appearances. In the case that they
have not met before, it can be a short secret password. There are information-theoretically secure
authentication schemes. [13] Notice that without sharing some secret information or an unjammable
channel with Bob, it is totally symmetric whether Alice is talking to Bob or to an enemy Eve
and it would be impossible for her to distinguish between the two cases. Barring unjammable
channels, what quantum key distribution can achieve is only to ezpand this initially shared key
information. Perhaps, a more appropriate name for quantum key distribution is quantum key

10



words, while anyone can read all the transmitted messages, no one can alter the messages
sent by Alice or Bob. In peacetime, the New York Times or the BBC Radio would be good
approximations to an unjammable classical channel. This classical channel will be useful for
public discussion between Alice and Bob. (See below.) Second, a quantum communications
channel is needed. Experiments have been done in free air [12,14] and on optical fibers [15]
and ground to satellite experiments [16] have been proposed. The quantum channel is
assumed to be insecure and the eavesdropper can manipulate the quantum signals in any
way she desires.

Let me introduce a refined procedure of the BB84 scheme. [11] Suppose Alice and Bob
would like to establish a secret key. Before the execution of the protocol, Alice and Bob first
decide on the maximal acceptable error rate epay for the transmission.'” Refering to Figs. 5
and 6, the steps of BB84 are as follows:

(1) Alice sends Bob a sequence of photons, each of which is chosen randomly and in-
dependently to be in one of the four polarizations (horizontal, vertical, 45 degrees and 135
degrees). (Fig. 5, Step 1.)

(2) For each photon, Bob randomly chooses either the rectilinear or diagonal bases to
perform a measurement. (Fig. 5, Step 2.)

(3) Bob records his bases used and the results of the measurements. (Fig. 5, Step 3.)

(4) Subsequently, Bob announces his bases (but not the results) publicly through the
public unjammable channel that he shares with Alice. (Fig. 5, Step 4.)

Notice that it is crucial that Bob publicly announces his basis of measurement only after
the measurement is made. This ensures that the eavesdropper, Eve, does not know the right
basis during eavesdropping. If Bob were to announce his basis before the measurement, Eve
could simply eavedrop along the announced basis without being detected.

(5) Alice tells Bob which measurements are done in the correct bases. (Fig. 5, Step 5.)

(6) Alice and Bob divide up their polarization data into four classes according to the
bases used by them. See Fig. 7. In cases (a) and (b), Bob has performed the wrong type of
measurement (i.e., Alice and Bob have used different bases). They should throw away those
polarization data. On the other hand, in cases (c) and (d), Bob has performed the correct
type of measurement (i.e., Alice and Bob have used the same bases).

Notice that if no eavesdropping has occurred, all the photons that are measured by
Bob in the correct bases should give the same polarizations as prepared by Alice. Bob can
determine those polarizations by his own detector without any communications from Alice.
Therefore, Alice and Bob can use those polarization data as their raw key. Of course, before
they proceed any further, they should sacrifice a small number of those photons to test for
eavesdropping. For instance, they can do the following:

ezpansion. [12] Conventional methods for key expansion are necessarily insecure because a passive
eavesdropper can always make copies of the communications and crack the key expansion scheme
off-line by exhaustive computing analysis. The quantum no-cloning theorem forbids such a passive
eavesdropping attack in quantum key expansion schemes.

121h current experiments something like emax = 1% is reasonable.
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Step 1: Alice picks polarization randomly
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Step 2: Bob picks basis randomly
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Step 3: Bob records his basis and
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basis result
Step 4: Bob announces his basis publicly.
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Step 5: Alice tells Bob if he has chosen the correct basis.

— (No)

Step 6: Test for tampering, error correction and privacy

amplification.

FIG. 5. Procedure of the BB84 scheme for quantum key distribution.
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FIG. 6. A sequence of photons are sent by the BB84 scheme. For each photon, Alice chooses
its polarizations randorﬁly from horizontal, vertical, 45-degree and 135-degree. Bob then randomly
chooses the rectilinear or diagonal basis to perform a measurement. He writes down the result of
his measurement. Alice and Bob public compare their basis. Whenever they have used the same
basis, they can convert their polarization data into a single raw bit. Of course, they need to test
for tampering and go through error correction and privacy amplification as described in the text.

a) Alice b) Alice
c) Alic d) Alice

TIOR%

FIG. 7. Alice and Bob divide their polarlzatxon data into four cases according to the bases used
by them.

(7) Alice and Bob randomly pick a fixed number say m; photons from case (c) and
compute its experimental error rate, e;. Similarly, they randomly pick m; photons from

case (d) and compute its experimental error rate, e;.!3
If either e; or e, is larger than the maximal tolerable error rate emay, either substantial

eavesdropping has occurred or the channel is unexpectedly noisy. Alice and Bob should,

13/m, and ms are chosen to be large enough for accurate estimation of the true error rates of the
transmission. A simple protocol may take m; = ms. In the original BB84, cases (c) and (d) are
combined to estimate a single error rate. Here, I refine the error estimation to compute two error
rates, in anticipation of my subsequent discussion of an improved scheme in Section 5.3.

13



therefore, discard all the data and start with a fresh batch of photons. On the other hand,
if both e; and e, are smaller than ep,,,, they proceed to step 8.

(8) Reconciliation and privacy amplification: Alice and Bob can independently convert
the polarizations of the remaining photons into a raw key by, for example, regarding a
horizontal or 45-degree photon as denoting a ‘0’ and a vertical or 135-degree photon a ‘1.

There are still two problems, namely noise and leakage of information to Eve, in the
raw key that Alice and Bob share. Indeed, the raw key that Alice has may differ slightly
from that of Bob. Moreover, Eve may have partial information on the raw key. A realistic
scheme must include error correction and privacy amplification—the distillation of perfectly
secret key out of a sequence of raw key that Eve may have partial knowledge of. Privacy
amplification schemes that are secure against single-photon measurements by Eve have been
devised. [12,17] However, despite immense efforts, [18]~ [24] a complete widely accepted proof
of the security of quantum key distribution against coherent attacks 4 is, in my opinion, still
missing. I relegate an elementary discussion of error correction and privacy amplification to

Appendix B.

