
Deterministic Service Guarantees
in 802.12 Networks, Part I :
The Single Hub Case

Peter Kim
Network Technology Department
HP Laboratories Bristol
HPL-97-147
December, 1997

LAN, quality of
service,
deterministic
services

In this paper and its sequel [1] we study the problem of
allocating resources in single hub and cascaded 802.12
networks. We show that the use of the 802.12 high
priority mechanism when combined with admission
control, allows the network to provide small,
deterministic delay bounds in large, cascaded network
topologies with potentially many hundreds of nodes. The
allocation scheme proposed is based on a time frame
concept that takes advantage of the properties of the
Demand Priority medium access protocol to provide much
tighter delay bounds than given by the time frame itself.
The first part of the work is to analyse relevant network
performance parameters and their dependencies. In the
second part, we describe the scheduling model and define
the admission control conditions used to provide
deterministic service guarantees. Experimental results
received with a UNIX kernel based implementation in a
standard 802.12 test network confirm our theoretical
results for network parameters, throughput and delay
bounds.
In this paper, the single hub topology is analysed. In the
sequel of this paper, the network parameters are derived
for cascaded 802. 12 networks which allow the admission
control conditions to be applied to the topologies.

 Copyright Hewlett-Packard Company 1997

Internal Accession Date Only

Abstract

In this paper and its sequel [1] we study the problem of allo-
cating resources in single hub and cascaded 802.12 net-
works. We show that the use of the 802.12 high priority
mechanism when combined with admission control, allows
the network to provide small, deterministic delay bounds in
large, cascaded network topologies with potentially many
hundreds of nodes. The allocation scheme proposed is based
on a time frame concept that takes advantage of the proper-
ties of the Demand Priority medium access protocol to pro-
vide much tighter delay bounds than given by the time frame
itself. The first part of the work is to analyse relevant net-
work performance parameters and their dependencies. In
the second part, we describe the scheduling model and
define the admission control conditions used to provide
deterministic service guarantees. Experimental results
received with a UNIX kernel based implementation in a
standard 802.12 test network confirm our theoretical results
for network parameters, throughput and delay bounds.

In this paper, the single hub topology is analysed. In the
sequel of this paper, the network parameters are derived for
cascaded 802.12 networks which allow the admission con-
trol conditions to be applied to those topologies.

1 Introduction

The use of applications with a variety of performance con-
straints and the widening commercial use of the Internet are
driving its migration to an Integrated Services Packet Net-
work (ISPN) [2]. In contrast to the current Internet, which
only provides the traditional best-effort service, the new
architecture will additionally offer advanced services called
Integrated Services. The differentiator of these new services
is the quality of service and the diverse service commit-
ments e.g. probabilistic or deterministic performance guar-
antees which are assured by the network. Quality of service
will be required for supporting applications with stringent
performance constraints like Internet telephony or distrib-
uted virtual reality over the Internet, but will also be useful
for ensuring a certain minimum bandwidth for traditional
data transfers over congested links.

The key characteristics of the new ISPN are the services
offered, the scheduling algorithm applied in routers and

switches, the admission control and the reservation setup
mechanism. Much research has been performed on each of
these areas. The Integrated Services first put forward as
draft standards for the new Internet are theguaranteed- and
thecontrolled load service [3], [4]. Advanced packet sched-
uling and admission control are used to ensure the service
quality specified in these service definitions. A comparative
study can be found in [5]. Admission control schemes for a
controlled load service are presented in [6], [7]. The reser-
vation setup mechanism requires a protocol which carries
reservation requests through the internetwork. It ensures
that resources are reserved on all links along the data path
between the data source and the receiver. RSVP [8], [9] has
been developed for performing this task at the network
layer.

Within the ISPN architecture, the service guarantees
offered to applications rely on supporting mechanisms at all
intermediate layers of the transport system. Applications
negotiate the service with the top most management layer
e.g. RSVP and specify the service request and traffic charac-
terisation. On each link along the data path, RSVP then
requests the service on behalf of the application from the
underlying link layer.

LAN technology is typically deployed at the leaves of the
Internet where large bridged LANs often interconnect hun-
dreds of users. In order to support end-to-end service guar-
antees through the Internet, mechanisms which enable these
guarantees must also be introduced in switched/bridged
LANs. The IETF Integrated Services over Specific Link
Layers (ISSLL) working group was chartered with the pur-
pose of exploring the mechanisms required for various link
layer technologies. Reference [10] describes the framework
for providing the functionality to support Integrated Serv-
ices on shared and switched IEEE 802 LAN technologies.

There is no standard mechanism for providing service
guarantees across existing LANs such as 802.3 Ethernet,
802.5 Token Ring, or 802.12 Demand Priority. This is
because the access mechanisms of these technologies differ.
Another factor to be considered is the bridged LAN topol-
ogy which can imply shared, half-duplex- or full-duplex
switched links. This is different to the wide-area which usu-
ally consists of routers and switches connected by point-to-
point links. The packet scheduling and the admission con-
trol conditions will thus typically be technology specific,

Deterministic Service Guarantees in 802.12 Networks,
Part I: the Single Hub Case

Peter Kim

pk@hplb.hpl.hp.com

HP Technical Report HPL-97-147, April 1997.

Hewlett-Packard Laboratories, Filton Rd, Bristol, U.K.

sometimes even topology dependent, and must be defined
separately for each LAN technology.

This paper and its sequel focus on defining the scheduling
model and the admission control conditions required for
providing deterministic service guarantees across 802.12
networks. Our work consists of two parts. It contains a
detailed analysis of the worst-case network performance
parameters for single-hop and cascaded topologies. The
results from this analysis can be used as the basis for any
advanced service to be built on top of the 802.12 high prior-
ity access mechanism in cascaded and bridged/switched
802.12 networks. We further define the admission control
conditions required for supporting a guaranteed service
across single-hub and cascaded networks.

In this paper, we will restrict our attention to the single
hub network and leave the analysis of cascaded networks
for the sequel. We also do not discuss the scheduling and the
admission control conditions applied in bridged networks.
This is left for further study.

The remainder of this paper is organized as follows. In
section 2, we introduce 802.12 networks and the Demand
Priority medium access method used. We then discuss per-
formance parameters such as the available bandwidth and
their dependencies. A detailed analysis of the worst-case
per-packet overhead and the time it takes to interrupt the
low priority service is performed in Appendix A.3 and A.4.

Section 3 first discusses design decisions which we made
for our allocation system. We then describe the scheduling
model and present the corresponding admission control
conditions. The analytical proofs for the bandwidth and the
delay bound test are given in Appendix A.1 and A.2. In sec-
tion 4, we propose a simple time window mechanism that
can be used to improve the resource utilization in the case
that applications use variable packet sizes, but do not
change their packetization process. Section 5 describes our
implementation and the test network that was used to exper-
imental confirm analytical results. In section 6, we present
measurement results received for network parameters and
the end-to-end delay. Resource utilization issues are also
discussed. Our conclusions are presented in the sequel after
we discussed the results for cascaded 802.12 topologies.

2 IEEE 802.12

IEEE 802.12 [11] is the standard for a shared 100Mbit/s
LAN. A simple network consists of a single hub (repeater)
and several nodes, each separately connected to the hub cre-
ating a star topology. To extend the size of the network, sev-
eral hubs can be connected to each other. This is called
cascading. The shared medium access is controlled by the
Demand Priority protocol. Data are transmitted using either
IEEE 802.3 or 802.5 frame formats. Several physical layers
have been defined. In particular the standard supports Cate-
gory 3 unshielded twisted pair (UTP) cable, which is the
most widely used cabling. The standard also specifies the

operation over shielded twisted pair (STP) and multimode
fiber.

2.1 Demand Priority

The MAC protocol used in 802.12 is called Demand Prior-
ity. Its main characteristics are the support of two priority
levels and the service order: data packets from all network
nodes are served using a simple round-robin algorithm.

Whenever nodes wish to transmit a packet, they first sig-
nal a service request (or demand) to the hub. The request is
labelled with either normal or high priority. The hub is con-
tinually scanning each of its attached ports and maintains
two separate service lists: one for low priority and one for
high priority requests. All high priority requests are served
first. The hub acknowledges the request of the next node in
its current round-robin cycle and grants the transmission of
one packet. The selected node then starts sending its packet
to the hub. As the hub receives the packet, it decodes the
address information, selects the output port, and then only
forwards the packet to its destination. This filtering is possi-
ble because the hub learned the MAC addresses of all nodes
connected to it during a link training process, which is exe-
cuted when the link to an end-node is setup. Multicast and
broadcast frames are send to all nodes. The hub continues
the process until the high priority list is empty and then car-
ries on serving demands for normal priority service.

Whenever the hub receives a high priority request while
its low priority service list is being served, it completes the
processing of the current request before it begins to serve
high priority requests. After processing all high priority
requests, the hub continues to serve the normal priority list
at the last position in the low priority round-robin cycle.

The service policy is unfair if different nodes use differ-
ent packet sizes. The hub schedules packets according to a
simple round robin scheme and does not consider the size of
the packets transmitted. Further details and a comparison
with the 100BaseT standard (IEEE 802.3u) can be found in
[12], [13] and [11].

2.2 Performance Parameters and their
 Dependencies

The communication between end-nodes and the hub is syn-
chronized by the exchange of link control signals. These are
used to signal the local MAC status and to control the
medium access. Each packet transmission on Demand Pri-
ority networks is associated with a fixed protocol and sig-
nalling overhead. This overhead has a significant impact on
the performance if small sized data packets are used and,
depending on the packet size and the network topology, sub-
stantially reduces the data throughput on the network.

To show this important dependency and how it affects the
available bandwidth in the network, we have done the fol-
lowing experiment. In a single hub test network, we used 7
computers which we call Traffic Clients to generate multi-

cast traffic with a packet size ranging from 512 bits (64
bytes) to 12000 bits (1500 bytes). All traffic was multicast
in conformance with the worst case packet transmission
model described in Appendix A.3. Another computer which
we call the Controller was used to: (1) control the packet
sizes used by the Traffic Clients, and (2) to measure the
throughput. All computers were HP 9000/700 workstations
connected to a standard hub via 100m of Category 3 UTP
cable. The computers used the HP-UX 9.05 operating sys-
tem and standard EISA 802.12 interface cards. The through-
put was measured by periodically reading the MIB counters
[14] from the managed hub. This used SNMPGet-Request
messages [15]. The incremental step of the packet size was
4 bytes, the measurement time interval was 30 seconds. Fig-
ure 1 shows the measurement result. One can observe that
the achievable throughput varies for different packet sizes
and becomes substantially smaller for data transmissions
that only use small sized packets.

Figure 1. Measured Worst-Case available Bandwidth
in a Single Hub 802.12 Network.

The data throughput will be further degraded in higher cas-
caded 802.12 topologies. This dependency had a strong
impact on the design and the complexity of our allocation
system and had to be considered in the admission control
conditions. Building an efficient allocation system on top of
the 802.12 high priority access mechanism thus first
requires the computation of the available bandwidth in the
network. The result of this computation defines the band-
width limit up to which a resource allocator may allocate
resources. This is not only essential to ensure that allocated
resources are actually available on the network, and thus
that delay bounds and buffer space requirements are met.
More importantly, it enables the resource allocator to guar-
antee that a certain minimum bandwidth is always free for
the best-effort service by accordingly restricting the access
to the high priority service.

The maximum bandwidth that could theoretically be allo-
cated while giving deterministic service guarantees depends
on two network parameters: the worst-case Demand Priority
per-packet signalling overhead and the worst-case time it
takes to pre-empt the low priority data transmission (the low
priority service interrupt time). Both parameters depend on

the cascading level, the physical layer technology and the
cable length.

The cascading level has a significant impact because of
the increased signalling delay within larger topologies. This
is discussed in the sequel. The physical layer can introduce
an additional delay when operating in half-duplex mode.
This is the case for data transmissions over UTP links. Since
data are transmitted on all four pairs across such cables, no
link control signals can be exchanged during that time. This
has an impact on the low priority service interrupt time in
the network and is described in detail in Appendix A.4. The
delay is not introduced across STP or fiber optic links since
these operate in dual-simplex mode and can exchange data
and control signals at the same time.

The dependency of the available bandwidth from the
cable length is caused by the propagation delay of control
signals and data across the network. This will be significant
for long fiber optic links which may have a cable length of
up to 2 km. The cable length for UTP and STP links is
restricted to 200 m by the standard.

To determine the worst-case per-packet overhead (),
and the low priority service interrupt time (), the
Demand Priority link control signals and the packet trans-
mission model on 802.12 networks must be analysed in
great detail. This is done in the appendix for a single hub
network. We focused on a UTP physical layer since this is
most widely used. The numerical results for and
are shown in Table 5 and Table 7 in Appendix A.3 and A.4.
They include the delay caused by the Demand Priority pro-
tocol and by passing data through the protocol stack. In sec-
tion 6, we compare the measured throughput shown in
Figure 1 and the computed allocation limit which was deter-
mined by using these results in our admission control condi-
tions.

