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1 Introduction

Progressive image compression refers to the encoding of an image into a bitstream that can

be parsed e�ciently to obtain lower rate and lower resolution descriptions of the image. Such

descriptions are said to be SNR (signal to noise ratio) and resolution scalable. Most state-

of-the-art progressive image compression schemes are based on a wavelet transform followed

by quantization of the transform coe�cients. The multi-resolution nature of the wavelet

transform leads to resolution scalability in a straightforward way. In this paper we focus

on SNR (signal to noise ratio) scalability where the goal is to produce a so called embedded

bitstream which has the property that the pre�xes of the bitstream yield a continuum of

lower rate descriptions of the image at the highest possible levels of quality.

An attractive approach for achieving SNR scalability within the wavelet transform frame-

work is to describe the coe�cients sequentially by bitplanes, from most signi�cant to least.

Here, sequential description by bitplanes plays a dual role in quantization and progressive

transmission, by realizing a sequence of successively re�ned uniform quantizers. Describing

each coe�cient in bitplane order results in a maximal drop of distortion per bit of descrip-

tion. This approach was �rst proposed in [1], a paper that is often considered a milestone in

the development of progressive image compression and wavelet-based image compression as

a whole. Since then many of the advances in progressive image compression have centered

around improvements to the lossless compression of the binary bitplane data, and two ba-

sic approaches have emerged. These are the zerotree-based approach of [1], which seeks to

achieve compression through a carefully designed ordering of coe�cients within bitplanes,

and the more traditional context modeling approach rooted in the classical modeling/coding

dichotomy [2]. The latter was originally investigated in [3] and the best results to date have

been reported in [5] using a fairly complex set of contexts. The most signi�cant enhancement

of the zerotree approach since [1] is the SPIHT algorithm of [4].

The original motivation for describing the coe�cients in bitplane order, namely maximal

drop in distortion per bit of description, should also be the guiding principle in ordering

bits coming from di�erent coe�cients, i.e., information that is likely to reduce distortion the

most should be described �rst. Thus, probabilistic modeling is just as important for optimal

embedding as it is for coding. We refer to this observation as the embedding principle. In

fact, this principle could lead to orderings that do not preserve bitplane sequence, with bits

from a lower bitplane being described before a higher bitplane is completed. This approach

was investigated in [7], leading to a fairly e�ective but complex coding algorithm.

In this work, we take the low complexity road, and we build on the embedding principle to

construct a simple yet very e�cient algorithm for bitplane compression. We observe that the

interaction between embedding and conditioning models is a complex one, since reordering

for embedding clearly a�ects causality relations inherent to conditioning models. Therefore,

lacking a tractable way to optimize this interaction, we adopt a \greedy" approach that

gives preference to ordering, unlike in [6], where the opposite preference is given. This leads
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to a two-tiered ordering/conditioning model, which results in the generation of independent

subsequences of coe�cient bits, one subsequence associated with each ordering context. By

virtue of the ordering, each subsequence is available for encoding as a contiguous block, thus

allowing for the use of a very simple adaptive code, referred to as an elementary Golomb

code. Thus, in e�ect, when the ordering model is regarded also as a conditioning model,

we have deinterleaved the conditioned subsequences, making an arithmetic coder less of a

necessity, a fact that is formally justi�ed in the sequel.

Moreover, as we use a very simple model, our scheme overcomes some of the limitations of the

zerotree and traditional context modeling approaches. In particular, the zerotree approach

su�ers from an entanglement of modeling, coding, and algorithmic issues that makes it

di�cult to engineer for di�erent applications, some of which might �nd the necessary data

structures problematic in certain memory-limited environments. Also, the zerotree approach

does not directly yield resolution-scalable bitstreams. The traditional context modeling

approach, in turn, su�ers from its reliance on the relatively complex machinery of adaptive

arithmetic coding. Despite its simplicity, and without relying on zerotrees or arithmetic

coding, our scheme is fully embedded and attains SNR vs. bitrate performance that is

superior to that of SPIHT and is competitive with its arithmetic coding version SPIHT-AC.