B. Other Schemes

Even though BB84 solves the key distribution problem, it does not solve the key storage
problem: Once Alice and Bob have established their classical key, they must store it before it
is used. In principle, an eavedropper may break into their laboratories to steal it. Ekert [25]
proposed an Einstein-Podolsky-Rosen-based scheme which solves the key storage problem.

The well-known Einstein-Podolsky-Rosen (EPR) [26] effect occurs when a pair of en-
tangled (i.e., quantum mechanically correlated) photons is emitted from a source. The
entanglement may arise out of conservation of angular momentum. As a result, each photon
is in an undefined polarization. Yet, the two photons always give opposite polarizations
when measured along the same basis. For example, if Alice and Bob both measure along
the rectilinear basis, their photons are each equally likely to be horizontally or vertically
polarized. But if Alice’s photon is horizontal, Bob’s will certainly be vertical and vice versa.

A simplified version of Ekert’s scheme goes as follows: A source emits such pairs of
entangled photons. Alice and Bob each keep a member of each pair. They measure some of
their polarizations immediately to test for eavesdropping. The remainder is stored without
being measured. When they need to use the key, they measure and compare some of the
stored pairs. If no tampering has occurred, the.polarizations of the two members of each
pair should be opposite. They verify that, for the test pairs, this is indeed the case. They
can then measure the polarizations of the reminder randomly and independently along two
bases and subsequently go through privacy amplification in the same way as in BB84.

11n a coherent attack, Eve regards the whole sequence of photons as a single entity and couples it
with an ancilla and evolves the combined system. Afterwards, she keeps her ancilla and listens to
the public discussion between Alice and Bob before deciding on what information to extract from

her ancilla.
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Another interesting quantum key distribution scheme, B92, was proposed in 1992 by
Bennett [27] who showed that any two non-orthogonal states suffice to distribute a key.
Suppose a photon is chosen randomly from two non-orthogonal polarizations say |ue) and
|u;). Let me consider the projections Pyg; o = 1 — |uo)(uo| and Paot 1 = 1 — |ug)(us|. Notice
that Ppot o|uo) = 0. Therefore, if a measurement of Pyt o gives an eigenvalue 1, Bob can be
sure that the state before the observation must be |u;). On the other hand, if a measurement
Poot o gives an eigenvalue 0, the initial state may be either |ug) or |u1).

The procedure of B92 goes as follows: Alice sends a random sequence of photons to Bob,
using |ug) to represent a 0 and |u;) to represent a 1. Bob performs a random measurement
of either P,o; o O Paot 1- Bob publicly announces the eigenvalue of his measurement for each
photon, but not the type of measurement that he has performed. Alice and Bob discard
all the instances when the eigenvalue is 0. Notice that, in the absence of noise, when the
eigenvalue is 1, the type of measurement performed by Bob will tell him the bit chosen by
Alice. The eigenvalue 1 should appear with a probability (1—|(uo|u1)[?)/2. In this case, they
share a common bit. Of course, just like in BB84, they need to test for tampering. They
can do so by selecting and sacrificing a subset of photons for the case when the eigenvalue
is 1 to check that their sub-strings agree with each other. Besides, they also need to check
that the proportion of 1’s is, indeed, a fraction around (1 — |(uo|u1)|?)/2. A malicious Eve
who measures the signals in transit using an apparatus similar to Bob’s and destroys them
whenever the measurement outcome is 0 will decrease the proportion of 1’s in Bob’s result
and thus be caught. (See also [28].)

Other quantum key distribution schemes have also been proposed. Townsend and collab-
orators have discussed a practical implementation of quantum cryptography in a communi-
cations network with many users. [29] A quantum cryptographic network based on quantum
memories was proposed. [30] Goldenberg and Vaidman [31] showed that, rather surprisingly,
orthogonal states can be used for quantum key distribution. A proposal to use quantum
cryptography without public announcement of bases has also been made. [32]

C. Efficient Quantum Key Distribution

Another interesting question is the efficiency of quantum key distribution. Since Alice
and Bob choose the two bases randomly and independently in BB84, on average Bob per-
forms a wrong type of measurement half of the time. Therefore, half of the photons are
thrown away immediately. However, Lo and Chau [33] proposed a modification of BB84
which essentially doubles its efficiency. The basic idea is that Alice and Bob pick a number
0 < € < 1/2. The value of € can be made public.’®> Now for each photon Alice chooses the
two bases, rectilinear or diagonal, with probability € and 1 — e. Similarly, Bob measures
the polarization of his received photon along the two bases, rectilinear or diagonal, with
probability € and 1 —e. Clearly, their bases agree with a probability €2 + (1 — €) which goes

15Notice that € is supposed to be small but non-zero. As I will argue later, the limit ¢ — 0 is
singular. The constraint on the value € will be discussed near the end of this Section.
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to 1 as e goes to zero.'® Hence, the efficiency is asymptotically doubled when compared to
BBg4. ,
What about security? Naively, one might think that the eavesdropper can use the knowl-

edge of € to devise an attack that defeats the scheme. This naive expectation is, however,
incorrect. As far as single-photon measurements by Eve are concerned, the improved scheme
is as secure as BB84. The important modification is a refined error estimation. In the origi-
nal BB84 scheme, it was proposed that cases (c) and (d) in Fig. 7 are combined to estimate
a single error rate. In the improved scheme, a separate estimation of the two error rates is
made. To see how this modification guarantees security, it is instructive to consider a simple
intercept-resend eavesdropping strategy by Eve. Suppose, for each photon, Eve measures
its polarization along the rectilinear axis with probability p;, along the diagonal axis with
probability p, and does nothing to the photon with probability 1 — p; — p;. Whenever Eve
performs a measurement, the original polarization of the photon is irreversibly lost. In an
attempt to avoid the users detecting her tampering, Eve then resends a photon with its
polarization given by the result of her measurement. Now, for such a strategy, consider the
error rate in case (c) where both Alice and Bob use the rectilinear basis. The errors occur
when Eve uses the diagonal basis. See Fig. 8. This happens with a conditional probability
po. In this case, the polarization of the photon is randomized, thus giving an error rate
e; = pa/2 for case (c). Similarly, errors in case (d) occur when Eve is measuring along the
rectilinear basis. See Fig. 8. This happens with a conditional probability p; and when it
happens, the photon polarization is randomized. Therefore, the error rate for case (d) is