3 Scheduling Model and Admission
 Control Conditions

In this section we describe the interaction of the end-nodes
with the medium access protocol and how this leads to the
admission control conditions. We start by discussing gen-
eral design decisions and system constraints. We then intro-
duce the traffic characterization used throughout the
theoretical analysis and describe the scheduling process. In
the last part of this section, we define the admission control
conditions.

3.1 Design Decisions and Constraints

Our resource allocation scheme provides a service with an
absolute delay bound. This is called aguaranteed service
[16]. We have first concentrated on this since we believed
this to be the more challenging service. 802.12 further only
offers two different priority levels. This restricts the number
of advanced services that can simultaneously be imple-

0

10

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000 12000

Th
ro

ug
hp

ut
 in

 M
bi

t/s

Packet Size in bits

dat_bw1a

Measured Throughput: L-1 Topology, l = 100m

Dpp

Dit

Dpp Dit

mented to just one, since the low priority access mechanism
is used for best-effort traffic. A guaranteed service has the
advantage that it provides the highest service commitment
and can therefore also be used to serve requests for other
services e.g. a controlled load service, whereas the opposite
case does not hold. In the following, we will call flows using
the guaranteed service real-time flows.

The guaranteed service is built on top of the 802.12 high
priority access mechanism. No changes to the existing LAN
standard are required. Any use of the high priority mecha-
nism is controlled by rate regulators on a per-flow basis at
each node in the network. Rate regulation and the Demand
Priority protocol thus define the order in which data packets
from different nodes are transmitted.

The Demand Priority protocol and the significant per-
packet overhead have a strong impact on the scheduling
model and the admission control conditions. In contrast to
other link technologies, in 802.12 networks, we can not
assume that data held in output queues are served with a
constant data rate, even though the physical link speed is
constant. Instead, the data throughput will depend on the
packet sizes used by all nodes in the shared network as
could be observed in Figure 1. This provides two problems
which we have to solve. The first is that our admission con-
trol conditions must consider this dependency and take the
per-packet overhead into account. Without this, the admis-
sion control conditions would have either provided a low
resource utilization or non-deterministic service guarantees.
The second problem is that we need a mechanism to find the
packet sizes which applications are using, since this enables
us to compute the signalling overhead.

Our reservation scheme is based on a time frame concept.
It was chosen since this enables us to bind the total packet
overhead, provided that the packet sizes are known. A key
problem is that in existing systems the link layer cannot
negotiate the packet sizes with the upper layers. One could
be extremely pessimistic and assume the use of minimum
sized packet for all flows, but this reduces the allocatable
bandwidth within a single hub network to about 35 Mbit/s.
This further decreases in higher cascaded topologies.

Within this section we will assume that packet sizes are
fixed or the link layer is able to negotiate them with the
application. In section 4, we then propose a simple measure-
ment based algorithm that can be used to find an approxima-
tion if the packet sizes are neither negotiatable nor fixed.
This algorithm can only be applied for applications which
do not change their packetization process over time. This
was the case for the multimedia applicationsnv, vic, vat,
MMC [17], [18] and theOptiVision MPEG Communication
System [27] which we tested. Instead of measuring the
packet size directly, the algorithm measures the maximum
number of packets each flow sends in a time frame. This
enables us to compute the total packet overhead, but also
allows a flow to use a variety of different packet sizes,

including minimum sized packets, as long as the number of
packet overheads stays below a certain upper bound.

The packet overhead and the simple round-robin service
policy differentiate our environment from that of point-to-
point links connected e.g. to an ATM switch. In 802.12 net-
works, hubs are not able to identify and isolate single flows.
The service data rate is variable and depends on the packet
size used by all end-nodes on the shared single hub or cas-
caded network segment. This packet size may also be varia-
ble within each flow. Further, the queues are distributed and
data packets from different hosts can not be scheduled in the
order they arrived at the output queue. This makes the anal-
ysis of our system more complicated, and is the reason why
existing solutions do not apply to our environment.

3.2 Traffic Characterization

To allocate resources for an application, the resource man-
ager needs a traffic characterization that describes the traffic
passed to the network by this application. In our analysis,
we use the leaky bucket scheme as used in [19], [20]. A
leaky bucket filter has two parameters: a token generation
rate and a bucket depth . Tokens are generated at rate
and stored in the token bucket. The bucket depth limits
the maximum number of tokens that can be stored. Sending
a packet consumes tokens from the bucket, where
denotes the packet length in bits. If the bucket is empty or
does not contain enough tokens then the packet is stored in a
queue until sufficient tokens are available. The maximum
size of the queue is bounded.

The leaky bucket enforces the amount of data which can
leave the node in any time interval . A traffic source
conforms to the characterisation if in any existing
time interval no more than bits leave the leaky
bucket, where is thetraffic constraint
function [19] of source .

3.3 Packet Scheduling Model

In 802.12 networks, each node maintains two link level out-
put queues: one for normal priority traffic and one for traffic
with quality constraints. In our system we add link level rate
regulators to control the access to the high priority queue on
a per-flow basis on each network node. The number of flows
is restricted by admission control. Ill behavednodes can be
prevented from using high priority by network management
control of the hub.

The link level rate regulators have several functions in our
system. We use them (1) to protect the network service from
ill behaved applications by controlling the amount of data
passed into the network within a time frame, and (2) to limit
the number ofdata packets which can leave the regulator
within this time interval (packet regulator). If resources are
not allocated at peak rate then (3) our rate regulators also
smooth out traffic bursts before they can enter the network.

r δ r
δ

p p

∆t i
δi r i,()

∆t bi ∆t()
bi ∆t() δi ri ∆t+≤

i

Functions (1) and (3) describe traditional functions of a rate
regulator. Feature (2) was added in our design.

The structure of the system is shown in Figure 2. Data
packets received from the overlying network layer are first
classified. Normal priority data packets are immediately
passed to the best-effort output queue. We will not consider
them any further in our analysis since their transmission is
isolated and pre-emptable. This will be shown in an experi-
ment in section 6. High priority packets are either: (1) sent
immediately when a sufficient number of token are available
for this flow, (2) are stored in the flow’s regulator-queue
until they become eligible to send, or (3) are dropped if the
regulator-queue has reached its maximum capacity. All out-
put queues are then served in round-robin order as described
in Section 2.1.

Figure 2. The Packet Scheduling Model.

The time frame concept underlying our resource allocation
scheme requires that the total amount of data entering the
high priority output queue on each node within a time frame
is controlled. This is achieved using the rate regulators
which sit above the high priority queue. The parameters of
each rate regulator can be set so that they either correspond
to thepeak rate of a flow entering the regulator, or to the
average rate. If they are set at the peak rate, the regulator
does not introduce any delay because there is always a suffi-
cient number of tokens available to pass a packet into the
high priority queue. If they are set at the average rate, then
the regulator smoothes out traffic peaks. This reduces the
bandwidth to be allocated on the network and thus increases
the resource utilization. However, delay is additionally
introduced by holding packets in the regulator-queue.
Smoothing at end-nodes is not a problem because host
memory is not a scarce resource. For the sake of simplicity,
we assume in the following, that resources are allocated at
peak rate and no delay is introduced by the rate regulator.

To see how the time frame concept provides a delay
bound, we first assume a time frame of length . For each
flow on node , we define the packet count which
is the maximum number of packets this flow is allowed to
pass into the high priority queue within any interval . If
we assume that node has real-time flows, and sufficient
resources are allocated such that any backlog is always

cleared within , then the maximum number of packets in
the high priority queue of node is bounded by:

(3.3.1)

The simple round-robin service policy of the hub ensures
that the packets in the high priority queue at node
will be transmitted within the next high priority
round-robin cycles. Since the maximum number of all pack-
ets that become eligible within on all other nodes is
known, the scheme can provide a deterministic delay bound
for . All bounds are in general inversely proportional to
the allocated bandwidth: nodes with small reservations
receive a smaller delay bound than nodes with large reserva-
tions. The delay bounds are further affected by the packet
sizes used. The time frame provides the upper bound for all
individual node delay bounds. Unlike the time frame in [21]
or [22], our time frame is not theminimum delay bound that
can be guaranteed by the system because we can exploit the
round-robin service policy of the Demand Priority access
method. For example, with a time frame of 40 ms, our
scheme is still able to provide a delay bound of 5 ms or less
for a node. Since the 802.12 standard only supports a single
high priority level, our system can only provide a single out-
put queueing delay bound per node . This bound applies to
all real-time flows on . The end-to-end delay of different
flows might however vary dependent on the additional delay
that is introduced in the flow’s rate regulator.

The computation of the packet count for flow is
straightforward when uses data packets of fixed size. In
this case we get:

(3.3.2)

where is the maximum number of bits which can
leave flow ‘s rate regulator within , and is the
packet size used. Equation 3.3.2 also provides a valid bound
for a flow which uses variable sized packets, when is
set to the minimum packet size used by the flow (or when
set to the minimum link packet size: 64 byte).

In order to provide deterministic service guarantees, all
rate regulators must enforce the amount of data which enter
the high priority queue in any time interval . In a real
implementation, we have to consider the fact that the clocks
available to a regulator are granular. With a timer granular-
ity , where , all packets which become eligible
within the next time tick of length are instantly granted
by the regulator. This increases the burstiness of the traffic
output. The traffic constraint function then becomes:

(3.3.3)

This is used in our implementation. Note first, that
describes the traffic output of the rate regulator for flow

...

Hub

Node k = 1 m32

Flow i = 1 n2 ... i = 1 n2 ...
Rate Regulators

Output Queues

Round-Robin Service

High Priority Data Path:
Low Priority Data Path:

TF
i k pcntk

i

TF
k n

TF
k

PCNTk pcntk
i

i 1=

n

∑=

PCNTk k
PCNTk

TF

k

k
k

i
i

pcnt
i

b
i

TF() / psize
i

=

b
i

TF()
i TF psize

i

psize
i

∆t

T 0 T ∆t≤<
T

bi ∆t() δi ri ∆t+≤ ri T+

bi ∆t()
i

and not the traffic that goes into the regulator. Note further,
that we could have retained the traffic constraint function

 and only transmitted packets after they
became eligible. But this introduces a delay of because of
the timer granularity.

3.4 Admission Control Conditions

Admission control is the process which determines whether
a new flow can be admitted to the network without impair-
ing the service guarantees given to already admitted flows.
In our system it consists of two parts: a bandwidth test and a
delay bound test. The bandwidth test defined in Theorem 1
proves that the network has sufficient spare bandwidth to
support the new request. The theorem checks that all data
from all end-nodes can be transmitted within the time
frame. The delay bound test is defined in Theorem 2. It
takes advantage of the round-robin service policy, which
allows us to calculate a delay bound for each individual
node that can be considerably lower than the overall time
frame. Note that in Theorem 1 and Theorem 2, we use the
traffic constraint function for fixed time intervals

. is equivalent to . The time frames of
different nodes are further not synchronized.

3.4.1 Bandwidth Test

Theorem 1 Consider an 802.12 network with nodes,
where each node has real-time flows, which are already
admitted. Assume a time frame of , a link speed of
and that the packet count for flow on node is .
Further let be the minimum link packet size and ,

 be the topology specific worst-case per-packet overhead
and low priority service interrupt time, respectively. Assume
also, that all flows are rate regulated and that the input traf-
fic obeys the traffic constraint function for all intervals

. Sufficient bandwidth for the new flow with , is
available if

(3.4.1.1)

The proof can be found in Appendix A.1. The rather com-
plicated structure of Theorem 1 is caused by considering the
Demand Priority per-packet overhead. The importance of
Theorem 1 is its capability to accurately provide the availa-
ble link bandwidth for each packet size used (and implicitly
for each set of packet counts).

Theorem 1 assumes that the new flow only uses minimum
sized packets for the data transmission. For each already
admitted flow , the packet count is used during
admission control. It represents the number of packet over-
heads which this flow can consume within a time frame.
Since the per-packet overhead is independent of the size of

the data packet, flow may for example use its credit to
either send minimum- or maximum sized packets.
The sum of the packet counts of all flows is the maximum
number of packets that are sent within the interval . It
corresponds to aminimum average packet size over
the time frame . The relation is given by:

(3.4.1.2)

We are able to calculate the total Demand Priority protocol
overhead within a time frame since (1) the per-packet over-
head is independent of the size of a data packet, and (2) we
found an upper bound on the maximum number of packets
transmitted in . Both is used in Theorem 1.

Note that all the bandwidth unallocated or unused by
real-time flows is not wasted. It can be immediately used by
the normal priority service.