Section 2 elaborates on probabilistic aspects of the embedding principle. Section 3 then

describes the image compression algorithm. This is followed by a redundancy analysis of

elementary Golomb codes in Section 4. Section 5 presents experimental compression results

and comparisons with SPIHT and SPIHT-AC. Section 6 highlights the low-complexity fea-

tures of the proposed image compression algorithm, and Section 7 concludes the paper by

mentioning some potential enhancements to the algorithm.

2 The embedding principle

We �rst review some of the basic elements of bitplane coding of wavelet transform coe�cients.

The �rst step is the application of a wavelet transform to the image data to obtain a set of

transform coe�cients xi, where the index i denotes some scanning order of the transformed

image, and its range is omitted for the sake of conciseness. Given � > 0, the xi are then

quantized according to Qi = sgn(xi)bjxij=�c. Let bm;ibm�1;i : : : b0;i denote jQij in binary

where m is the smallest integer satisfying 2m+1 > jQij for all i. The goal is to produce a

compressed bitstream which describes the quantized coe�cients Qi in bitplane order starting

with bm;i. That is, bm;i is described for all i before the bm�1;i and so on. Describing the Qi in

this fashion is equivalent to quantizing xi by a series of successively re�ned uniform quantizers

with step sizes �n
4
= 2n�; n = m;m� 1; : : : ; 0, where � is the �nest quantization step size.

Notice that we have a priori adopted the practice of ordering by bitplane and that therefore

we con�ne the application of the embedding principle to ordering within complete bitplanes.

Let bn+1;i denote the vector of bitplanes bm;i : : : bn+1;i. Two possibilities exist for encoding

each bn;i depending on the values of the previous bitplanes: either bn+1;i = 0, in which
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case bn;i is called a signi�cance bit, or bn+1;i 6= 0, in which case bn;i is called a re�nement

bit [1]. The encoding of signi�cance bits is accompanied by the encoding of the sign of the

corresponding coe�cient if bn;i = 1.

Optimal ordering. The embedding principle is best appreciated by way of the following

simple scenario. Consider the decomposition of a set S of coe�cient bitplanes into two

subsequences Sj; j = 1; 2, of respective lengths nj. Let Dj be the expected reduction in

distortion induced by learning a bit from Sj and let Rj be the expected rate (measured in

bits per pixel) required to encode this bit. Suppose further that the sequences of distortion

reductions and instantaneous rates are independent and identically distributed (i.i.d.). Under

these assumptions, which sequence should be encoded �rst, S1 or S2? We can answer this

question by considering the distortion versus rate behavior for each possibility. We will

denote the random behavior of the normalized distortion (distortion per pixel) as a function

of rate by D(R). This notation should not be confused with the conventional distortion-rate

function which is deterministic. To distinguish the alternatives in question, the function

D(R) is denoted by D(1)(R), when S1 is encoded before S2, and by D(2)(R) otherwise.

Let �j = nj=N , where N is the number of pixels in the image, and let R0 and D0 respectively

be the rate (per pixel) and normalized distortion of the description prior to encoding these

subsequences, Then, the i.i.d. assumption and the law of large numbers imply that with very

high probability D(1)(R), considered over the range R 2 (R0; R0+�1R1+�2R2), will be very

close to D0 � (D1=R1)(R�R0) for R 2 (R0; R0 + �1R1), and to D0 � �1D1 � (D2=R2)(R�
R0 � �1R1) for R 2 (R0 + �1R;R0 + �1R1 + �2R2). Likewise, a similar approximation

to D(2)(R) is obtained by interchanging R1 and R2, D1 and D2, and �1 and �2 in these

expressions. Thus, irrespective of the order, the �nal description ends with high probability

at distortion D0 � �1D1 � �2D2 and rate R0 + �1R1 + �2R2. It is clear, however, that if

D1=R1 > D2=R2 the D
(1)(R) curve (piecewise linear) lies strictly below the alternative curve

D(2)(R) for R 2 (R0; R0+�1R1+�2R2) and the reverse is true ifD2=R2 > D1=R1. Moreover,

it is easy to show that for any strategy based on interleaving S1 and S2, the D(R) curve will,

with high probability, lie strictly between the piecewise linear curves D(1)(R) and D(2)(R).