€9 =p1/2

Case (c) Alice

+ X+

Case (d) Alice Bob

X X

FIG. 8. In case (c) of Fig. 7 where both Alice and Bob use the rectilinear basis, errors occur
when Eve uses the diagonal basis. Similarly, in case (d) of Fig. 7 where both users employ the
diagonal basis, errors occur when Eve uses the rectilinear basis.

The key point to note is that these two error rates e; and e, only depend on Eve’s
eavesdropping strategy, but not on the value of €! This is so because they are conditional
probabilities. This fact is valid not only for the above simple example, but also for any

16See the preceding footnote.
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single-photon eavesdropping strategy by Eve: Indeed, any single-photon-measurement eaves-
dropping strategy gives characteristic error rates e; and e, independent of the value of .
Consequently, Eve cannot exploit her knowledge of € to avoid detection of her tampering.

I remark that it is absolutely crucial to compute the two error rates separately. Otherwise,
the scheme is insecure. Had a single error rate be computed as in the original BB84, Alice
and Bob would have found that the average error rate

_ €1+ (1—¢)%:
¢= < i) ©)
e€+(1—¢
For the intercept-resend strategy,
2 2
+(1-
g — e’pa+ (1 —€)°py (10)

2[e2 + (1 —€)?]

Suppose Eve always eavesdrops solely along the diagonal basis (i.e., p; = 0 and p; = 1),
then
€2 .
= ———————0 11
2[e2 + (1 — €)?] (11)
as € tends to 0. Hence, with the original error estimation method in BB84, Alice and Bob
will fail to detect eavesdropping by Eve. Yet, Eve will have much information about Alice
and Bob’s raw key as she is always eavesdropping along the dominant (diagonal) basis.
Apparently, the possibility of having more efficient quantum key distribution schemes
was first raised by Ardehali. [34] Unfortunately, the crucial importance of a refined error
analysis was not recognized and consequently the security of his scheme remained unproven.
The use of a refined error analysis was first discussed by Barnett and Phoenix [35] for rejected
data. Lo and Chau, however, noted the important fact that when a refined error analysis is
applied to accepted data, an improved scheme can be made secure.

D. Constraint on e.

Of course, if € is actually zero, the improved scheme is insecure because Eve can simply
eavesdrop along the diagonal axis. However, I emphasize that the limit € — 0 is singular
and that for non-zero ¢, secure schemes do exist. A natural question to ask is: What is the
constraint on €? The key constraint is that one needs to make sure that there are enough
photons for an accurate estimation of the two error rates e; and e;. Suppose N photons are
transmitted from Alice to Bob. On average, only Ne? photons belong to case (c) where both
Alice and Bob use the rectilinear basis. To estimate e; reasonably accurately, one needs to
make sure that this number is larger than some number my. The key point to note is that
the number mo may depend on e; but not on N. In summary, one needs:

Né? > my

€ > y/mo/N. (12)
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As N tends to infinity, € can be made to go to zero but never quite reach it.. (See footnote p.)
Notice that the asymptotic limit € — 0 corresponds to 100 percent efficiency. In conclusion,
the improved scheme is asymptotically the most efficient scheme that one can possibly devise.
I remark that this type of efficient schemes of quantum key distribution applies also to
Ekert’s scheme and Biham, Huttner and Mor’s scheme based on quantum memories. [33]

VI. PRACTICAL CONSIDERATIONS

Quantum key distribution is not just a theoretical subject. The first experimental demon-
stration of the feasibility of quantum key distribution was done with open air over 32 cm.
[12] By now, experiments over 20 km of optical fibers [15] as well as 205m of free air [14]
have been performed. Besides, there have been proposals for performing quantum key dis-
tribution experiment from the ground to a satellite. [16] Such capability is of immense value
for re-programming satellites currently in orbit around the earth as well as for long distance
relay of cryptographic keys via satellites. These exciting experiments will be the subject
matter of the next chapter. Here I will give some simple practical considerations for the

experiments.

A. Photon Source

As it turns out, it is difficult to prepare single photon sources. Most of the current
experiments are, therefore, done with faint light pulses, rather than single photons. On
average, there can be only 1/10 photon per pulse. Even so, there are still some chances of
having two or more photons. This gives rise to a new eavesdropping strategy. Eve may use a
beamsplitter to try to divide up the beam into two pieces, measuring the state of one beam
and sending the second to Bob. Notice that such an attack is possible only when the beam
contains more than one photon and is, therefore, divisible. By using very weak light pulses,
the probability of success of the beamsplitting attack can be kept small. Hence, Alice and
Bob can put some bounds to the information leakage to Eve due to such an attack and use
privacy amplification to distill a perfectly secure key as discussed in Section 5.1.

A better source to use is EPR pairs from so-called parametric down conversion exper-
iments. When a photon passes through a non-linear crystal; it can be converted into two
entangled photons of lower frequencies.!” One of the two photons can, then, be used as a
trigger to signal the creation of at least one EPR pair. Since the input to the non-linear
crystal is often a faint laser pulse rather than a single photon, parametric down conversion
still gives two or more EPR pairs with non-zero probabilities. However, the case of having
no photon pairs can be eliminated from consideration due to non-triggering of the sender’s
device. This helps to cut down an important source of error in the experiment—the photon
dark count rates, which will be introduced in Subsection 6.4.