3.4.2 Delay Bound Test

After testing that the network has sufficient spare resources
to admit the new flow, the delay conditions need to be
checked. Since the admission of a new flow can change the
bounds for all nodes with reservations on the local segment,
the verification must be carried out for all of them.

Theorem 2 Consider an 802.12 network with nodes,
where each node has real time flows. Assume a link
speed of and that the packet count for flow on node
is . Further let be the maximum link packet size
and , be the topology specific worst-case per-packet
overhead and low priority service interrupt time, respec-
tively. If Theorem 1 applies, and if all flows are rate regu-
lated and the input traffic passed into the network output
queues obeys the traffic constraint function for all inter-
vals , then the queuing delay for node is bounded
by:

(3.4.2.1)

The proof of Theorem 2 can be found in Appendix A.2.
Theorem 2 requires that Theorem 1 applies. Otherwise the
condition is not true for all nodes on the segment.
In such a case, the output queue length and the delay could
grow unboundedly since there is not sufficient bandwidth to
clear the worst case backlog. If however Theorem 1 applies
then data packets on all nodes in the network will not be
queued for longer intervals than the time frame .

bi ∆t() δi ri ∆t+≤
T

bi ∆t()
∆t TF= bi bi TF()

m
k n

TF Cl
i k pcntk

i

Pmin Dpp

Dit

bk
i

TF ν bν

b
ν

TF Dit–
1
Cl
------ bk

i

i 1=

n

∑
k 1=

m

∑– pcntk
i

Dpp⋅

i 1=

n

∑
k 1=

m

∑–

1
Cl

Dpp

Pmin
-------------+

---≤

pcnti

i pcnti

i
pcnti

TF
Pmin_ave

TF

Pmin_ave

bk
i

i 1=

n

∑
k 1=

m

∑

pcntk
i

i 1=

n

∑
k 1=

m

∑
-------------------------------=

TF

m
k n

Cl i k
pcntk

i Pmax

Dpp Dit

bk
i

TF dk k

MIN pcntk
i

i 1=

n

∑
bj
i

Pmax

i 1=

n

∑,

Pmax
Cl

--------------⋅ MIN pcntk
i

i 1=

n

∑ pcntj
i

i 1=

n

∑,

Dpp⋅+

j 1 j k≠,=

m

∑ +

1
Cl
------ bk

i

i 1=

n

∑ pcntk
i

i 1=

n

∑ Dpp⋅ Dit dk TF≤ ≤+ +

dk TF≤ k

k
TF

The importance of Theorem 2 is that it allows the alloca-
tion system to provide smaller delay bounds than given by
the time frame itself. This increases the flexibility of the
allocation system and makes mechanisms for negotiating
the time frame not stringent.

 The delay bound consists of the maximum packet res-
idence time in the output queue, the link delay and the time
it takes to interrupt the low priority packet transmission. The
residence time depends on the bandwidth share allocated by
node , the total number of nodes that have resources
reserved on the segment and their bandwidth share. The link
delay is the time that is required for transmitting the data
packets queued on node across the network. Both compo-
nents consider the corresponding Demand Priority per-
packet overhead . The low priority service interrupt
time represents the difference between the computed
minimum available network throughput and the allocation
limit. This difference is not significant for single hub net-
works since is small. It however has a larger impact in
high cascaded topologies.

4 A Simple Measurement Algorithm

This section describes a simple time-window measurement
algorithm. It is used to find a realistic upper bound on the
total Demand Priority overhead to be considered for an
active application in the admission control. Its development
was motivated by the fact that in existing systems, the link
layer cannot negotiate the packet size with upper layers or
the application. Without such an algorithm, either (1) fixed
sized data packet must be used, (2) new mechanisms for
negotiating the packet count have to be introduced, or (3)
the allocation must be carried out based on the minimum
packet size used by the flow. For flows using variable sized
packets, this is often the minimum link packet size.

Within this section, we describe the algorithm and discuss
its conservativeness and adaptation rate. After reporting
implementation issues in section 5, we present measurement
results which show that for the applications we tested, the
algorithm is able to find an accurate upper bound without
impairing the guaranteed service quality.

4.1 The Algorithm

The algorithm is carried out on a per flow basis. It aims to
find an upper bound for the number of packets sent by flow
 within a time frame . This upper bound is denoted with

. Two parameters are measured at the link layer. The
measurement variable tracks the number of packets
seen from flow within the current time frame . Note
that is measured after the flow is rate controlled. In

, we keep a record of the maximum value observed
for within the current measurement time window .
We assume that . The second parameter measured
is flow ‘s data rate , averaged over the time window

. The parameter denotes the worst case
packet count for the flow. It corresponds to the case when
the application only uses minimum sized packets for trans-
mitting its data. is computed using the mini-
mum link packet size in equation 3.3.2.

The measurement process itself is illustrated in Figure 3.
A realistic, measured sample pattern is shown later in Fig-
ure 12b. In the following, we describe how the measure-
ments are used to estimate an upper bound for flow .

Figure 3. The Measurement Process for Flow .

Initially, is set to . The value can be
changed at two occasions: at the end of each time window

, and when an individual measurement for reaches
the high watermark . The latter case is not illustrated in
Figure 3. At the end of each time window, is updated
to reflect the measurements taken for the flow in the previ-
ous time interval . The new value is the sum of the
maximum sample observed and two system parameters:
and , which reflect the conservativeness and the level of
uncertainty of the sample measured. however never
exceeds since this is the maximum number of
packets which this flow can possibly send in a time frame
without violating its allocated data rate. For flow follows:

(4.1.1)

The parameter , where , allows us to
be more conservative by increasing to a value higher
than the measured sample. It is set on a per-flow basis and
could be controlled by the application. The parameter
reflects the level of uncertainty of the sample measured. It is
proportional to the difference between allocated and meas-
ured data rate for this flow. is small if the rate measured
is close to the allocated rate. If the difference is larger, then

 also increases. This ensures that the new value is
not decreased when e.g. the data source is switched off or
the application temporary generates significant less data
than allocated. For flow we have:

(4.1.2)

where and are the allocated and the measured
data rate for flow , respectively. The parameter is the

dk

k

k

Dpp

Dit

Dit

i TF
pcnti

scnt
i

i TF
scnt

i

scnt
i
TW

scnt
i

TW
TF TW«

i r TW
i

TW MAX_PCNT

MAX_PCNT
i

Pmin

pcnti i

Time

TF

TW TW

pcnti

scnt
i

wm
i

αβ
β

α

i

pcnti MAX_PCNT
i

TW scnt
i

wm
i

pcnti

TW pcnt'
i

αi

βi

pcnt'
i

MAX_PCNT
i

i

pcnt'
i

MIN scnt
i
TW αi βi

+ +() ; MAX_PCNT
i()=

αi
0 αi

MAX_PCNT
i≤ ≤

pcnt'
i

βi

βi

βi
pcnt'

i

i

βi r alloc
i

r TW
i

–() TF T+()⋅
Pmin

--- 1+=

r alloc
i

r TW
i

i T

timer granularity of the rate regulator. It can be neglected
for the case that holds. The computation of
is very conservative since we assume the use of minimum
sized packets for the data rate unused by flow . A less con-
servative approach might instead use an application specific
value larger than . As illustrated in Figure 3, each

 has a corresponding high watermark . For a flow
, the relation is:

(4.1.3)

Whenever an individual measurement for reaches the
high watermark and the existing bound is
smaller than then the present estimation is
wrong and we immediately update to be times the
existing value. The new value can again not exceed

. Formally, we have:

(4.1.4)

where and are the new and the old packet
count, respectively. The algorithm can be summarized as
follows:

1. At the beginning of the measurement process for flow ,
set to .

2. In , measure the number of packets seen from
within the current time frame . In , keep a
record of the maximum value observed for within
the current time window . Further measure the data
rate for the flow and average it over .

3. At the end of each time window , use equation 4.1.1
and 4.1.2 to compute the new value . If required,
replace the existing with the new value and com-
pute the high watermark using equation 4.1.3.

4. Whenever an individual measurement for reaches
the high watermark and then
use equation 4.1.4 to compute the new packet count

. Update the existing and compute the corre-
sponding high watermark using equation 4.1.3.

4.2 Admission Control and Service Issues

If the packet count estimation only relies on measured data
then any new flow is initially admitted based on the assump-
tion that it will only use minimum sized data packets. Then
as the flow starts, the algorithm measures the maximum
number of packets used by the flow per time frame and
takes a pessimistic maximum higher than the observed
value.

The adaptation rate of the algorithm depends on (1) the
length of the time window and (2) the difference

between the allocated bandwidth and the bandwidth actu-
ally used by the application. A smaller time window
increases the sensitivity of the algorithm since the packet
counts are more frequently updated. It however also reduces
the averaging interval used to compute the rate parameter

, which causes a less conservative uncertainty factor .
If an application only uses a small percentage of the
resources allocated then the parameter ensures that the
packet count is not decreased. The application might have
stopped the transmission or had temporarily reduced its data
output because of e.g. the specific characteristics of the data
encoded in the video encoder. In such a case, the algorithm
might not be able to find a close approximation within
since it is uncertain whether the samples observed during
that interval actually reflect the characteristic of the packeti-
zation process.

The conservativeness of the measurement process is con-
trolled by the length of the time window . It could be as
pessimistic as required at the expense of utilization. The
worst case is an infinite time window which assumes that all
data is sent with minimum sized packets as for new flows.
This is very pessimistic, especially for realistic flows with a
high data rate.

The algorithm relies on the property that the packetiza-
tion process does not change over time. With the packetiza-
tion process, we mean the algorithm used to break data e.g.
a video frame into single data packets. Video frames of vari-
able length might for example be fragmented by breaking
each of them into a number of 1024 byte packets plus one
variable sized packet which contains the rest of the frame.

If however the packetization process changes over time
and the packet sizes become substantially decreased, then
the packet counter will hit the high watermark .
This triggers an immediate update of the estimated bound.
Note that increasing implies allocating resources on
the network. Whenever the high watermark is reached then
the flow however can still send packets within the present
time frame before a service violation occurs.

We believe that the measurement aspect does not conflict
with the requirements of a guaranteed service, because we
only apply the algorithm for applications with a constant
packetization process. Whenever a service with less strin-
gent commitments is requested e.g. a controlled load serv-
ice, then the algorithm might also be used for applications
which do change their packetization process.

The important advantage of using a measurement based
approach is that it can substantially improve the efficiency
of the allocation scheme, but does not require mechanisms
for negotiating the packet count with upper layers. The dis-
advantage is that whenever deterministic guarantees are
requested, the algorithm can only be used for applications
which do not change their packetization process over time.
The approach also has a slow adaptation rate which might
cause the rejection of a reservation request even though, in
reality, sufficient resources are available on the network.

TW TF T» » β

i

Pmin

pcnti wm
i

i

wm
i

pcnt
i αi
–=

scnt
i

wm
i

pcnti

MAX_PCNT
i

pcnti κ
pcnt'

i

MAX_PCNT
i

pcnt'
i

MIN κ pcnt
i⋅() ; MAX_PCNT

i()=

pcnt'
i

pcnti

i
pcnti MAX_PCNT

i

scnt
i

i
TF scnt

i
TW

scnt
i

TW
rTW

i
TW

TW
pcnt'

i

pcnti

wm
i

scnt
i

wm
i

pcnt
i

MAX_PCNT
i<

pcnt'
i

pcnti

wm
i

TW

rTW β

β

TW

TW

scnt
i

wm
i

pcnti

α
TF

5 Implementation Issues

We implemented and tested our resource allocation scheme
in a 802.12 test network which consisted of standard hubs
and HP 9000/700 workstations. This section briefly reports
some of the design decisions we made and some of the
problems we encountered during the implementation. All
workstations used the HP-UX 9.05 operating system, stand-
ard EISA 802.12 interface cards and were connected to the
hubs via Category 3 UTP links.

The rate controller and the classifier are implemented in
the device driver of the 802.12 LAN adapter card. The link
level signalling and the bandwidth management was per-
formed by the LLRMP protocol [23], [24]. The resource
allocation scheme was installed on all workstations that
used the 802.12 high priority service. Network nodes that
only use the best-effort service do not have to be updated.

5.1 Signalling and Resource Management

The LLRMP is a simple link level signalling protocol that is
used to carry the reservation request and the traffic charac-
terisation through shared and switched LANs. The protocol
can support a distributed resource management, installs
soft-states in end-nodes and bridges, and allows nodes to
dynamically change their reservations. The latter property is
used by end-nodes to update the resource information e.g.
the packet count , which is held for them at the
resource arbiter or at other end-nodes. We refer to [24] for
any protocol details and the relationship of the LLRMP to
the network layer resource management e.g. RSVP.