Clearly then, the sequence maximizing Dj=Rj should be encoded �rst. 1

Context modeling for ordering and coding. The above scenario tacitly assumes that

the decomposition of S into S1 and S2 is known a priori to the encoder and the decoder. In

practice, however, this decomposition must be based on previously encoded information and

the most e�ective mechanism for isolating sequences of symbols with similar (conditional)

statistics is context modeling. Depending on the choice of contexts, the fundamental decod-

ability constraint that context determining information be transmitted �rst may signi�cantly

cut down on the 
exibility in optimizing the encoding order for embedding. For example,

if the context for determining whether a particular coe�cient belongs to S1 or S2 contains

1In [6], the expectation of the ratio of distortion reduction to bitrate rather than the ratio of expectations is proposed as the

ordering criterion. Clearly, it is the latter criterion which is more relevant from an operational point of view.
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coe�cients from S2, these latter coe�cients must be encoded �rst, irrespective of embedding

considerations. Thus, the encoding of S1 and S2 may have to be interleaved based on the

causal succession of contexts. Such a choice of contexts might be optimal for the overall

compression of S1 and S2 but the resulting interleaved encoding leads to suboptimal em-

bedding. As it seems intractable to �nd the best combination, the compromise we strike is

to establish a two-stage hierarchy of contexts. The �rst stage of this hierarchy is a function

only of previously encoded information outside of S and is used to determine S1 and S2
(and possibly more sequences) for ordering purposes. The second stage reverts to ordinary

context modeling constrained by the selected ordering. It turns out that when we specialize

this approach to the bitplane problem, where S corresponds to an entire bitplane, the bulk

of the compression gain for most natural images is obtained through the �rst stage in the

hierarchy. This fortuitous result opens the door to very low-complexity compression since

each Sj can be compressed independently under the i.i.d. assumption, a task for which full


edged adaptive arithmetic coding might be less of a necessity, as shown in Section 4.

Application of the embedding principle. Let us specialize the discussion further to the

problem of encoding the n-th bitplane bn;i after bn+1;i have been encoded for all i. The set

S of coe�cient bitplanes corresponds to all of the fbn;ig. We assume the average squared

error distortion measure and that the wavelet transform is su�ciently near orthogonal that

reductions in distortion in the transform domain correspond to equivalent reductions in

distortion in the image domain, an important consideration in applying the above scenario.

The �rst stage of the two-stage context hierarchy described above decomposes S only on

the basis of the values of bn+1;i into a collection of subsequences Sj of coe�cients having

similar distortion reduction per rate of description ( Dj=Rj ) statistics. The sequences are

then encoded separately in order of decreasing values of Dj=Rj. Next, we investigate these

statistics and show that under general conditions the embedding principle leads to ordering

signi�cance bits according to their probability of being one. The analysis also �nds conditions

under which signi�cance bits should be encoded before re�nement bits.

We start with the re�nement bits. Prior to learning a re�nement bit bn;i it is known that

xi belongs to an interval of width �n+1 = 2n+1�. Learning bn;i halves the width of this

uncertainty interval to �n. Let I denote the conditioning information fbn+1;i ; sgn(xi)g, and
let I(k) denote the re�ned information fbn;i = k;bn+1;i ; sgn(xi)g for k = 0; 1. Assuming

reconstruction at the mean, it can be shown that the expected drop in distortion due to

re�nement is

Dref = E2(xijI(0))(1� pref) + E2(xijI(1))pref � E2(xijI)

where pref = Prob(bn;i = 1jI) and E(�j�) denotes conditional expectation. It has been found

empirically that, conditioned on I (and no additional context), if bn+1;i 6= 0 then xi is nearly

uniformly distributed, namely pref � 1=2. In this case Dref = �2
n=4 and Rref , the average

rate of description per bit, is H(1=2) = 1, where H(�) is the binary entropy function.
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Prior to learning a signi�cance bit bn;i, in turn, it is known that xi 2 (��n+1;�n+1). This

is re�ned to xi 2 (��n;�n) if bn;i = 0, and to xi 2 sgn(xi)[�n;�n+1) otherwise, where

�n = �n+1=2. Letting pj = Prob(bn;i = 1jbn+1 = 0) for signi�cance bits from subsequence

Sj, and assuming that the coe�cients from this subsequence are distributed according to

a density fj which is symmetric around zero, it can be shown that for reconstruction at

the mean the average distortion reduction is Dj = pjE
2
fj
(xijI(1)), where again I(1) denotes

the conditioning information (bn;i = 1;bn+1;i = 0; sgn(xi)). Furthermore, assuming e�cient

compression of bn;i and no compression of the sign ( as the additional savings do not justify

the increase in complexity), the average rate of description per bit is Rj = pj+H(pj), where

H(pj) bits are required on average for the bn;i and one bit is required with probability pj for

the sign. Hence, we have the following proposition.