Finally, I remark that other methods [36,37] such as carefully tailored atomic emission
in cavity quantum electrodynamics [36] may give still a better photon source in future.

"This does not violate the fact that a photon cannot be divided without a change in frequency.
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B. Coding Schemes

There are two main types of coding schemes in experimental quantum cryptography—
polarization coding and phase coding. The idea of phase coding is to send a photon into two
different arms of an interferometer. The two paths then represent two orthogonal states in
the coding scheme. By passing a photon through a 50-50 beam-splitter (i.e., a half-reflecting
mirror), one can launch it into a coherent superposition of the two paths:

1 1
lu) = ﬁlPath 1) + E|Path 2). (13)

One can encode information by introducing a phase difference

1

e'®
[u) = 5 Path 1) + —5lPath 2). (14)

By picking ¢ randomly between 0 and /2, the scheme is equivalent to the B92 scheme
introduced in the last Section. Bob can read off information using a similar interferometer.

See the next chapter for details.

C. Frequency

Commercial single-photon counting modules employing silicon avalanche photo-diodes
(APDs) are available around wavelengths of 800 nm. Such devices have high efficiencies
(about 50%) and low noise rates. Unfortunately, the losses in optical fibers are quite high
(2 dB/km) at this frequency range. Therefore, for long-distance optical fiber experiments,
it is preferable to use commercial Telecom wavelengths, either 1300 nm or 1550 nm where
the losses are 0.35 dB/km and 0.2 dB/km respectively. At such frequencies, no efficient
commercial single-photon counting modules are available and cooled Ge or InGaAs avalanche

photo-dioded have to be built in the laboratories.

D. Noise

Even when the same basis is used by both Alice and Bob, the transmitted data of Alice
and Bob may still be different because of various sources of errors. One of them is the dark
counts in the detector: A detector may click accidentally even when there are no photons.
To eliminate this source of error, the clicking of the detector is ignored unless it falls into
specific time windows when a photon pulse is expected to arrive. Incidentally, an advantage
of a parametric down conversion EPR source over a weak light pulse is that a member of
the EPR pair will provide the ‘trigger’ to the sender Alice’s detector. Only then will Bob
consider his data. Therefore, the receiver Bob will discard the dark counts in cases when
there are no triggering. Other sources of errors will be discussed in more detail in the next

chapter.
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VII. BEYOND QUANTUM KEY DISTRIBUTION?

Beside quantum key distribution, other applications of quantum cryptography have also
been proposed. The underlying theme of those applications is the protection of private
information during public discussion. “In this scenario, there are no enemies, but you must
negotiate with everyone and you don’t entirely trust them,” Charles Bennett says. Indeed,
there have been reports [38] of fake teller machines stealing PIN (Personal Identification
Number) from customers. Next time when you type your PIN to an unknown teller machine,
maybe you should worry about this possibility. To solve this problem, it would be useful
to have some means of identification without revealing the actual password. i.e., comparing
whether the customer’s private password z matches the password y stored by the machine
without revealing z itself. More generally, in a two-party secure computation, Alice has
a private input z and Bob a private input y. Alice would like to help Bob to compute a
prescribed (i.e., public) function f(z,y) without revealing anything to Bob about z more
than what follows logically from f(z,y) and y.

Either trusted intermediaries or computational assumptions may be used to achieve two-
party secure computations. In the first case, Alice and Bob send their private inputs to a
trusted third party (or a machine) Charles, who performs the computation for them and
tells them the result afterwards. Of course, the problem here is that Charles may cheat
by telling one party the other party’s input. In the second case, assumptions such as the
hardness of factoring large integers can be used. However, an adversary may crack such
system by exhaustive computer analysis or by more efficient algorithms. In particular, an
adversary with a quantum computer can use Shor’s algorithm [10] to factor large integers
efficiently. See footnote k. :

The impossibility of unconditionally secure schemes for two-party secure computations in
conventional cryptography has sparked much interest in quantum protocols. Until recently,
there had been a widespread belief that quantum two-party secure computations can be
made unconditionally secure. [39]~ [43] However, this optimism was recently shattered [44]
following the demonstration of the insecurity of quantum bit commitment by Mayers [45,46]
and also by Lo and Chau [47,48]. This is a severe setback to quantum cryptography. In
what follows, I will introduce the concept of bit commitment, describe a simple quantum
bit commitment scheme and explain why unconditionally secure quantum bit commitment
is impossible.

20



A. Bit Commitment

Bit commitment is a crucial primitive for implementing secure computations.’® A bit
commitment scheme involves two parties, a sender, Alice and a receiver, Bob. It is executed
in two steps—1) the commit phase and 2) the opening phase. In the commit phase, Alice
chooses a bit (b = 0 or 1) and commits it to Bob. That is, she gives a piece of evidence to
Bob that she has chosen a bit and that she cannot change it. At that moment, the scheme
should prevent Bob from learning the value of the bit from that evidence. At a later time,
however, Alice and Bob must be able to execute the opening phase in which Alice opens the
commitment. That is, she tells Bob which bit she has chosen and proves to him that this is
indeed the genuine bit that she chose during the commit phase.

As an example of bit commitment, Alice writes down her bit in a piece of paper, places
it in a box and locks it. She then hands over the box to Bob. Now she can no longer change
her mind about the value of the bit. Meanwhile, Bob, without the key to the lock, cannot
learn the value of the committed bit himself. At a later time, Alice gives the key to Bob
who opens the box to recover the value of the committed bit. Unfortunately, the security
of this scheme relies solely on the physical security of the box and the lock. Therefore, it is
not applicable in the electronic age.

What is cheating? Both Alice and Bob may attempt to cheat. On the one hand, a
dishonest Bob tries to find out the value of the bit before the opening phase. On the other
hand, a dishonest Alice may choose 0 during the commit phase and yet in the opening phase
claims that it was 1 that she had in mind. For a bit commitment scheme to be secure, both

forms of cheating must be foiled.