The host part of the LLRMP is implemented in a user
space demon. This demon performs the LLRMP control
message processing, the admission control and the time
window measurement algorithm. A user interface allows
access to the resource data base. The demon runs on top of
the 802.12 LAN driver using the Link Level Access (LLA)
interface. The LLA is a generalizedioctl based interface
which provides basic low level access to device drivers in
the HP-UX kernel. The LLRMP demon uses this interface
for sending and receiving control messages and to control
the rate regulators and the packet classifier in the kernel.
Application data uses the normal path through the transport
and network protocol stack.

We extended the LLA functionality to support asynchro-
nous event notifications and to control the classifier and the
rate regulators in the kernel. Asynchronous events are
implemented using signals. The control mechanisms for rate
regulator and scheduler are based on extendedioctl func-
tionality.

The LLRMP protocol was implemented as a user space
demon for reasons of simplicity. Only functionality in the
data path, like the classifier and the rate regulators were kept
in the kernel. However separating these mechanisms also
caused a difficulty: context information is basically main-
tained twice: once in the demon and once in the kernel.

Mechanisms were needed to keep both data bases consist-
ent, so an asynchronous event notification mechanism was
implemented. Measurement information is collected in the
kernel, but all actions are controlled by the user space
demon.

5.2 Classifier and Rate Regulator

Data packets are classified in the LAN device driver using
the filter information provided by the LLRMP demon. The
filter may specify a single or a combination of parameters in
the link-level-, the network-, or the transport protocol
header of the data packet. The classification can thus e.g.
only be based on the MAC multicast destination address,
when these addresses are uniquely assigned within the
LAN, or can use higher level information like the IP source
address and the UDP source port number.

Each rate regulator is able to support the time window
algorithm described in the previous section. It counts the
number of packets passed into the output queue in each time
frame and measures the data rate generated by the appli-
cation over the time window . All statistics collected in
the kernel are periodically passed to the LLRMP demon
which controls the parameter settings for the classifier and
all link level rate regulators in the kernel.

Rate regulators also limit the number of packets which
can leave the regulator in a single interval. The limit is
defined by the packet count . If a flow sends more data
packets than allowed, then any surplus packets become
delayed into the next time frame. This property ensures that
the service of other flows is not violated when an applica-
tion e.g. by mistake passes a different traffic pattern to the
network than negotiated.

5.3 Timer Issues

Our reservation scheme assumes time frames of
 in order to keep the delay bounds low for nodes

with large bandwidth requirements e.g. bridges. From Theo-
rem 1 and equation 3.3.3, it follows that only , where

 is the timer granularity, ensures an efficient use of
resources. If the time frame and the timer granularity are of
the same order of magnitude, then the result is a poor band-
width utilization: e.g. for , just 50% of the
available resources can be reserved for data traffic. The rest
must be left unallocated in order to ensure that worst case
guarantees are met.

Most operating systems on existing workstations however
only provide a timer granularity of 10 ms. We solved this
problem in our prototype by changing the timer granularity
used on the test workstations. We implemented a second,
fast timer in the HP-UX kernel, which is able to provide
granularities of up to 100 on a 75 MHz machine. The
function of the operating system was not affected since all
OS routines are served at their usual times. Only kernel res-

pcnt

TF
TW

TF
pcnt

TF
10 - 40 ms

TF T»
T

TF T 10ms= =

T

µs

ident modules e.g. LAN device drivers can register for the
fast timer and receive service at low kernel priority.

Efficiency and timer granularity are not linearly related.
The gain increases slower for smaller . Throughout the
experiments, we used a timer granularity of 1 ms which
seems to be a good compromise between efficiency and
processing overhead. In the future, a high granularity timer
on the LAN adapter card would be an appropriate solution.

6 Measurement Results

In this section we present and discuss experimental results
which we received for the throughput, the delay, the time
window algorithm and the resource utilization. The results
were collected using the implementation and the test net-
work described in the previous section. All workstation
were also connected to the site Ethernet and had the usual
background processes running.

6.1 Throughput

In our first experiment we measured the maximum through-
put on a 802.12 network versus the packet size used for data
transmission. This was to experimentally prove Theorem 1
defined in section 3.4. The experiment itself was already
described in section 2 to motivate the design decisions we
made. In contrast to Figure 1, Figure 4 additionally shows
the theoretical minimum network throughput and the alloca-
tion limit, both computed from Theorem 1.

The minimum network throughput was computed assum-
ing: (1) there is only one active flow, (2) a time frame of

, (3) a single hub topology with 100 m UTP
cabling represented in a per-packet overhead of

, and (4) a low priority service interrupt
time of . The allocation limit differs from the theo-
retical throughput such that the computation additionally
considered the interrupt time for this topology, where

. The computation of both graphs assumed
a non-bursty flow and a timer granularity of to show
the accuracy of the admission control.

In Figue_5, one can observe that the measured through-
put is always higher than the theoretical throughput com-
puted with Theorem 1. This is important since the computed
throughput is the basis for the allocation limit. The differ-
ence between the theoretical throughput and the allocation
limit thus reflects the minimum capacity that is guaranteed
to be available for the low priority service. Some network
resources must always be left unallocated since these are
required to pre-empt the low priority service. Figure 4
shows the worst case for this and thus the maximum alloca-
tion limit. If for example all real-time flows had a minimum
average packet size of 512 byte (4096 bit) or more, then
bandwidth up to about 79 Mbit/s could theoretically be allo-
cated. The actual available bandwidth however is guaran-
teed to be slightly higher, which is necessary for providing

deterministic service guarantees. Figure 4 also shows that
the theoretical and the measured result match closely. This
demonstrates the accuracy of the model and of the results
computed in Appendix A.3. Resources could potentially be
allocated almost up to the actually available network capac-
ity.

Figure 4. Comparison: Measured Throughput and Computed
Allocation Limit in a Single Hub 802.12 Network
using 100 m UTP Cabling.

Since the maximum supported UTP cable length for 802.12
networks is 200 m, we also measured the maximum
throughput in such a topology. The results shown in Figure
5 are in general similar to the results in Figure 4, except that
the throughput and the allocation limit for all packet sizes
are decreased by a very small constant offset.

Figure 5. Comparison: Measured Throughput and Computed
Allocation Limit in a Single Hub 802.12 Network
using 200 m UTP Cabling.

The comparison shows that, despite the signalling overhead,
the cable length does not have a significant impact on the
worst case network performance when UTP cabling is used.
This will be different for fiber optic links because of the
long cable length supported for this type of physical layer.
The results in Figure 5 were achieved using the same setup
as in the previous experiment, except a different cable
length. The allocation limit was computed using Theorem 1
with a packet overhead of and an interrupt
time of .

The measured results in Figure 4 and Figure 5 are inde-
pendent of the number of Traffic Clients used, as long as the
Clients can saturate the network for all packet sizes. We

T

TF 20 ms=

Dpp 10.109µs=
Dit 0=

Dit 261.92µs=
T 0=

0

10

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000 12000

Th
ro

ug
hp

ut
 in

 M
bi

t/s

Packet Size in bits

dat_CB1a

Measured Throughput: L-1 Topology, l = 100m
Computed Throughput: Dpp = 10.109 usec, Dit = 0

Allocation Limit: Dpp = 10.109 usec, Dit = 261.92 usec

0

10

20

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000 12000

Th
ro

ug
hp

ut
in

M
bit

/s

Packet Size in bits

dat_CB1b

Measured Throughput: L-1 Topology, l = 200m
Computed Throughput: Dpp = 11.249 usec, Dit = 0

Allocation Limit: Dpp = 11.249 usec, Dit = 264.77 usec

Dpp 11.249µs=
Dit 264.77µs=

observed the same results as shown in Figure 4 in a configu-
ration with 3 Traffic Clients and one Controller.

6.2 Delay Measurements

In the following experiments, we measured the link level
end-to-end delay for data packets using the high and normal
priority service. These experiments were carried out to: (1)
show the isolation capabilities of 802.12, (2) to experimen-
tally confirm the theoretical results achieved in Appendix
A.4 for the worst case low priority service interrupt time, (3)
to measure the end-to-end delay in a setup with several high
priority data sources, and (4) to experimental determine the
operating system overhead which is caused by the DMA-,
the interrupt process and the context switch.

Figure 6. Setup for Measuring End-to-End Delay

Figure 6 illustrates the setup we used. All measurements
were taken by a computer which we call the Measurement
Client. It had two 802.12 LAN adapter cards, each of them
was connected via a separate UTP cable to the hub. One
interface was exclusively used for sending data, the second
one was used for receiving. All data packets generated by
the Measurement Client were addressed to a pre-defined
multicast group which was joined with the receive interface.
By using the same computer for sending and receiving test
packets, we could use the same clock for determining the
start and finish time of each measurement. This avoided tim-
ing discrepancies that would have occurred if we had used
two separate computers. The time was measured using PA-
RISC register CR16 [26], which provides a 10 ns tick on a
100 MHz HP 700 workstation. This ensured a high accuracy
of the time-stamps. The measured delay is the link layer
end-to-end delay. It includes the time for transferring the
packet from memory to the adapter card and back again to
memory, as well as the relevant operating system overhead.
Timing inaccuracies were minimized by ensuring that the
workstation encountered no other interrupt e.g. from the
Ethernet adapter between sending a test packet and receiv-
ing it. Several other computers were used in the different
experiments to impose high- and low priority cross traffic.
We called these computers High- and Low Priority Traffic
Clients, respectively. All packets generated had a length of
1500 bytes to show the worst case effect.

In our first experiment, we measured the end-to-end delay
() for a single high priority data source. The high priority

traffic was generated by the Measurement Client. It sent
packets at a low mean rate - about 0.56 Mbit/s - correspond-
ing to constant rate compressed video. The experiment fur-
ther included 10 Low Priority Traffic Clients which imposed
low priority traffic at a total load ranging from 0 to 100
Mbit/s. All cross traffic was unicast and rate regulated. Note
here that our rate regulators can also regulate normal prior-
ity traffic. This was used in this experiment. The measure-
ment interval for each sample was 1 minute which
corresponds to about 3000 packets transmitted by the Meas-
urement Client. The incremental step of the low priority net-
work load was 500kbit/s. In contrast to the setup in Figure 6,
we did not use High Priority Traffic Clients in this experi-
ment.

Figure 7 shows the results for the maximum-, average-
and minimum end-to-end delay measured. The minimum
delay is about 300 . This consists of 145 required for
DMA-ing the packet (twice) and flushing the cache, about
25 of context switching, and about 130 of packet
transmission and protocol overhead .

Figure 7. End-to-end Delay using the High Priority Service
and Unicast Cross Traffic.

It can be further observed that the maximum delay is
bounded and does not increase with higher network loads.
This confirms that high priority traffic is isolated on the net-
work. The maximum delay is the minimum plus about 130

. This corresponds to one maximum size low priority
packet and is the time required in this setup to pre-empt the
low priority service. The delay occurs when the a low prior-
ity packet just starts before the high priority request was sig-
nalled to the hub. There is no further offset because the
Measurement Client did not receive any of the cross traffic
(since this was unicast). In our experiment, we measured a
difference between minimum and maximum delay of about
160 . We explain the 30 variation because of interfer-
ence with other DMA operations e.g. a packet output on the
Ethernet. A DMA might just been set up when we started
the measurement for a test packet.

Figure 8 shows the maximum delay measured in a net-
work with several High- and Low Priority Traffic Clients, as
illustrated in Figure 6. Between zero and three computers
were used to impose high priority traffic. Each High Priority
Client generated data at a rate of 20 Mbit/s. This used a sim-

Hub

∆t
High Priority
Traffic Client

High Priority
Traffic Client

Low Priority
Traffic Client

Low Priority
Traffic Client Measurement

Client

...

...

∆t

∆t

µs µs

µs µs
Dpp

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100

En
d-

to-
en

d D
ela

y i
n u

se
c

Low Priority Network Load in Mbit/s

dat_D12

Maximum
Average

Minimum

µs

µs µs

ple traffic generator. Four other computers were used to
impose low priority traffic at a total load ranging from zero
to 100 Mbit/s. All cross traffic was unicast and used a packet
size of 1500 bytes. The Measurement Client was the same
as used in the previous experiment.

Figure 8. End-to-End Delay in a Setup with several
High Priority Traffic Clients.

Figure 8 shows the maximum end-to-end delay ()
observed by the Measurement Client while varying the
number of High Priority Clients. We can observe that
increases with each new High Priority Client by about 130

. The maximum delay is encountered when the low prior-
ity service is pre-empted and the Measurement Client is the
last high-priority node to be served in the round-robin
sequence.

In our next test, we repeated the experiment that led to the
results in Figure 7. We carried out the same test, which
included a setup with 10 Low Priority Clients and one
Measurement Client. All Clients now however used the low
priority service. This was to observe the average delay ver-
sus the total load in the single hub test network. The result
in Figure 9 shows that the average delay which is observed
by the Measurement Client keeps very small, even when the
network load grows up to 80 Mbit/s. The maximum average
value of was only measured for
network traffic close to the throughput limit of 92.6 Mbit/s.