Proposition 1 If the coe�cients corresponding to signi�cance bits bn;i from sequence Sj are

distributed according to the symmetric density fj, then the average distortion reduction per

bit of description of the bn;i is given by

Dj

Rj

=
pjE

2
fj
(xijI(1))

pj +H(pj)
:

It can be shown that the quantity p=(p+H(p)) is monotonically increasing in p. Therefore,

if the fj are such that Efj (xijI(1)) is non-decreasing in pj, then pj serves as a convenient

criterion for ordering sequences of signi�cance bits. In particular, the sequences Sj with larger

pj should be encoded �rst. It turns out that the family of generalized Gaussian distributions

(with �xed exponent), and, in particular, the family of Laplacian distributions, has this

property. Closed form expressions of Efj can be derived for this family as a function of pj.
2

The most general conditions under which a family of distributions exhibits the monotonicity

property are under investigation.

If, as in [7], we use the simplifying assumption that xi conditioned on I(1) is uniformly

distributed, in which case Dj=Rj reduces to

Dj

Rj

=
9�2

npj

4(pj +H(pj))
;

the monotonicity property applies, since Efj (xijI(1)) is independent of pj.

As for re�nement bits versus signi�cance bits, comparing Dj=Rj to Dref=Rref under the

uniform assumption for each case, one �nds that Dj=Rj exceeds Dref=Rref for pj larger than

about .01, indicating that for these values of pj signi�cance bits should be encoded before

re�nement bits. Under the Laplacian assumption on the distribution of the signi�cance bits,

2A similar analysis can be carried out for reconstruction at the midpoint of the uncertainty interval, as opposed to the mean.
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this threshold is somewhat larger, which suggests the possibility that it may be bene�cial to

encode re�nement bits before subsequences of signi�cance bits with very small pj.

To summarize, the above analysis motivates the use of pj as a criterion for ordering the

encoding of signi�cance bits as well as the already common practice of encoding signi�cance

information before re�nement information, except when pj is very small. Notice that the

ordering problem is thus simpler than the coding problem: only the relative ordering of the

pj's must be estimated or guessed and not the actual values themselves.

3 Algorithm

In this section we describe an algorithm for coding bitplanes of wavelet coe�cients that is

motivated by the consideration of the previous section, and by a low-complexity goal. As

a result of the above discussion, we build a hierarchy of a few simple contexts, the �rst

level of which classi�es the bn;i into subsequences Sn;1; : : : ; Sn;K based only on bitplanes m

through n+1. We model the subsequences Sn;j as being mutually independent, encode them

separately, and order the resulting bitstreams based on an anticipated relative ordering of

Dj=Rj.

We now specify the subsequence classi�cation. Let coe�cient f(i) be the parent of coe�cient

i where we refer to the usual parent-child relationship [1] among wavelet coe�cients,3 and

let N(i) denote an as yet unspeci�ed collection of spatially contiguous neighbors of i from

the same frequency band as i. We determine four subsequences Sn;j; j = 1; : : : ; 4, which

are, respectively:

1. Non-zero neighbor subsequence: all coe�cients i with bn+1;i = 0 and bn+1;k 6= 0 for at

least one k in N(i).

2. Non-zero parent subsequence: all coe�cients i with bn+1;i = 0, bn+1;k = 0 for all k in

N(i), and bn+1;f(i) 6= 0.

3. Run-subsequence: consists of all coe�cients i with bn+1;i = 0, bn+1;k = 0 for all k in

N(i), and bn+1;f(i) = 0.