B. A Simple Quantum Bit Commitment Scheme

For concreteness, I will describe a simple quantum bit commitment scheme proposed by
Bennett and Brassard. [11] As before photons in four possible polarizations, horizontal (0
degrees), vertical (90 degrees), 45 degrees and 135 degrees, are used. If Alice has 0 in mind,
she sends a sequence of photons chosen randomly from the rectilinear basis. i.e., each photon
is independently and randomly chosen from horizontal and vertical polarizations. On the
other hand, if Alice has 1 in mind, she sends a sequence of photons chosen randomly from
the diagonal basis. i.e., each photon is independently and randomly chosen from 45-degree
and 135-degree polarizations. Notice that independent of the value of the bit chosen by
Alice, the density matrix p of the entire sequence of photons received by Bob is the same.

18Yao [49] has shown that quantum bit commitment can be used to implement quantum oblivious
transfer. Besides, it has been shown by Kilian [50] that in conventional cryptography oblivious
transfer can be used to achieve two-party secure computations. These two results combined to-
gether seem to suggest that quantum bit commitment leads directly to unconditionally secure
two-party secure computations, thus achieving what is impossible from the perspective of conven-

tional cryptography.
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It is just the tensor product of the density matrices of the individual photons. Indeed,
P = Psingle ® Psingle @ - - - ® Psingle with

2 (10°)(0°] + [90°) (90°])

Psingle =

N = DO

([45°)(45°] + ]135°)(135°|)
=21, (15)

where I is the two-dimensional identity matrix. Consequently, there is absolutely no way
for Bob to learn Alice’s committed bit.

What an honest Bob should do is, for each photon, to choose randomly between the
rectilinear or diagonal basis to measure its polarization. During the opening phase, Alice
tells Bob her committed bit and the polarizations of all the photons. Bob accepts Alice’s
committed bit if her announced polarizations are consistent with his measurement results.
Suppose, for instance, N photons are transmitted and Alice opens the commitment by
telling Bob that she has committed to a 0. Since Bob has choosen the two bases at random,
Bob would have performed measurements along the rectilinear basis for an average of N/2
photons. For those photons, Bob can then check if Alice’s announced polarizations are the
same as what he has got from his measurements. If the answer is yes, he believes that Alice
is honest. Otherwise, Alice must be cheating.

I remark that a naive cheating strategy by Alice is likely to be caught by Bob. Suppose
Alice prepares a sequence of rectilinear photons and claims that they are diagonally polarized
during the opening phase. For an average of N/2 photons that Bob has measured along
the diagonal basis, Alice’s photons give random results to Bob’s detector. Now Alice has
to blindly guess those results. The probability that she will be successful is, therefore,
approximately (1/2)V/2.

A fatal problem in Bennett and Brassard’s scheme, as noted by the inventors themselves
in their paper, [11] is that it is insecure against an Einstein-Podolsky-Rosen (EPR) type
of attack. Recall from Section 5.2 that an EPR correlated pair of photons always shows
opposite polarizations when measured along the same basis. For instance, when measured
along the rectilinear basis, if one photon is horizontal, the other will necessarily be vertical
and vice versa. Suppose that each of the photons sent by Alice is, in fact, a member of an
EPR pair and that Alice keeps the other member herself. Alice decides on the value of her
bit only during the opening phase. If she decides it to be 0, she performs her measurement
along the rectilinear basis. On the other hand, if she decides it to be 1, she performs
her measurement along the diagonal basis instead. This strategy will totally fool Bob and
defeat the security requirement of the scheme: During the commit phase, Bob’s photons
are described by a density matrix p = psingle ® Psingle ® - * - ® Psingle With Psingle given by Eq.
(15), just like in an honest protocol. Yet, for each pair of photons shared between Alice and
Bob, the EPR paradox allows Alice’s photon to give opposite polarization to that of Bob’s
whenever the two are measured along the same basis. There is no way for Bob to defeat
such an attack. ‘

While this EPR type of attack was well-known, its power and generality was not fully
appeciated. Indeed, after Bennett and Brassard’s scheme, many other quantum bit com-
mitment protocols [40,42] had been proposed. Until recently, it had been widely claimed
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that unconditionally secure quantum bit commitment is possible. The fatal flaw of all those
schemes was independently discovered by Mayers [45] and by Lo and Chau. [47] By now, it
has been shown that unconditionally secure quantum bit commitment is impossible. [46,48]
I will sketch the key point of the argument here.

C. Unconditionally Secure Quantum Bit Commitment Is Impossible

Recall the two security requirements for bit commitment: (A) Bob cannot learn the
value of the bit b during the commit phase; and yet (B) Alice cannot change it during the
opening phase. I now show that they are inconsistent. If Bob cannot learn the value of
the committed bit, then Alice can almost always cheat successfully (i.e., she can change her
bit from 0 to 1 during the opening phase without being caught by Bob) even if Bob has
a quantum computer! Then, it is quite clear that she can cheat against a Bob without a
quantum computer.!® Consequently, quantum bit commitment is always insecure.

Here is the proof. Imagine that both Alice and Bob use quantum computers to execute
a quantum bit commitment scheme. (See footnote ¢.) At the beginning, Alice chooses her
committed bit b = 0 or 1 and inputs the state |0) or |1) accordingly. Alice and Bob are
supposed to go through a multi-step procedure of sending classical and quantum signals to
and fro as well as performing local unitary transformations, attaching ancillas and perform-
ing measurements in each step. With quantum computers, they preserve the coherence of
the state under manipulation perfectly. One can then argue that all actions (classical *°
and quantum communications, unitary transformations, measurements and attachments of
ancillas) by Alice and Bob can be regarded as a unitary transformation applied to the input
state. The basic idea of this point was noted in [46]. A more concrete discussion was made
in [48]. For a review, see [51].2! Therefore, at the end of the commit phase, their composite
quantum system H4® Hp [where H, (Hp respectively) is the Hilbert space of Alice’s (Bob’s

19 Any bit commitment procedure followed by Bob can be re-phrased as one in which Bob does has
a quantum computer but simply fails to make full use of it. Therefore, by showing that Alice can
defeat a Bob who makes full use of his quantum computer, Mayers and also Lo and Chau proved
that all bit commitment schemes based on quantum mechanics—classical, quantum, or quantum
but with measurements—are insecure. There is no need to consider decoherence.