Figure 9. End-to-end Delay in a Setup that only uses
the Low Priority Service.

The maximum delay in Figure 9 increases with rising net-
work load and reaches an absolute maximum of 1615 . In
this test setup, the maximum delay is directly proportional

to the number of Low Priority Traffic Clients in the net-
work. The theoretical maximum is 1600 assuming no
high priority traffic, a minimum delay of 300 and 10 net-
work nodes generating cross traffic with data packets of
maximum length. The worst case occurs when the data
packet from the Measurement Client is delayed by a data
packet from each Traffic Client in the network. With longer
measurement times of up to 10 min. for each sample, we
found that the maximum delay of 1615 is also reached
for smaller network loads. This is because longer measure-
ment times increase the probability for having a packet
transmission with worst case delay in the sample.

It is straightforward to see that the results in Figure 9 are
only valid in the absence of any high priority traffic on the
network. In a setup where high and low priority data packets
are transmitted, low priority packets become delayed and
will be served according to the mechanisms described in
section 2.1. The delay distribution in Figure 9 for a load of
80 Mbit/s is shown in Figure 10. It shows a long tail distri-
bution with a maximum of about 1400 .

Figure 10. Delay Distribution in Figure 9 for 80Mbit/s Load.

In all our previous experiments within this section, all cross
traffic used the unicast addressing mechanism. The data
packets were sent to a single node that was not further
involved in the measurements. This ensured that all other
network nodes could signal their service request to the hub
immediately after DMA-ing the packet onto the LAN
adapter card. In more realistic environments however, when
multicast and unicast are used and data packets are simulta-
neously sent and received, the request-signalling can be
blocked by e.g. the transmission of a multicast packet. This
can lead to an increased overhead whenever UTP cabling is
used, as discussed in Appendix A.4. We measured this over-
head in order to confirm the worst-case model used in Theo-
rem 1 and 2. The result is shown in Figure 11.

For this measurement, we used exactly the same setup
that led to the results in Figure 7, except that all cross traffic
was now addressed with multicast. This forced the hub to
repeat all data packets towards all nodes on the segment.

The result in Figure 11 is similar to the one observed for
the unicast case. However the maximum delay has increased
by another packet transmission time. This is the time the
measurement node sometimes has to wait before it can sig-

200

400

600

800

1000

1200

0 20 40 60 80 100

En
d-

to-
en

d D
ela

y i
n u

se
c

Low Priority Network Load in Mbit/s

dat_D15

Maximum: 4 High Priority Clients
Maximum: 3 High Priority Clients
Maximum: 2 High Priority Clients
Maximum: 1 High Priority Client

Minimum Delay

∆t

∆t

µs

dave dmax dmin–() 2⁄=

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100

En
d-

to-
en

d D
ela

y i
n u

se
c

Low Priority Network Load in Mbit/s

dat_D11

Maximum
Average

Minimum

µs

µs
µs

µs

µs

0

50

100

150

200

250

300

350

400

200 400 600 800 1000 1200 1400 1600

Nu
mb

er
of

 P
ac

ke
ts

End-to-end Delay in usec

dat_H3_b

Delay Distribution (dat_D11: 80% Load)

nal its high priority request. The probability of waiting for
an inter-packet-gap increases for higher loads. If the system
runs close to its capacity limit then each packet sent by the
Measurement Client is delayed, which causes the step
increase of the minimum delay that can be observed in Fig-
ure 11.

Figure 11. End-to-end Delay using the High Priority Service
 and Multicast Cross Traffic.

The difference between the maximum- and the minimum
delay in Figure 11 is the worst case time it takes to pre-empt
the low priority service in a single hub 802.12 network. We
measured a maximum of 275 . This confirms the theoret-
ical result of that is computed in Appendix
A.4.

6.3 Results for the Time Window Algorithm

We implemented and tested the measurement algorithm on a
HP 9000/725 workstation as part of our allocation system.
All measurements are taken in the device driver of the
802.12 LAN adapter card and are evaluated by the LLRMP
demon, just as described in section 5. The tests reported in
this section had two goals: (1) to experimentally show that
the algorithm can find an accurate upper bound for the
packet count and thus for the Demand Priority overhead,
and (2) to show that the algorithm is sufficiently conserva-
tive such that no service violation occurs.

So far we tested the algorithm using the applications:vic,
vat, nv, MMC [17], [18] and theOptiVision MPEG Commu-
nication System [27]. In each test, we recorded the data rate
generated by the application, the packet size distribution
and the estimation process for the packet count over a
measurement time interval of 15 min. During the tests, we
varied the data rate of the input source e.g. by changing the
camera position and temporary switching off the source.
This caused large scale data rate variations.

We further restricted the estimation process. At the end of
each time window , we only updated when the
new value wassmaller than the existing estimation.
This reduced the number of updates and minimized the
LLRMP signalling overhead on the network. could
have been only increased if a sample had reached the corre-
sponding high watermark. This however never happened in

any of the tests. The system parameters of the measurement
algorithm, which were used in all experiments are provided
in Table 2.

Table 1. System Parameters used while Testing the
Time Window Measurement Algorithm.

In our first experiment (Test 1), we usedvic version v2.7b2
as test application. It generated a motion jpeg compressed
video data stream with a rate of about 1 Mbit/s. Hardware
support was given by a parallax card [25]. The data source
was a video camera. We used the followingvic specific
parameters that can be adjusted by the user: normal size
(resolution: 368 x 276 pixel), ordered, jpeg, 22 frames/s. All
data packets were sent using IP multicast. At the link layer,
we allocated 1 Mbit/s for application data using the
LLRMP. The video camera was switched off during the
time intervals: 0 - 120 s, 480 - 540 s and 780 - 840 s. The
measurement results are shown in Figure 12a and Figure
12b.

Figure 12a:Data Rate generated byvic during Test 1.

Figure 12b:Packet Count Estimation Process forvic in Test 1.

Figure 12a shows the measured data rate, Figure 12b the
packet count estimation process. The upper curve in Figure
12b represents the upper bound for the packet count ()
that was estimated by the algorithm. The lines at the bottom

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100

En
d-

to-
en

d D
ela

y i
n u

se
c

Low Priority Network Load in Mbit/s

dat_D14

Maximum
Average

Minimum

µs
Dit 261.92µs=

pcnt

TW pcnt
pcnt'

pcnt

Measurement Time Window
Allocation Time Frame

Timer Granularity

Minimum Link Packet Size

40 s
20 ms
1 ms

1
2

64 byte

TW
TF

T
α
κ

Pmin

0

200

400

600

800

1000

1200

1400

0 100 200 300 400 500 600 700 800 900

Da
ta

Ra
te

(k
bit

/s)

Time in Seconds

dat_tw13a

Measured Data Rate averaged over 1s Intervals

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700 800 900

Pa
ck

et
Co

un
ts

Time in Seconds

dat_tw13

Estimated Upper Bound (tf_pcnt)
Measured Samples (st_pcnt)

pcnt

of the diagram show the maximum samples () meas-
ured during the test. For the sake of brevity, we omitted the
result received for the packet size distribution.

The estimation process starts after the flow is admitted.
This is at time 0. The initial value for the packet count
is , which is 42 in the setup for Test 1. It reflects
the worst case in which the algorithm assumes thatvic only
sends minimum sized data packets. The initial value for

 does not change untilvic starts sending video data (at
time 120 s) because the parameter in equation 4.1.1
causes any new estimate to be . As the data rate
approaches the allocation limit of 1 Mbit/s, the algorithm is
able to find more accurate estimations for the maximum
packet count actually used by this application. The most
accurate bound in Test 1 is found after about 430 seconds. It
is retained despite the fact that the data rate changes later
since we only increase when an individual measure-
ment sample () reaches the high watermark. This how-
ever never occurs in Test 1 as can be observed in Figure 12b.

In Test 2, we tested the measurement algorithm with
MMC version v4.0 as test application. The results for the
data rate and the packet count estimation process are shown
in Figure 13a and Figure 13b.

Figure 13a:Data Rate generated byMMC during Test 2.

Figure 13b:Packet Count Estimation Process forMMC in Test 2.

MMC generated a motion jpeg compressed video data
stream of about 3 Mbit/s. This was based on the same paral-
lax card as used in Test 1. The size of the video was 720 x
540 pixel. The application generated about 11 frames/s with
an average of about 32 kbytes per frame. All data were sent
unicast and used UDP as transport protocol. We allocated a

bandwidth of 3 Mbit/s at the link layer. The maximum
packet count was 124 as can be observed in
Figure 13b. The video camera was switched off during the
time intervals: 180 -300 s, 540 - 660 s and 780 - 840 s.

In contrast to Test 1, the algorithm finds an accurate esti-
mation for the packet count within a single inter-
val. This is because MMC instantly used all the resources
reserved for it. The estimation is retained through the entire
test since there is again no measurement sample that reaches
the high watermark. Figure 13b shows an estimation proc-
ess which is desired for each flow since a maximum upper
bound is found quickly and then retained until the end of the
session. This ensures minimal LLRMP signalling overhead
since the resources reserved for this flow had to be updated
at the resource arbiter only once during the test.

Similar experiments as reported in Test 1 and Test 2 were
also carried out forvat, nv and theOptiVision MPEG Com-
munication System. For all applications, we repeated the test
and varied, where possible, the data rate generated and the
data encoding scheme used. All measurement results are
similar to the ones discussed for Test 1 and Test 2. They
only differ in respect to: (1) the traffic pattern and the sam-
ples measured, (2) the adaptation rate and (3) the difference
between the worst-case packet count and the estimated
upper bound.

The experiments showed that if an application generates
data with a rate close to the resources allocated for it, then
the measurement algorithm is able to find an accurate upper
bound for the packet count actually used. This significantly
reduces the number of packet overheads to be considered
for an existing application during the admission control of a
new flow. The difference (estimation gain) between the
worst-case packet count () and the final esti-
mated upper bound () depends on the packet sizes used
and on the data rate.

The gain achieved in Test 1 and Test 2 was large because
vic andMMC generated data at a high rate and mainly used
large sized data packets. No benefit will be achieved when
applications use small sized packets or only generate a low
bitrate data stream. No gain was for example observed for
vat generating: (1) an audio data stream of about 20 kbit/s
using GSM encoding, and (2) an audio stream of about 75
kbit/s using PCM2 encoding. In both tests vat used the built-
in audio device of the HP 9000/725 workstation. In case (1)
no gain could have possibly been achieved since the worst
case packet count is already one for a flow with such a low
data rate (). This however is the minimum
number of packet overheads to be reserved for an applica-
tion in a time frame. It can not be decreased. We did not
observe an estimation gain in case (2) due to the conserva-
tiveness of the algorithm and the small difference between
the worst case overhead () and the maxi-
mum sample measured ().

In all measurements carried out so far, we did not detect a
service violation for a single data packet. This could be

pcnt
MAX_PCNT

pcnt
β

MAX_PCNT

pcnt
scnt

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500 600 700 800 900

Da
ta

Ra
te

(k
bit

/s)

Time in Seconds

dat_tw18a
Measured Data Rate averaged over 1s Intervals

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800 900

Pa
ck

et
Co

un
ts

Time in Seconds

dat_tw18

Estimated Upper Bound (tf_pcnt)
Measured Samples (st_pcnt)

MAX_PCNT

pcnt TW

MAX_PCNT
pcnt

MAX_PCNT 1=

MAX_PCNT 4=
scntTW 2=

observed despite that all applications changed their data rate
in a large scale. We also did not observe the case that an
individual measurement sample () reached the high
watermark and caused the reallocation of resources. We thus
believe that the algorithm can be used to estimate the packet
overhead for applications using the guaranteed service, pro-
vided that the packetization process is constant and does not
change over time. So far, we have only tested a very small
number of existing applications which might use this serv-
ice. The test of other applications is left for the future. Fur-
ther generalizations can be made within the bounds of the
Controlled Load service due to the weaker service commit-
ment.

6.4 Resource Utilization Issues

Table 3 shows the maximum number ofvat, nv, vic, OptiVi-
sion andMMC flows which our allocation scheme was able
to simultaneously admit while guaranteeing a certain queu-
ing delay bound. All results are based on the use of the time
window measurement algorithm. Since the number of flows
that can be admitted depends on the characteristics of the
flow, in particular the packet size distribution, we used the
measured characteristics of our test applications for admis-
sion control and not an artificially generated traffic pattern.

The goal of this section is to show the maximum high pri-
ority resource utilization that can be achieved for a set of
test applications by using (1) the allocation scheme in a
realistic setup and (2) the time window algorithm proposed
in this paper. A generalization of the results for other appli-
cations can not easily be made since these applications may
have different traffic characteristics e.g. use smaller packet
sizes, which then requires the allocation of additional net-
work resources. A higher utilization can however always be
achieved when the packet sizes are fixed or can be negoti-
ated since this removes the overhead introduced by the
measurement approach.