4. Re�nement subsequence: all coe�cients i with bn+1;i 6= 0.

Let pn;j
4
= Prob(bn;i = 1) for subsequence Sn;j. Subsequence Sn;3 is referred to as the run-

subsequence as we expect pn;3 to be very small and, therefore, Sn;3 will exhibit long runs of

zeros. In fact, we would expect a priori that pn;1 � pn;2 � pn;3. This was indeed found to be

the case for all the images examined. Thus, Proposition 1 and the ensuing discussion suggest

3The parent of coe�cient i is that coe�cient from the next decomposition level in the same spatial orientation which has a

basis function maximally overlapping that of coe�cient i. This leads to each parent having four children.
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that Sn;j be encoded in the order Sn;1; Sn;2; and Sn;3, followed by the re�nement bits Sn;4.

It turns out that in some cases, especially at low bitrates, encoding Sn;4 before Sn;3 leads

to better embedding, as suggested by the small value of pn;3 and the results of the previous

section. For a negligible compression overhead and a modest increase in complexity, the

encoding order can be made adaptive based on learning the relative ordering of the pn;j.

For the second level of the context hierarchy, it was found to be bene�cial for some images to

further decompose the run subsequence Sn;3 within each level of the wavelet decomposition

based on bn;f(i), the value of the n-th bitplane of the parent of i. Thus, S
(l;0)
n;3 consists of

all coe�cients in Sn;3 and level l of the wavelet decomposition with bn;f(i) = 0, and S
(l;3)
n;1

consists of those coe�cients with bn;f(i) = 1. We have added the superscript l to emphasize

that causality constraints require that these subsequences be encoded in order of decreasing

l.

Once identi�ed, the subsequences are compressed using the adaptive codes of Section 4

except for Sn;4, the re�nement subsequence, which is appended to the bitstream uncoded.

The adaptive codes are built on an extended alphabet in which the value bn;i = 1 for a

signi�cance bit always marks the end of a symbol. The sign of the coe�cient whose one-

valued bit terminated the extended symbol is appended uncoded to the bitstream following

the encoding of the symbol.

Speci�c features incorporated into the coder used to obtain the �gures in Table 1 are:

1. 9-7 biorthogonal wavelet decomposition [8] with 6 levels.

2. The neighborhood N(i) of the i-th coe�cient consists of the eight coe�cients spatially

adjacent to i.

3. The scanning of the subsequences is as follows. Each band at level l is partitioned into

macro-blocks of size 27�l � 27�l. Within each macro-block, the coordinates of the i-th

coe�cient in the scan are obtained by deinterleaving the odd and even bits of i. This

is sometimes called the zig-zag scan. Within each level the order of the bands with

respect to orientation is high horizontal-low vertical, low vertical-high horizontal, high

vertical-high horizontal. The levels are scanned from highest level (lowest frequency)

to lowest level (highest frequency).

4. The mean of the lowest frequency band coe�cients is subtracted prior to quantization.

The bitplanes of these coe�cients are packed uncoded along with the sign information

when a coe�cient bitplane is non-zero for the �rst time.

5. The reconstruction value of a coe�cient is always in the middle of the most recently

available uncertainty interval.
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Separate bitstreams are generated for each bitplane and each subsequence of coe�cients

within each bitplane. The sub-bitstreams can be rearranged o�ine (on byte boundaries) for

optimal embedding.

Complexity tradeo�s. Lower complexity variants that we investigated include a simpli�ed

subsequence classi�cation based on blocks. The idea is to �rst group the coe�cients into

2x2 blocks of spatially contiguous coe�cients having the same parent. The classi�cation

rule is then the same as above except N(i), the neighborhood of the i-th coe�cient, now

refers to the other 3 coe�cients in i's block. This reduces the memory access required for

subsequence classi�cation to retreiving the parent and then one access per coe�cient (as

opposed to at least 3 per coe�cient in an e�cient implementation of the above scheme).

This simpli�cation has a cost of about .1dB on most natural images and a somewhat higher

cost for some arti�cial images such as compound documents. We also investigated changing

the scanning of the subsequences to raster, as opposed to the scan order of item 3 above.

Raster scan may be necessary in memory-limited applications. The cost of using a raster

scan can vary, but it typically ranges between 0 and .1 dB. For arti�cial images the di�erence

is often more signi�cant both positively and negatively.