20Any classical communications may be regarded as a special case of quantum communications
and there is no need to distinguish between the two.

2lLet H4 and Hp denote the Hilbert spﬁces of Alice and Bob’s quantum machine respectively
and let Hc be the Hilbert space of the quantum communications channel. Consider the combined
Hilbert space H = H4 ® Hg ® Hc. In the beginning, Alice chooses the bit b to be zero or one and
prepares the state |0) or |1) accordingly. Bob always prepares [v). Alice and Bob now take turns to
perform operations (including measurements, unitary transformation and attachment of ancillas)
on the system. The key point to note is that the operation applied at each step can be regarded as
a unitary transformation. Indeed, one can imagine that Alice and Bob have quantum computers.
It is then well-known all operations can be done without any actual measurement. See [48,51] for
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respectively) quantum machine] is in a pure state |1) or |¢;) depending on the value of
b. Now the security requirement (A)—that Bob cannot learn the value of b—implies that
Bob’s quantum machine is described by essentially the same density matrix 22 independent

of the value of b. i.e.,
Traltho) (%ol = p5 = pi = Tralth) (], (16)

where Tr, denotes the partial trace operation over the subsystem A controlled by Alice.
Notice that I am considering the state of the whole quantum machine of Bob rather than its
individual components. This greatly simplifies my discussion and avoids fallacies in classical
reasoning.

But then, there is a mathematical result (see below) which says that i) and [¢;) are
related by a local unitary transformation by Alice alone. i.e., [th;) = U4[4) for some U4
acting on H,4 only. Consequently, Alice can cheat successfully by executing the protocol
for b = 0 during the commit phase. It is only at the beginning of the opening phase that
she makes up her mind. If she decides b to be zero, of course, she can execute the protocol
honestly. If she decides b to be one instead, she simply applies U to her state |t) to
change it to |t,) and executes the protocol for b = 1 instead. Since U# is a local unitary
transformation on Alice’s machine, she can clearly apply it without Bob’s help and there
is no way for Bob to defeat such cheating. Therefore, unconditionally secure quantum bit

commitment is impossible.

D. Schmidt Decomposition

All that is left to prove is the existence of U used in the last paragraph. For this, I need a
mathematical result—Schmidt decomposition. [52] The following discussion is largely based
n [52]. Given Hilbert spaces H4 and Hp with dimensions p and g respectively, consider a
normalized state |®) in H4 ® Hp. Let p = [®)(®| be the density matrix and p* = Trpp and
p? = Tr4p be the reduced density matrices. Then the Schmidt decomposition theorem says

that |®) can be written as
1) = 3> v/dad @ b, (17)
i=1

where |a;) (|b;) respectively) are orthonormal eigenstates of p* (p? respectively), and r <
min(p, q) is the total dimension of the non-zero eigenspaces of p*.

details. In other words, in each step, a party D € {A4, B} applies a unitary transformation on
H,4 ® He, which can then be regarded as a unitary transformation on H. Therefore, the whole
procedure of the commit phase can be regarded as a product of unitary transformations, which is
thus a unitary transformation, applied to the initial state. Hence, the final state can be considered

as pure.

22The case when pf and p? are slightly different will be briefly discussed later. The physics there

is essentially the same.
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The proof goes as follows: Let me write [®) in terms of the orthonormal eigenbasis
|(11>, |a2>a T Ia‘p> of pA as

P
= la:) ® |53), (18)
i=1
where |b})’s are not necessarily orthogonal. Tracing over Hp, one finds

Trp|®)(®| = TrBZZiaJ>®|b' )ai| ® (b

i=1j=1
p

= XPJZ b;165) laj) (asl. (19)

i=1j=1

On the other hand, since |a;)’s are the eigenstates of p#, one must have
=2 Ailas)(ail (20)
i=1

where );’s are the eigenvalues of p”. Equating these two equations, one finds (b}|b}) = Xidy;.

_1
Hence, |b;) = A; 2|b}) is an orthonormal set in Hp and

=3 V/hila) ® [bi). (21)
i=1
Now, by taking the trace over Hy, it is easy to see that
T
B =3 Albi) (bil. (22)
1=1

Therefore, |b;) is an eigenvector of p? corresponding to the eigenvalue A;. Q.E.D.
Let me apply this result to quantum bit commitment. At the end of the commit phase,
if b = 0, the wavefunction |v,) can be written in Schmidt decomposition as

o) = 3_ v/ Aila) ® [bi)- (23)
=1
Similarly, if b = 1, the wavefunction [¢;) can be written as
) = 3= y/Nilal) @ 155). (24)
1=1

The first security requirement—that Bob does not know the bit—demands that ideally Bob
has the same density matrix for b =0 and b = 1. That is,

8 = 30 Mlb bl = 3 NI ] = o, (25)
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Without much loss of generality,? this implies that A; = A} and |5;) = |b}). In other words,
[91) = >° Ailal) ® |bs). (26)
i=1

Observe that the only possible difference between [1g) and [¢);) lies in the eigenvectors |a;)
and [a}) (of p§! and pf' respectively). Let me consider the unitary transformation U4 that
maps |a;) to |a). As asserted, it acts on Alice’s quantum machine H4 only and yet maps
[o) to |11). This shows the existence of a cheating unitary transformation U4 and thus
completes the proof of insecurity of ¢deal quantum bit commitment where Bob’s density
matrices p? and p? corresponding to b = 0 and b = 1 are exactly the same.