Following the worst-case model, each flow was first
admitted assuming the use of only minimum sized packets,
where . For all existing flows, the admission
control used the application characteristics measured during
the experiments in section 6.3. Note that flow arrival and
lifetime statistics were not considered in this test since we
focused on determining the highest utilization in a pre-
defined setup. The packet counts shown in Table 2 were
measured in the tests listed below. Note that all application
parameters e.g. the data rate were measured at link layer.

1. vat version v3.2:vat generated an audio data stream of
about 75 kbit/s. The test used the default application
setup for PCM2 audio encoding. The data source was
the built-in audio device of the HP 9000/725 worksta-
tion. All data packets were sent using IP multicast. 75
kbit/s were allocated at the link layer.

2. nv version v3.3beta:nv generated a video data stream of
about 128 kbit/s. Hardware support was provided by an
HP A.B9.01.3A frame grabber card. The test used the
default setup fornv with a medium picture size. All data
packets were sent using IP multicast. We allocated 128
kbit/s at the link layer.

3. vic: this used the same test setup as described for Test 1
in section 6.3. The data rate and an example for the
packet count estimation process are shown in Figure 12a
and Figure 12b.

4. OptiVision version 1.2f: the OptiVision system gener-
ated an MPEG-1 encoded video stream with an average
rate of about 1.2 Mbit/s. The video source was a video
player playing the adventure movieJurassic Park. The
picture resolution was 704 x 480 pixel. 25 frames per
second were generated. All data packets were transmit-
ted using IP multicast. We allocated 1.8 Mbit/s at the
link layer for each flow.

5. MMC: this used the same test setup as described for Test
2 in section 6.3. The data rate and an example for the
packet count estimation process are shown in Figure 13a
and Figure 13b.

Table 2 shows the maximum number of flows() that
could be admitted for three different time frames: 10 ms, 20
ms and 40 ms. For the sake of simplicity, the queuing delay
bound requested for all flows was always equal to the time
frame. The timer granularity was 1 ms (see equation
3.3.3). The rate regulators allowed an initial burst of

, which corresponds to one maximum size
data packet. We further always admitted homogeneous
flows. Each row in Table 2 provides the result for one appli-
cation in a given setup: e.g. for a time frame of ,
a maximum of 49vic flows, each generating data at a rate of
1 Mbit/s, can be simultaneously admitted while providing a
deterministic delay bound of 20 ms for each of them.

After admitting all flows, a total bandwidth of about 49
Mbit/s is transmitted using the 802.12 high priority mecha-
nism. The maximum high priority network utilization is
computed by relating the allocated bandwidth to the maxi-
mum allocation limit. The maximum allocation limit is the
maximum capacity that can be allocated when all data is
sent with maximum sized packets. It is fixed for each topol-
ogy and can thus be used as reference value for computing
the network utilization. For a single hub network and a time
frame of 20 ms, the maximum allocation limit is 91.02
Mbit/s. This corresponds to a maximum high priority net-
work utilization of 53.83% for the 49 1 Mbit/svic flows.
The allocation limit was computed using Theorem 1 and the
network parameters for 100 m UTP cabling provided in
Table 5 and Table 7 in Appendix A.3 and A.4.

scnt

Pmin 64byte=

Nmax

T

δi 12000bits=

TF 20ms=

 In Table 2, several observations can be made. The maxi-
mum high priority network utilization achieved when only
low bitrate (vat) flows are admitted is low. This has two rea-
sons. First,vat only uses small sized data packets which
reduces the available bandwidth on the network. The utiliza-
tion is further decreased by the allocation overhead. For
each flow, the allocation scheme reserves resources for at
least one maximum size data packet in each time frame to
ensure that deterministic service guarantees are met. This is
required since the time frames of different nodes in the net-
work are not synchronized. The allocation overhead could
be reduced, at the expense of a more complicated allocation
system, by (1) introducing synchronization mechanisms
between high priority network nodes, and (2) by determin-
ing a lower bound for the maximum packet size used by
each flow. We however believe that the utilization in the
existing scheme is sufficient so that such mechanisms are
not necessary.

For higher bitrate streams e.g. 1 Mbit/svic flows, a much
higher utilization can be achieved because of a smaller over-
head and a larger allocation limit. An increase of can
further be observed for all applications in Table 2 when
larger delay bounds and time frames become used in the
allocation system.

Remaining work in this context includes the comparison
between the deterministic delay bound provided by the allo-
cation system and the maximum end-to-end delay measured
for several applications in our test network. This is per-
formed in the sequel for the level-2 cascaded topology.

6.5 Conclusions from our Implementation

The importance of the measurement results reported in this
section is that they confirm the basics of our reservation
scheme. These are: (1) the 802.12 high priority access
mechanism is sufficiently isolated such that an advanced
service can be built on top of it. If admission control is
applied then packet delays are predictable and, apart from
an initial interrupt time, independent of the low priority traf-
fic. (2) Theorem 1 can be used to accurately calculate the

minimum available bandwidth on the network. The experi-
ments further confirmed the theoretical result for the low
priority service interrupt time. Both are used to compute the
allocation limit, up to which resources can be reserved. (3)
For all applications tested, the time window algorithm could
find an accurate upper bound for the total Demand Priority
overhead. We observed that the algorithm is sufficiently
conservative such that no service violation occurs. (6) The
implementation further allowed us to experimentally deter-
mine the operating system overhead caused by the DMA-
and the interrupt process. (7) Our measurements have also
demonstrated the basic operation of our link level signalling
protocol (LLRMP).

A Appendices

A.1 Proof of Theorem 1

Theorem 1 is based on a simple sum approach which also
includes the Demand Priority protocol overhead. To prove
the theorem, we first define the time frame as the busy
period interval as used in [19]. This period is the maximum
interval of time for which high priority data is sent on the
network at link speed . The idea is that during the busy
period, the amount of traffic that enters the system is equal
to the amount of data that is served. This is ensured by allo-
cating resources for all data which can leave the link-level
rate regulators at all nodes in the network within the time
frame .

The busy period also includes a time offset required at the
start of the interval to pre-empt the low priority service. We
denote this offset . It follows that, if the amount of data
that is passed in the high priority output queue on each node

 is bounded by the traffic constraint function for
all flows on node and all intervals , then is
the busy period of the system if:

(A.1.1)

Time frame TF Delay Bound Application
Data rate
allocated
per flow.

Max. number of
flows admitted

()
measured

Bandwidth
allocated
 (Mbit/s)

Maximum high
priority network
utilization (%)

10 ms

10 ms
10 ms
10 ms
10 ms
10 ms

vat
nv
vic

OptiVision
MMC

75 kbit/s
128 kbit/s
1 Mbit/s

1.8 Mbit/s
3 Mbit/s

65
59
34
24
17

 2
 3
 5
7
 8

4.88
7.55
34.00
43.20
51.00

 5.43
 8.41
 37.86
48.10
56.78

20 ms

20 ms
20 ms
20 ms
20 ms
20 ms

vat
nv
vic

OptiVision
MMC

75 kbit/s
128 kbit/s
1 Mbit/s

1.8 Mbit/s
3 Mbit/s

 112
 105
 49
32
 21

4
4
6
9
11

 8.40
13.44
49.00
57.60
63.00

 9.23
14.77
53.83
63.28
69.21

40 ms

40 ms
40 ms
40 ms
40 ms
40 ms

vat
nv
vic

OptiVision
MMC

75 kbit/s
128 kbit/s
1 Mbit/s

1.8 Mbit/s
3 Mbit/s

197
170
61
37
24

5
6
10
16
17

14.78
21.76
61.00
66.60
72.00

16.13
23.75
66.58
72.69
78.58

Tabelle 2: High Priority Network Utilization in a Single Hub 802.12 Network.

Nmax

pcnt

Nmax TF

Cl

TF

Dit

k bk
i ∆t()

i k ∆t TF= TF

Dit
1
Cl
------ bk

i
TF()

i 1=

n

∑
k 1=

m

∑⋅+ TF≤

applies, where , denote the number of network nodes
and the number of flows with reservations on each node,
respectively. If used for admission control, then equation
A.1.1 restricts the amount of data that can use the high pri-
ority access mechanism. In an overhead free network, this
would ensure that any backlog of high priority packets is
cleared in a time interval smaller or equal to . Since the
Demand Priority protocol overhead however has a signifi-
cant impact on the network performance, it needs to be con-
sidered in the admission control and must therefore be
added to equation A.1.1.

In order to bound the overhead, we consider the number
of packets sent by each flow in every time frame . This
number is denoted . In can be the exact number of
packets sent by flow , or an upper bound if packet sizes are
neither fixed nor negotiatable. An upper bound can always
be computed by assuming that the flow uses minimum sized
packets for the data transmission. Since (1) exists for
all real-time flows, and (2) the per-packet overhead is inde-
pendent of the length of a data packet, the total transmission
overhead within the time frame can be computed.

If we assume that the worst case per-packet overhead is
 and that denotes the maximum number of pack-

ets sent by flow on node , then by adding for each
data packet served, we get from equation A.1.1:

(A.1.2)

It follows that, a new flow with a traffic constraint func-
tion can be accepted if:

(A.1.3)

holds, where is equivalent to . The new flow is
first admitted assuming a data transmission that uses packets
of minimum size . If the packet size is fixed then we
can replace in equation A.1.3 with the actual packet
size used by the new flow . If uses variable
packet sizes and the actual number of data packets transmit-
ted is known or can be negotiated then the term in
equation A.1.3 can be replaced by flow ‘s packet count

. Theorem 1 follows directly from re-arranging equa-
tion A.1.3.

A.2 Proof of Theorem 2

Network node passes a maximum of

(A.2.1)

packets into its high priority output queue within a time
frame . This is enforced by using a rate regulator for
each real-time flow on node . If Theorem 1 applies for
all high priority traffic in the network, then the delay for all

data packets is bounded by . This ensures that at any
time, there are never more than packets in node ’s
high priority queue.

The worst case delay for the last packet in the output
queue of node consists of: (1) the interrupt time required
to signal the high priority service request and to pre-empt
the low priority packet transmission, (2) the transmission
delay: defining the time it takes to transmit all packets
through the network stack and over the physical medium,
and (3) the queuing delay: packets on node might have to
wait until high priority requests on other nodes have been
served according to the round-robin service policy. We get:

(A.2.2)

where , , denote the interrupt time, the transmis-
sion- and the queuing delay, respectively. We now provide
bounds for all three components. The worst case low prior-
ity service interrupt time is constant and mainly depends
on the cascading level. The transmission of a maximum of

 data packets queued at node is bounded by:

(A.2.3)

This follows from the considerations in A.1. The queuing
delay on node depends on the number of high priority
packets queued on all other nodes during the interval .
This number however is bounded by for each node
on the network due to the packet regulating mechanisms in
the rate regulator.

The service of packets from node is most delayed by
node , when node has at least as many packets queued as
node . In general, two cases can be identified. If we first
assume that node has more than maximum size
packets in its output queue, then the hub serves the same
number of packets from node and until all packets on
have been transmitted. Some packets are still in the queue
on , but they do not have to be considered for the delay
computation on . Thus we have the relation:

(A.2.4)

If, in contrast, node has less packets to send than node ,
then all packets on become served during the transmission
of packets from node . This is due to the round-
robin policy. For this case, we receive the relation:

(A.2.5)

If we now consider all nodes in the network with , we
have from relation A.2.4 and A.2.5:

(A.2.6)

m n

TF

i TF
pcnt

i

i

pcnt
i

TF

Dpp pcntk
i

i k Dpp

Dit
1
Cl
------ bk

i
TF()

i 1=

n

∑
k 1=

m

∑⋅ pcntk
i

Dpp⋅

i 1=

n

∑
k 1=

m

∑+ + TF≤

ν
bν

Dit
1
Cl
------ bk

i

i 1=

n

∑
k 1=

m

∑⋅ pcntk
i

Dpp
b

ν

Cl

b
ν

Pmin
------------- Dpp⋅+ +⋅

i 1=

n

∑
k 1=

m

∑+ + TF≤

b
i

b
i

TF()

Pmin

Pmin

psize
ν ν ν

b
ν

Pmin⁄
ν

pcnt
ν

k

PCNTk pcntk
i

i 1=

n

∑=

TF
i k

TF
PCNTk k

dk

k

k

Dit dTk dQk+ + dk TF≤ ≤

Dit dTk dQk

Dit

PCNTk k

dTk
1
Cl
------ bk

i
TF()

i 1=

n

∑⋅ pcntk
i

i 1=

n

∑ Dpp⋅+≤

dQk k
TF

PCNTj j

k
j j
k

j PCNTk

j k k

j
k

if PCNTk

bj
i

TF()

Pmax

i 1=

n

∑≤ then dQk j, PCNTk

Pmax
Cl

--------------⋅≤

j k
j

PCNTk k

if PCNTk

bj
i

TF()

Pmax

i 1=

n

∑> then dQk j,

bj
i

TF()

Pmax

i 1=

n

∑ Pmax
Cl

--------------⋅≤

j j k≠

dQk MIN PCNTk

bj
i

Pmax

i 1=

n

∑,

Pmax
Cl

--------------⋅

j 1 j k≠,=

m

∑≤

Equation A.2.6 provides an upper bound on the service time
required to serve all nodes , while the maximum of
packets is served from .