Reconstruction at the mean. It may be possible to improve the reconstructed image

quality by determining the quantizer reconstruction values adaptively, as opposed to always

using the midpoint of the uncertainty interval. The minimum squared error reconstruction

value for a set of coe�cients known to lie in a quantization interval is well known to be the

sample mean: however, the decoder must be informed of this quantity, or must estimate it

from previously decoded information. We now describe a low-complexity scheme for adapting

the reconstruction values of signi�cant coe�cients based on estimating the sample means at

the encoder.

To reduce the number of quantities which must be estimated (and hence save on side-

information and computation) we again rely on the observation that the conditional empir-

ical distributions of wavelet transform coe�cients are well approximated by Laplacian dis-

tributions. Thus, the model we assume is that wavelet transform coe�cients are distributed

according to a mixture of Laplacians, where one component of the mixture dominates in each

of the sets �[0;�0);�[�0;�1);�[�1;�2); : : : ;�[�m;�m+1), where, as above, �n = 2n�.

Let In denote the set �[�n;�n+1). The idea is that the encoder determines the Laplacian

density that best approximates the distribution of wavelet coe�cients falling in each In. A

su�cient statistic for determining this density is �n, the sample mean of the absolute values

of the coe�cients belonging to In. Note that, since In contains those coe�cients for which

the n-th bitplane is the �rst non-zero bitplane, �n need not be speci�ed until the n-th bit-

plane is encoded: prior to this all of these coe�cients are quantized and reconstructed at

zero. Thus, each �n is added to the bitstream as side-information just prior to the encoding

of the corresponding bitplane.

Fix a set In, and let I+n be the postive half of In. Bitplanes n through j (j � n, as
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bitplanes are described in decreasing order) re�ne I+n into 2n�j sub-intervals indexed by k,

and reconstruction values rk;j;n must be determined for each sub-interval. For j = n there is

only a single sub-interval, namely I+n , and the decoder sets r0;n;n = �n: this is the minimum

squared error optimum value, assuming the coe�cients are symmetrically distributed about

zero. For j < n, the decoder determines the rk;j;n, as the conditional expected values, relative

to the corresponding sub-intervals, of the Laplacian density having �n as its conditional

expected absolute value relative to In. An interesting and useful property of the Laplacian

(and exponential) density is that the conditional densities relative to two intervals having

the same length and lying on the same side of the origin are simply shifted versions of the

same density. This implies that the di�erence between the reconstruction values rj;k;n and

the left edge of each sub-interval in I+n is a constant �j;n. It su�ces, therefore, to compute

only the �j;n, and then to add these o�sets to the readily computed sub-interval edges to

obtain the reconstruction values. The Laplacian assumption implies that the negative half

of In is treated symmetrically.

It can be shown that a real parameter x relates �n and �j;n through the equations

�n ��n

�n

=
1

lnx
� 1

x� 1
; (1)

and
�j;n

�j

=
1

2j�n lnx
� 1

x2j�n � 1
:

Solving these equations for �j;n in terms of �n is only possible numerically. In practice,

this computation can be accelerated using a lookup table containing values of the quantity

�j;n=�j, and indexed by quantized values of the quantity min((�n��n)=�n; 1=2) and n� j.
The minimum is required since the right side of (1) is bounded above by 1=2. Intuitively,

this arises from the fact that the conditional mean of a Laplacian density relative to any

positive interval is smaller than the midpoint of the interval.

We remark that there are many possible extensions to the above parameterized reconstruc-

tion value scheme. For example, we can increase the number of sub-intervals for which

explicit sample means are encoded, and we can further group coe�cients based on blocks,

bands, and/or contexts, and encode sample means for each group.