E. Non-ideal Quantum Bit Commitment

However, in general, one can allow pf and p? to be slightly different. This will only give
Bob a small probability of distinguishing between 0 and 1. Using the concept of fidelity, [53]
it has been shown rigorously by Mayers [45,46] (see also [47,48]) that even then Alice can
almost always cheat successfully. Therefore, one concludes that even non-ideal quantum bit
commitment is impossible. For a review on quantum bit commitment, see [51].

F. Aftermath of the Fall of Quantum Bit Commitment

In conclusion, the fatal flaw in quantum bit commitment protocols is that they all involve
an 1mplicit assumption that some measurements are performed by the two users. However,
with quantum computers and quantum storage devices, a cheater, Alice, can almost always
cheat successfully with entanglement. The significance of this discovery lies in its generality:
Not only existing quantum bit commitment schemes, but also any quantum bit commitment
scheme that one can possibly devise, are necessarily insecure.

Furthermore, as noted in footnote ¢, this ‘no-go theorem’ applies not only to fully
quantum bit commitment schemes, but to all bit commitment schemes based on quantum
mechanics—classical, quantum and quantum but with measurements.

Moreover, one cannot bypass this ‘no-go theorem’ by assuming that the decoherence
time involved is short. This is because a cheater can, in principle, perform quantum error
correction [54] and fault-tolerant quantum computation [55] to defeat decoherence.

Following the surprising discovery of the insecurity of quantum bit commitment, other
quantum protocols such as ideal quantum coin tossing, [48] quantum ‘one-out-of-two obliv-
ious transfer’ and ‘one-sided’ two-party secure computation ?* were also shown [44] to be

23Here I assume that the eigenvalues are non-degenerate. The case of having degenerate eigenval-

ues can be dealt with in a similar manner.

24 A one-sided two-party secure computation allows only one of the two parties to learn the result
f(z,y). In other words, Alice with a private input z and Bob with a private input y cooperate to
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impossible. By now, the big hope of unconditionally secure two-party computations has
been totally shattered. [44,51]

There is, however, an important caveat in what I am saying. Even though quantum two-
party secure computations are impossible in theory, they may still be possible in practice.
The point is, to break those quantum protocols, a cheater generally needs a quantum com-
puter. Therefore, quantum cryptographic protocols allow one to replace classical computa-
tional assumptions by quantum computational assumptions. Since it is a huge technological
challenge to actually build a quantum computer, quantum two-party computations may
still have practical value. Hruby [56] has worked on a quantum smart card for identification
purposes.

Finally, it cannot be over-emphasized that those ‘no-go theorems’ do not apply to quan-
tum key distribution or quantum money. Quantum cryptography should remain a fertile
and challenging subject in the foreseeable future. This is particularly so in view of the recent

dramatic advances in experiments.

VIII. QUANTUM CRYPTANALYSIS

The subject of cryptology consists of two parts—cryptography, the art of code-making,
and cryptanalysis, the art of code-breaking. In this section, I will turn to cryptanalysis.
As remarked earlier, the cheating strategy in quantum bit commitment generally requires a
quantum computer. The insecurity of quantum bit commitment, therefore, demonstrates the
power of a quantum computer in cryptanalysis against quantum cryptography. Here I remark
that quantum computer is also a powerful weapon for cryptanalysis against conventional
cryptography. This is so because quantum computers can crack a number of hard problems
that underlie the security of many conventional crypto-systems. For instance, Shor has
devised efficient quantum algorithms [10,58] for factoring and for the so-called ‘discrete
logarithm problem’. [10] Boneh and Lipton [57] have generalized Shor’s algorithm to attack
any crypto-system with a ‘hidden linear form’. In particular, even the discrete logarithm
problem in ‘elliptic curves’ can be solved efficiently by a quantum computer. In conclusion,
if a quantum computer is ever built, many widely used public key crypto-systems will be
unsafe. What is even more worrying is the fact that this total security break by quantum
computers is retrospective. By keeping copies of the current transmission, an eavesdropper
can, in principle, wait for the construction of a quantum computer in future to decode any
top secret message encoded by those breakable public key schemes. In this aspect, quantum
cryptography has the advantage of avoiding this retrospective security break.

What about private key or symmetric systems? Grover’s efficient algorithm [59] for
database search can reduce the time needed for exhaustive key search from O(N) to O(V'N),
where N is the total number of possible keys. For instance, it can speed up millionfold
the exhaustive key search against DES (Data Encryption Standard), [2] the most popular

compute a prescribed function f(z,y) in such a way that at the end of the computation, 1) Alice
learns nothing about y or f(z,y); 2) Bob learns f(z,y) and 3) Bob learns nothing about z except
for what logically follows from y and f (z,v).
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computer encryption algorithm. [60] The successful construction of a large scale quantum
computer would be the end of DES.?°

In conclusion, quantum computation can have potentially shattering effect on cryptog-
raphy. To many conventional cryptographers, this is an unwelcome possibility that is too
catastrophic to ignore. For a review on quantum algorithms including Shor’s amd Grover'’s,

see chapter six.

IX. THOUGHTS FOR THE FUTURE

Many challenging questions in quantum cryptology remain to be answered. Let me
mention a few here.

At the conceptual level, there are now reasonably solid foundations to both quantum
cryptography and quantum cryptanalysis. On the one hand, quantum key distribution is
generally believed to be secure because of the quantum no-cloning theorem. On the other
hand, quantum bit commitment has been shown to be impossible due to cheating by using
the EPR effect. The important conceptual questions are: What is the exact boundary to
the power of quantum cryptography? And why is there such a boundary?

At a phenomenological level, it would be interesting to see if quantum error correction,
a subject to be introduced in chapter seven, can be used in practice to increase the range of
quantum key distribution from the state-of-the-art tens of kilometers to a futuristic range
of thousands of kilometers. This would be an important milestone in the feasibility study
of a practical quantum key distribution system.

For experimental quantum cryptography, the proposed ground to satellite experiment is a
major challenge. Improvements in photon sources, transmission channels as well as detector
technology will ultimately determine the competitiveness of quantum cryptography against
its conventional counterparts in military and commercial applications.