Finally, we have to add the worst case Demand Priority
per-packet overhead, denoted by . It follows from A.2.4
and A.2.5 that this delay is bounded by the minimum of

 and . Thus, we have from equation A.2.7:

(A.2.7)

If we now substitute equation A.2.1 in equation A.2.7 and
insert A.2.3 and A.2.7 in equation A.2.2, then we receive for
the maximum delay on node :

(A.2.8)

This is Theorem 2.

A.3 The Worst-Case Packet Transmission Model
 and Per-Packet Signalling Overhead

Within this appendix, we describe the details of the data
transmission on a 802.12 network and discuss our worst
case model to compute the packet overhead caused by: (1)
the Demand Priority protocol itself and (2) by passing a data
packet through the protocol stack. We consider a single hub
topology using Category 3 UTP non-bundled cabling as the
physical links.

As with other network technologies standardized within
the IEEE, 802.12 is structured in a Media Access Control

(MAC) sublayer, a Physical Medium Independent (PMI)
sublayer, a Medium Independent Interface (MII), and a
Physical Medium Dependent (PMD) sublayer. The MAC
controls the access to the medium and carries out the frame
preparation and link training. The PMI sublayer performs
the quartet channelling, data encoding, and adds the pream-
ble-, fill pattern, starting- and ending delimiter. The data
encoding uses a 5B6B block coding scheme. The PMD per-
forms the NRZ encoding and controls the link status. We
refer to [11] for the details.

The medium access in 802.12 networks is centralized and
controlled by the hub. An end-node wishing to transmit a
data packet must wait until it receives permission from the
hub. The communication between nodes and the hub is
based on the exchange of link control signals. There are 6
primary control signals that are relevant for the packet trans-
mission in single hub networks. The Idle signal (Idle) indi-
cates that the sender e.g. the end-node currently has no
request pending for the hub connected at the other end of
the link. The Request signal (Req_H, Req_L) is used by
end-nodes to demand the transmission of a normal (Req_L)
or high priority (Req_H) data packet. The Grant signal
(Grant) indicates that the end-node has been given permis-
sion to send a packet.Incoming will be signalled by the hub
in order to inform end-nodes that a packet may soon be sent
to them. This allows them to prepare themselves for receipt.

In our packet transmission model, we make worst case
assumptions for the signalling delay and the packet process-
ing in order to comply with the requirements for a determin-
istic service. The model describes the case when the lowest
network throughput is achieved with a hub that never runs
idle. The worst case is reached in two configurations: (1)
when two network nodes are switching between sending
and receiving unicast data packets, or (2) when two or more
nodes send data packets using the multicast or broadcast
addressing mechanism. In both cases the receiver of the last
data packet is also the receiver of the next grant. This forces
the hub to add an extra time offset, which is called
SEND_IDLE_BURST (I_BST), before the Grant is signalled
to the end-node.

j PCNTk

k

Dpp

PCNTk PCNTj

dQk MIN PCNTk

bj
i

Pmax

i 1=

n

∑,

Pmax
Cl

--------------⋅ MIN PCNTk PCNTj,() Dpp⋅+

j 1 j k≠,=

m

∑≤

k

MIN pcntk
i

i 1=

n

∑
bj
i

Pmax

i 1=

n

∑,

Pmax
Cl

--------------⋅ MIN pcntk
i

i 1=

n

∑ pcntj
i

i 1=

n

∑,

Dpp⋅+

j 1 j k≠,=

m

∑ +

1
Cl
------ bk

i

i 1=

n

∑⋅ pcntk
i

i 1=

n

∑ Dpp⋅ Dit dk TF≤ ≤+ +
R

eq_H

DMAC_data
DMAC_data

Id
le

In
co

m
in

gHub

Node: 1 2

Example Topology:

Figure 14. Worst Case Signalling and Data Transmission on a single Hub 802.12 Network.

In
co

m
in

g

Incom
ing

DATA

DATA

DATA

DATA

IPG + D_IPG

G
ra

nt

Id
le

G
rant

R
eq

_H

Idle

Service
Request Receive Packet

Receive Packet

Send Packet

Send Packet
Service
Request

Node 2

Node 1

Hub
I_BST

IPG + D_IPG

Dpp

Time

R
eq

_H

G
rant

Idle

DATA

DATA

Idle

R
eq

_H

I_BST

Send Packet

Dpp
Receive Packet

R
eq_H

UTP link

UTP link

Repeat Packet Repeat PacketRepeat Packet DMAC_data

Figure 14 shows the packet transmission and the signal-
ling required for transmitting three data packets using the
high priority service. The example topology consists of a
single hub and two end-nodes sending multicast data pack-
ets. The worst case per-packet signalling overhead is
denoted by .

The data flow starts when the upper layer of Node 1
passes a data packets to the 802.12 MAC layer. After receiv-
ing the packet, the MAC at Node 1 signals Req_H to the hub
demanding the transmission of the high priority data packet.
If the hub is idle, as assumed at the beginning of the data
flow in Figure 14, then the hub immediately acknowledges
the request and returns a Grant signal to Node 1.

At the same time, the hub signals Incoming to all other
nodes on the network e.g. to Node 2. After detecting the
Grant, Node 1 starts transmitting the data packet to the hub,
which then forwards the packet to Node 2. The packet
processing in the hub introduces a small delay which is
denoted with in Figure 14. While the rest of the
packet is repeated, the hub signals Idle to all nodes other
than the destination e.g. to Node 1. This allows them to sig-
nal their next service request (Req_H, Req_L) or idle (Idle)
to the hub. In Figure 14, Node 1 demands the transmission
of another high priority packet by signalling Req_H. This
assumes that another data packet was passed into the output
queue at Node 1 while the first packet was transmitted to the
hub.

In the meantime, the hub in Figure 14 has also received a
transmission request from Node 2. This request is granted
after the data packet from Node 1 has been fully repeated.
The corresponding Grant signal however is not signalled
before theSEND_IDLE_BURST (I_BST) timer has expired.
This potentially allows Node 2 to signal a service request to
the hub. The transmission of the data packet from Node 2
requires the same signalling as described for the previous
data packet. After this packet has been repeated, the hub
continues and serves the next packet from Node 1 and so on,
until all requests have been served.

The medium access mechanism defines that the gap
between two subsequent packet transmissions is always
larger than a certain defined time interval called theInter-
Packet Gap (IPG). This is enforced by a timer mechanism at
the hub. The corresponding timer is called theIPG timer. If
the packet was received from an end-node, then the inter
packet gap is increased by an additional time offset of
length D_IPG. It accounts for clock differences between
different hubs in the shared network. The packet overhead

 is thus at least as big asIPG plusD_IPG. The worst-
case however is determined by the maximum signalling-,
packet-processing and propagation delay as illustrated in
Figure 14. This includes the worst case delay for: (1) signal-
ling Grant from the hub to the end-node, (2) passing the data
packet through the 802.12 protocol stack, (3) sending the
data packet over the link, (4) receiving the packet at the hub
and passing it to the MAC layer, and (5) decoding the

address information and passing the data packet to the PMI
of the outgoing port. The precise breakdowns for these
operations are given in Table 3 and Table 4.

All delays are worst case delays and are based on refer-
ences in the standard. Note that a Bit Time (BT) corre-
sponds to , e.g. in Table 3 is equal to
200 ns. The propagation delays on the physical medium are
provided for 100 m Category 3 UTP cable. Further, we
assume in our analysis, that the Medium Independent Inter-
face (MII) itself does not introduce any significant delay.

Table 3. Breakdown of the Grant-Signalling Delay.

Table 4. Breakdown of the Data Transmission Delay.

Using the transmission model in Figure 14 and the worst
case delays given in Table 3 and Table 4, we are able to
compute the worst case per-packet overhead . In the fol-
lowing, we will denote the overhead caused by the data
transmission over a single link e.g. from the hub to the end-
node by . The parameter is the worst-
case time it takes to signalGrant from the hub to the end-

Dpp

DMAC_data

Dpp

Sublayer Comments
Worst Case

Delay
 Reference

in [11]:

RMAC
(Hub)

- 12.6.3.4
12.6.4.1

PMI

Control signal encoding,
(control signals do not have a preamble).

4 BT 14.3.1

PMD

Max. propagation delay within the PMD.

20 BT 16.5.3.2

PHY
(Link) Prop. delay on 100 m UTP or STP cable.

570 ns 16.9.1.3

PMD

Grant signal detection.

6 BT 16.6.5

PMI

Control signal mapping.

4 BT 14.3.2
14.3.3

MAC
(Receiver)

-

Sublayer Comments
Worst Case

Delay
Reference
in [11]:

MAC
(Source)

- 12.6.3.4
12.6.4.1

PMI

Addition of preamble pattern (48 BT):
Addition of starting delimiter (12 BT):
Propagation delay for data (3 BT):

63 BT

14.4.2.3.2
14.4.2.3.3

14.3.4

PMD

Max. propagation delay within PMD.

8 BT 16.5.2

PHY
(Link) Prop. delay on 100 m UTP or STP cable.

570 ns 16.5.3.2

PMD

Data recovery delay.

10 BT 16.6.4

PMI

Synchronization, data decoding (8 BT):
Propagation delay within the PMI (3 BT):

11 BT

14.4.4
as 14.3.4

MII -> MII
(Hub)

,

Transmit delay MII -> MII in the RMAC:

4.5 12.9.7.2

33.3 ns DPMD_Rx_grant

DPMI_Tx_ctr

DPMD_Tx_ctr

DPHY_UTP

DPMD_Rx_grant

DPMI_Rx_ctr

DPMI_Tx_data

DPMD_Tx_data

DPHY_UTP

DPMD_Rx_data

DPMI_Rx_data

DMII_Rx_Tx_data µsec

Dpp

DTx_Data DSignal_Grant

node. Both parameters includes the overhead which is intro-
duced in the 802.12 protocol stack e.g. while detecting or
decoding the link signal. They are computed later.

Under idle conditions, the Grant signal can travel much
faster than the data signal due to a smaller overhead in the
sending and receiving 802.12 PMDs and PMIs. We can
however observe in Figure 14 that the Grant always travels
behind a data packet. Node 2 thus cannot detect the Grant
signal in time units after the hub has made
its decision to serve this node. Instead, Node 2 first has to
receive the data packet. We assume in our model that the
Grant has been detectedI_BST time units after the last bit of
the data packet has been received at Node 2. The resulting
delay is thus: . When detecting the Grant, Node
2 instantly sends the data packet. It takes not more than

 time units until the hub has fully
repeated the packet from Node 2, where denotes
the worst case time, the packet is delayed in the Repeater
MAC (RMAC) of the hub. is the transmission time
for a data packet of maximum size. If we now consider that
the per-packet overhead is always larger than the Inter-
packet Gap then we get for the worst case per-packet over-
head :

(A.3.1)

The timer values for theIPG- andD_IPG window, and the
I_BST offset are defined in the standard (see section 12.5.1).
The numerical results for and imme-
diately follow from Table 3 and Table 4 by adding up the
delay components introduced in each layer of the protocol
stack. We thus have:

(A.3.2)

(A.3.3)

The delay in the RMAC sublayer () is computed
using the delay bounds given in Table 4. Since the standard
provides the worst case delay between the receiving and
transmitting MII of the RMAC, we receive by
taking off the delays added by the PMIs:

(A.3.4)

This provides a delay of 2.033 for . The value
for is fixed, the results for and

 however depend on the cable length.
From equations A.3.1 - A.3.4 and the values in Table 3

and Table 4, we computed a worst case per-packet overhead
for the single hub 802.12 network. The results for 100 m
and 200 m UTP cabling are shown in Table 5. This is what
we used throughout our theoretical analysis.

Table 5. The Worst-Case Packet OverheadDpp for the Single Hub
802.12 Network using UTP Cabling.

A.4 Worst-Case Low Priority
 Service Interrupt Time

Within this appendix, we describe the model used to com-
pute the worst case time it takes to interrupt the low priority
service in single hub 802.12 networks. The model is illus-
trated in Figure 15. It shows the worst case signalling
required for pre-empting the low priority service and for
transmitting a single high priority packet. The analysis is
focused on the use of non-bundled Category 3 UTP cabling
as physical links.