4 Elementary Golomb codes

By the modeling considerations discussed in sections 2 and 3, our goal is to encode inde-

pendent binary subsequences, which are modeled as i.i.d. using a low-complexity adaptive

code. It was found empirically that for Sn;1; Sn;2; and Sn;3, the subsequences that are actually

coded, the probability pn;j of a one satis�es pn;j < :5. Therefore, in the subsequent analy-

sis of binary data compression, we can assume that in all cases the probability q of a zero

satis�es q > 0:5. For a positive integer parameter m, let EGm denote a variable-to-variable
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length code de�ned over the extended alphabet f1; 01; 001; : : : ; 0m�11; 0mg, where the no-

tation 0` denotes a sequence of ` zeros. Under EGm, the extended symbol 0m is encoded

with a 0, while 0`1, 0 � ` < m, is encoded with a 1 followed by the binary representation

of ` (using blogmc bits if ` < 2dlogme �m and dlogme bits otherwise, where logarithms are
taken to the base 2). By considering a concatenation of extended input symbols, it is easy

to see that EGm is equivalent to a Golomb code [9] of order m applied to the sequence of

zero-run lengths. However, EGm is de�ned over a �nite alphabet which provides for better

adaptation, as shown below. In fact, these codes were introduced in [10], [11], and [12] in

the context of adaptive run-length coding. We will refer to EGm as an elementary Golomb

code of order m.

In this section we present new properties of elementary Golomb codes which provide insight

into their well-known e�ciency for encoding i.i.d. binary sequences over a surprisingly wide

range of values of q. We also elaborate on adaptive strategies for the case in which m is a

power of 2. First, notice that by the equivalence with Golomb codes, we can apply results

from [13] to show that the order m of the best elementary Golomb code for a given value of

q is the unique positive integer satisfying

qm + qm+1 � 1 < qm + qm�1 : (2)

Proposition 2 For q and m satisfying (2), the Hu�man code for a Tunstall extension with

m symbols constructed over the binary alphabet is EGm.

Since a Tunstall extension [14] minimizes the bound 1=E[L] on the redundancy of a Hu�man

code constructed over symbols of expected length E[L], Tunstall-Hu�man combinations have

been proposed as good approximations for the (open) problem of �nding the best dual-tree

code [15, 16]. Thus, Proposition 2 states that, in a sense, EGm is the best variable-to-variable

code with m symbols for the range of probabilities for which m is optimal.

When q is unknown a priori, elementary Golomb codes are superior to Golomb codes in that

the value of m can be adapted within a run, based on the current estimate of q. However, to

design an adaptive strategy for EGm based on (2) can be a complex procedure. By reducing

the family of codes to the case where m = 2g, the redundancy is still very small for the

ranges of interest, while the adaptation turns out to be extremely simple. In addition, the

code words for the extended symbols ending in a one are all g+1 bits long and can be easily

implemented.

Proposition 3 Let m = 2g. The order m of the best elementary (power-of-2) Golomb code

for a given value of q is the unique positive integer satisfying

qm � � < qm=2 (3)

where �
�
= (

p
5� 1)=2 (inverse of the golden ratio).
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By Proposition 3, the values of q for which there is a transition point between optimal codes

EG2g are �; �
1=2; �1=4; : : : ; �2

�`

; : : : . By use of tools developed in [17] it can be shown that

these values are also local maxima for the minimum relative redundancy of the codes. These

maxima are decreasing with the order of the codes, so that the worst case redundancy is

attained at q = � � 0:618 and it equals (1=H(�))� 1 � 4%.

As for adaptivity, notice that, with  denoting the golden ratio, the transition points satisfy

q

1� q
=

1

 2�g � 1

�
=

2g

ln 
� 1

2
+ 
(g) (4)

where 
(g) can be shown to be a decreasing function of g that ranges between  + (1=2)�
(1= ln ) � 0:04 (g = 0), and 0 (g ! 1). Since  � 1:618 and 1= ln � 2:078, (4) implies

that q=(1� q) is within 4% of 2g+1 � (1=2) + (1=8) for every g � 0. Since q=(1� q) can be

estimated as the ratio of the number of zeros to the number of ones in the sequence, it follows

that the optimal g can be adaptively estimated through simple shift and add operations. As

in [18], provisions should be taken to implement a forgetting factor for the remote past.

More complex adaptation strategies for dual-tree codes are proposed in [19].

The above low-complexity adaptive coding scheme is used for all the mutually independent

subsequences described in Section 3, except for S
(l;0)
n;3 . In this case, we use a variation of

this scheme including a dual mode adaptation with a \short run" mode and a \long run"

mode. The coder always starts up in the short run mode, and when a run of zeros longer

than a pre-set constant (say, 8) is encountered a transition is made into the long run mode

which completes the encoding of the run. This method can be viewed as a simple two-state

variation of elementary Golomb codes, for cases where an i.i.d. model is inappropriate.