Finally, I remark that quantum cryptology is an integrated component of the general
field of quantum information processing, whose ultimate goal is the unification of quantum
mechanics with subjects such as information theory, computer science and cryptology. Ex-

2As a side remark, quantum computer can also solve the ‘collision problem’ efficiently. Let me
first introduce the latter. Given a function F : X — Y, the collision problem is to find a collision
in F, ie., two distinct elements zo and z; in X such that F(z¢) = F(z;), assuming that such a
pair exists. This problem is important in cryptography because it is commonly assumed that the
collision problem is computationally infeasible for a class of functions known as hash functions.
Indeed, a brute force attack known as the birthday attack requires O(v/N) evaluations of the
function for a two-to-one function, where N = |X|. (The name birthday attack comes from the
fact that on average it requires a group of less than 30 persons to find a pair of persons having
the same birthday. The key point is that there are r(r — 1)/2 pairs to consider.) However, using
Grover’s algorithm as a subroutine, Brassard, Hgyer and Tapp [61] have found a quantum algorithm
that finds collisions in arbitrary r-to-one functions after only O(¥/N/r) expected evalutions of the
function. Furthermore, there also exist some superfast quantum algorithms [62,63] for complex
quantum queries. Their impact to cryptography is, however, unclear to me.
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citing unexpected developments will most likely arise out of the interplay of the concepts
from quantum cryptology, quantum computing and quantum information and out of inspi-
rations from the classical theory. A closer look at those related subjects may, therefore, give
new insights to the development of quantum cryptology. ‘
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APPENDIX A: RSA PUBLIC KEY CRYPTO-SYSTEM

The most well-known public key encryption scheme was invented by Rivest, Shamir and
Adleman. [2,64] The security of RSA is based on the difficulty of factoring large numbers.
A user, say Bob, first chooses two large primes p and ¢ and computes N = pg. He then
randomly chooses the encryption key e such that e and (p — 1)(g — 1) have no common
factors. Afterwards, he computes the unique decryption key, d, such that

ed=1 [mod(p—1)(g—1)]. (27)

This computation can be done efficiently by the Euclidean algorithm. Now e and N are
made public: They can be published in a public key directory in the same manner as a
telephone directory. The decryption key, d, must be kept secret. As p and ¢ are no longer
needed, they can be discarded, but never revealed. Suppose a person Alice, who may or
may not have met Bob before, would like to send Bob a message m (mod N). She can do

so by raising it to the power e, i.e.,
c=m¢ (mod N) (28)
and sending ¢ to Bob. Bob can recover the message m by raising ¢ to the power d. This is

because, from elementary number theory, m®=1@") =1 (mod N) for any m (mod N)
and, therefore,

¢ = med = mFe-DE-D+1 = pk@e-D@-1) 5y =m all (mod N). (29)

For a long message, Alice may, for example, expand it in power of N and encrypt each entry
in the N-ary expansion individually.
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An eavesdropper Eve who does not know d nor the factorization of N will generally have
a hard time in deducing m from c, e and N alone. On the other hand, if Eve can factor
N into p times g, then she can trivially find the decryption key d by using the Euclidean
algorithm with d and (p — 1)(¢ — 1) as the inputs.

APPENDIX B: ERROR CORRECTION AND PRIVACY AMPLIFICATION

Here I review a simple but non-optimal procedure for error correction and privacy ampli-
fication as introduced in [12]. Recall that Alice and Bob’s polarization data may be different
due to noise and eavesdropping by Eve. Upon the completion of the quantum transmission,
Alice and Bob need to exchange public messages in order to reconcile the difference between
their data. I will assume that Eve can listen to all public discussion. Therefore, Alice and
Bob should make sure that the public discussion reveals as little information as possible on
their data.

A simple scheme of reconciliation is for Alice and Bob to first agree on a random per-
mutation of the bit positions in their strings. They then partition their string into blocks
of size k such that each block is highly unlikely to contain more than one error. For each
block, Alice and Bob compare its parity publicly. If the parities computed by Alice and
Bob respectively are the same, a block is tentatively accepted as correct. If the parities are
different, a binary search will now be applied to the block. This will disclose log, k& bits of
parities about the sub-blocks before the error is finally located and corrected. To prevent
Eve from gaining information through the public discussion, Alice and Bob should discard
the last bit of each block or sub-block whose parity has been announced.

Notice that if two or more errors occur in the same block, some of them may remain
undetected. To correct those errors, random permutation and block parity disclosure (with
increasing block size) is repeated several times. Once Alice and Bob have reached the stage in
which there are probably only a few errors left, it will be inefficient for them to continue the
block parity disclosure process. Therefore, a new process is now adapted: they can apply
an iterative process of comparing the parity of a publicly chosen random subset of their
data. Whenever there is some disagreement between their shared string, the random subset
parities will disagree with a probability 1/2. If a disagreement is found, a bisective search
is applied to locate and correct the error. As before, the last bit of each set whose parity
is announced should be discarded in order to avoid Eve from getting additional information
from the public discussion. :

This iterative process is repeated until Alice and Bob fail to find any disagreement in
many (say 20) consecutive comparisons. In this case, it is highly likely that they share the
same string.

This completes the process of error correction. Alice and Bob can now convert their
polarization data into a raw key. The remaining problem is that Eve may have partial
information on this raw key. Therefore, Alice and Bob perform privacy amplification, i.e.,
they distill a shorter but perfectly secure key from such a partly secure raw key. Bennett
et al. presented a procedure for achieving this distillation process: Suppose that there
are n bits in the raw key and Eve has at most [ deterministic bits of information about
it. A hash function h should be chosen randomly from an appropriate class of functions
{0,1}* — {0,1}"'=* where s > 0. At the end, the raw key z will be mapped into h(z) such
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that Eve’s expected information on it is less than 27/ In 2 bit. Alice and Bob can now each
compute the value h(z) and keep it as a secret key for subsequent communications.
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