5 Results

Table 1 shows PSNR4 �gures for the proposed low complexity coder on a sample of the 8bpp

luminance images from the ISO/JPEG2000 test set. The three rows of PSNR's for each

image are respectively for the proposed coder, SPIHT-AC, and SPIHT. The numbers for

SPIHT-AC and SPIHT were obtained using the executables kindly made available by W.A.

Pearlman on his website. As can be seen, our coder rarely performs worse than .1dB below

SPIHT-AC, and it is typically between .3 and .6dB above SPIHT. For example, for .5bpp,

our coder's PSNR is on the average .04dB below that of SPIHT-AC, and .5dB above that of

SPIHT.

6 Complexity issues

The algorithm of Section 3 has some clear complexity advantages. Arithmetic coding is

avoided as is the extensive memory usage of SPIHT and other zerotree-based coders. Unlike

4De�ned as 10 log10(255
2=�), where � is the mean of the squares of the pixel errors.
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Output bit rate (bpp)

Image .0625 .125 .25 .5 1.0

aerial2 � 24.55 26.44 28.45 30.57 33.28

y 24.63 26.52 28.49 30.60 33.32

z 24.35 26.15 28.18 30.23 32.86

bike � 23.37 25.85 29.09 33.01 37.66

y 23.44 25.89 29.12 33.01 37.70

z 22.86 25.29 28.51 32.36 36.98

cafe � 18.97 20.61 22.95 26.39 31.59

y 18.95 20.67 23.03 26.49 31.74

z 18.69 20.28 22.49 25.85 30.89

cats � 28.07 29.80 32.55 36.90 43.55

y 28.15 29.88 32.62 36.89 43.60

z 27.78 29.42 32.07 36.28 42.79

�nger � 20.39 21.94 24.33 27.79 31.42

y 20.32 21.87 24.25 27.67 31.35

z 20.10 21.65 23.84 27.17 30.79

txtur1 � 18.07 19.04 20.40 22.31 25.40

y 18.05 19.11 20.41 22.44 25.69

z 17.92 18.84 20.13 22.02 24.92

woman � 25.40 27.28 29.84 33.46 38.24

y 25.43 27.33 29.95 33.59 38.28

z 25.07 26.91 29.43 32.93 37.73

Table 1: PSNR (dB) vs. output bit rate for proposed coder (�), SPIHT-AC (y), and SPIHT (z),

on images from the JPEG2000 benchmark set.

zerotree-based coders, the encoder can generate the bitstreams for all bitplanes simulta-

neously in a single pass through the transform coe�cients, when o�ine reordering of the

bitstreams is possible. Furthermore, when su�cient memory resources are available, the de-

coding of long runs of zeros can be accelerated by the use of lists to remember the locations of

signi�cant coe�cients, a technique borrowed from SPIHT. Coders based on context-adaptive

arithmetic coding, on the other hand, are not as amenable to this technique.

The complexity advantages of the proposed coding algorithm stem from an explicit approach

to the optimal embedding problem, which motivates the two-stage hierarchy of contexts

which, in turn, allows for the low-complexity encoding of deinterleaved subsequences of

coe�cients with similar statistics.
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7 Conclusion

We have proposed a new low-complexity method for coding the bitplanes of a wavelet-

transformed image (actually the algorithm, to a large extent, can be tailored to work with

any type of transform). In terms of PSNR our coder is competitive with SPIHT-AC and

superior to SPIHT. We believe that the principal advantage of the proposed coder over

zerotree-based schemes is that it embodies a cleaner separation between modeling, coding,

and algorithmic components. This seems very useful from an engineering perspective since it

greatly simpli�es the problem of tuning the algorithm for particular applications (hardware,

software) and performance vs. complexity tradeo�s. This also opens the possibility for

further modeling improvements.

Potential enhancements to the proposed coder which are under investigation include incor-

porating further context modeling for coding within the run subsequence Sn;3, as the i.i.d.

assumption seems to be weakest for this subsequence; further subdividing the run subse-

quence based on proximity to non-zero coe�cients; and classifying subsequences based on

larger blocks in the block version of the algorithm.
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