I_BST DSignal_Grant+

DTx_Data I_BST+

DTx_Data DMAC_data Pmax Cl⁄+ +

DMAC_data

Pmax Cl⁄

Dpp

Dpp MAX IPG D_IPG+() ;(≤

DTx_Data I_BST DTx_Data DMAC_data))+ + +(

DSignal_Grant DTx_Data

DSignal_Grant DPMI_Tx_ctr DPMD_Tx_ctr+ +=

DPHY_UTP DPMD_Rx_grant DPMI_Rx_ctr+ +

DTx_Data DPMI_Tx_data DPMD_Tx_data+ +=

DPHY_UTP DPMD_Rx_data DPMI_Rx_data+ +

UTP cable length

100 m 10.109

200 m 11.249

DMAC_data

DMAC_data

DMAC_data DMII_Rx_Tx_data–=

DPMI_Rx_data DPMI_Tx_data–

µs DMAC_data

DMAC_data DSignal_Grant
DTx_Data

Dpp

µs

µs

L2

DATA

DATA

R
eq

_H

Receive PacketSend Packet

Send Packet

High Priority
Request from

Node 1

Node 3

Node 2, 3

Node 1

Hub

DATA

DATA

G
rant

Idle

In
co

m
in

g

Incom
ing

G
ra

ntDATA

DATA

R
eq_L

Incom
ing

G
ra

nt

Receive PacketReceive Packet

Send Packet

Node 2 has pending
Low Priority Request

Dpp
Idle

Low Priority
Request from

Node 3

Time to Interrupt The Low Priority Service ()Dit

Node 2

Hub

Node: 1 2 3

Example Topology:

Time

L1

Pmax / ClPmax / Cl Pmax / Cld2 d1

Serve High Priority Request

Receive Packet

L2, L3

L1 L3Link:

DATA

DATA

Id
le

Idle

Idle

Figure 15. Model for Computing the Worst Case Interrupt Time.

The example topology shown in Figure 15 consists of a
single hub and three nodes. These might for example be
end-hosts or bridges. We describe the worst case interrupt
time in respect to Node 1 which is requesting the transmis-
sion of a high priority data packet. The two other nodes in
the setup, Node 2 and Node 3, only use the low priority
service. Similar to the packet transmission model discussed
in Appendix A.3, the worst case delay occurs when Node 2
and Node 3 send data packets using the multicast or broad-
cast mechanism, while Node 1 is requesting the high prior-
ity service. Note that the hub forwards multicast data
packets to all network nodes, regardless of whether they
have joined the corresponding multicast group. Multicast
data packets will thus always be forwarded to Node 1. We
further assume all data packets in Figure 15 to be of maxi-
mum size.

In Figure 15, the worst case low priority service interrupt
time is denoted by . The worst case occurs when the sig-
nalling of the high priority request (Req_H) from Node 1 to
the hub is delayed by the transmission of low priority data
packets on the network. In a single hub topology, a maxi-
mum of two data packets can be served by the hub before
the low priority service is pre-empted. This is caused by the
properties of the UTP physical layer which operates in half
duplex mode. When used over UTP cable, packet data is
transmitted on all four pairs in order to reach the desired
physical link throughput. Control signals between end-
nodes and the hub can thus only be exchanged during the
inter packet gap and not while data are transmitted over the
link.

The data flow in Figure 15 starts when Node 1 sends a
multicast data packet. This is forwarded towards Node 2 and
Node 3. At the same time, we assume that Node 2 has a
pending low priority service request. Following the worst
case model discussed in the previous appendix, Node 2
must first receive the data packet from Node 1, before it can
detect the Grant signal from the hub. Instantly after the hub
has decided to serve Node 2, it also signals Incoming to all
other nodes on the network e.g. to Node 1 which is running
idle. The worst case condition for occurs if a high prior-
ity request is made at Node 1 instantly after the Incoming
signal was detected. In this case, the physical layer at Node
1 does not signal Req_H to the hub because it must prepare
itself for receiving the data packet from Node 2. As shown
in Figure 15, the Req_H signal is not transmitted before the
low priority data packet from Node 2 has been fully
received at Node 1.

After the hub repeated the packet from Node 2, it runs
idle until it receives a demand for transmitting a low priority
data packet from Node 3. The worst case occurs when the
high priority request from Node 1 arrives at the hub just
after the low priority request from Node 3 has been
acknowledged. The hub then first grants the transmission of
the packet from Node 3. After forwarding this packet, the
low priority service is pre-empted and the hub starts to serve

the high priority packet from Node 1. Once pre-empted, the
low priority service is only resumed after all high priority
packets have been served. Note that even though the low
priority request arrives later at Node 3, it is served earlier
than the high priority data packet from Node 1.

Assuming that both nodes, Node 2 and Node 3, send a
maximum size data packet, we can observe in Figure 15 that
the worst case interrupt time is given by:

(A.4.1)

where is the time it takes to transmit one data
packet of maximum size. The two constants and con-
tain the overhead for the two low priority data packets. The
overhead for the data packet from Node 2 is the worst case
overhead as determined for the data packets in Figure
14 in Appendix A.3. For the interrupt time, we however
only have to consider:

(A.4.2)

where is the time it takes to signal Incoming across
a single UTP link. The overhead for the low priority packet
from Node 3 follows from Figure 15:

(A.4.3)

where , , andI_BSTare the
parameters discussed in the previous appendix. is
the times it takes to signal Req_H across link L1. Both
parameters, and , have the same numeric
value which we denote with :

(A.4.4)

A precise breakdown for is provided in Table 6.
Using these components, we get:

(A.4.5)

 is larger than since the PMD can
detect a Grant signal faster than any other link control sig-
nal. One can further observe, the worst case for is
achieved when the network is not fully loaded since the hub
in Figure 15 runs idle for a short time after serving the low
priority data packet from Node 2. The packet overhead is
thus larger than the worst-case overhead since it
includes the idle time: . This however does
not have any significant impact on the result for . In a
fully loaded network, is equal to .

Dit

Dit

Dit

Dit 2
Pmax

Cl
--------------⋅ d2 d1+ +=

Pmax Cl⁄
d2 d1

Dpp

d2 Dpp DIncom–=

DIncom

d1 DTx_Data DReq_H I_BST DSignal_Grant+ + + +=

DTx_Data DMAC_data+

DTx_Data DSignal_Grant DMAC_data

DReq_H

DReq_H DIncom

DSignal_Ctrl

DIncom DReq_H DSignal_Ctrl= =

DSignal_Ctrl

DSignal_Ctrl DPMI_Tx_ctr DPMD_Tx_ctr+ +=

DPHY_UTP DPMD_Rx_ctr DPMI_Rx_ctr+ +

DSignal_Ctrl DSignal_Grant

Dit

d1
Dpp

DTx_Data DReq_H+

Dit

d1 Dpp

Table 6. Breakdown of the Delay required for Signalling the
 Control SignalsReq_H, Req_L and Incoming.

From equations A.4.1 - A.4.5, and the results in Appendix
A.3, we were able to compute the worst case interrupt time

 to be considered in a single hub 802.12 network. The
result for a UTP cable length of 100 m and 200 m are shown
in Table 7.

Table 7. The Worst-Case Low Priority Service Interrupt TimeDit
for a Single Hub 802.12 Network using UTP Cabling.

References

[1] P. Kim, Deterministic Service Guarantees in 802.12 Net-
works, Part II: the Cascaded Network Case, HP Technical
Report HPL-97-148, April 1997.

[2] D. Clark, S. Shenker, L. Zhang,Supporting Real-Time
Applications in an Integrated Services Packet Network:
Architecture and Mechanism, in Proc. ACM SIGCOMM
‘92, pp. 14 - 26, Aug. 1992.

[3] S. Shenker, G. Partridge, R. Guerin,Specification of the
Guaranteed Quality of Service, Internet Draft draft-ietf-
intserv-guaranteed-svc-06.txt, August 1996.

[4] J. Wroclawski,Specification of the Controlled-Load Net-
work Element Service, Internet Draft draft-ietf-intserv-ctrl-
load-svc-03.txt, August 1996.

[5] H. Zhang, S. Keshav,Comparison of Rate-Based-Service
Disciplines, in Proc. of ACM SIGCOMM ‘91, pp. 113 -
121, September 1991.

[6] S. Jamin,A Measurement-based Admission Control Algo-
rithm for Integrated Services Packet Networks, PhD Disser-
tation, University of Southern California, August 1996.

[7] S. Floyd, Comments on Measurement-based Admission
Control for Controlled-Load Services, pre-released Draft,
submitted to CCR, July 1996.

[8] L. Zhang, S. Deering, D. Estrin, S. Shenker, D. Zappala,
RSVP: A New Resource ReSerVation Protocol, IEEE Net-
works, September 1993.

[9] R. Braden, L. Zhang, S. Berson, S. Herzog, S.Jamin,
Resource ReSerVation Protocol (RSVP) - Version 1 Func-
tional Specification, Internet Draft draft-ietf-rsvp-spec-
14.ps, October 1996.

[10] A. Ghanwani, J. W. Pace, V. Srinivasan,A Framework for
Providing Integrated Services Over Shared and Switched
LAN Technologies, Internet Draft draft-ietf-issll-is802-
framework-01.txt, April 1997.

[11] IEEE 802.12, IEEE Standard for Local and Metropolitan
Area Networks: Demand-Priority Access Method, Physical
Layer and Repeater Specification for 100Mb/s Operation,
IEEE, November 1995.

[12] G. Watson, A. Albrecht, J. Grinham, J. Curcio, D. Dove, S.
Goody, M. Spratt, P. Thaler,The Demand Priority MAC
Protocol, IEEE Network Vol. 9, No. 1, pp. 28 - 34, Jan.
1995.

[13] M. Molle, G, Watson, 100Base-T/IEEE 802.12/Packet
Switching, IEEE Communications Magazine, pp. 64 - 73,
August 1996.

[14] J. Flick, Definitions of Managed Objects for IEEE 802.12
Repeater Devices, Internet Draft, June 1995.

[15] J. Case, M. Fedor, M. Schoffstall, C. Davin,Simple Network
Management Protocol (SNMP), RFC 1157, May 1990.

[16] D. Ferrari, D. Verma,A Scheme for Real-Time Channel
Establishment in Wide-Area Networks, IEEE Journal on
Selected Areas in Communications, Vol. 8, No. 3, pp. 368 -
279, April 1990.

[17] Mbone Tools, Online Software: http://www-nrg.ee.lbl.gov/.

[18] N. Leymann,Eine Videokomponente fuer das Videokon-
ferenzsystem Multimedia Collaboration, Diploma Thesis, in
German, Technical University Berlin, 1996.

[19] R. L. Cruz,A Calculus for Network Delay, Part I: Network
Elements in Isolation, IEEE Transactions on Information
Theory, Vol. 37(1), pp. 114 - 131, Jan. 1991.

[20] R. L. Cruz,A Calculus for Network Delay, Part II: Network
Analysis, IEEE Transactions on Information Theory, Vol.
37(1), pp. 132 - 141, Jan. 1991.

[21] G. Agrawal, B. Chen, W. Zhao,Local Synchronous Capac-
ity Allocation Schemes for Guaranteeing Message Dead-
lines with the timed Token Protocol, in Proc. of INFOCOM
‘93, pp.186-193, 1993.

Sublayer Comments
Worst Case

Delay
 Reference

in [11]:

RMAC
(Hub)

- 12.6.3.4
12.6.4.1

PMI

Control signal encoding,
(control signals do not have a preamble).

4 BT 14.3.1

PMD

Max. propagation delay within the PMD.

20 BT 16.5.3.2

PHY
(Link) Prop. delay on 100 m UTP or STP cable.

570 ns 16.9.1.3

PMD

Control signal recovery and decoding.

48 BT 16.6.1

PMI

Control signal mapping.

4 BT 14.3.2

MAC
(Receiver)

-

UTP cable length

100 m 261.92

200 m 264.77

DPMI_Tx_ctr

DPMD_Tx_ctr

DPHY_UTP

DPMD_Rx_ctr

DPMI_Rx_ctr

Dit

Dit

µs

µs

[22] K. Shin, Q. Zheng,Mixed Time-Constrained and Non-Time-
Constrained Communications in Local Area Networks,
IEEE Transaction on Communications, Vol. 41, No. 11,
Nov. 1993.

[23] P. Kim, LLRMP: a Signalling Protocol for Reserving
Resources in Bridged Networks, in Proc. of OPENSIG ‘96,
October 1996.

[24] P. Kim, Link Level Resource Management Protocol
(LLRMP), Protocol Specification - Version 1, Internet Draft
draft-kim-llrmp-01.ps, December 1996.

[25] Parallax Graphics,PowerVideo700 Board, hhtp://www.par-
allax.com/products/hp/xvideo700.html.

[26] Hewlett-Packard,PA-RISC 1.1 Architecture and Instruction
Set, Reference Manual, Manual Part No: 09740-90039, Sep-
tember 1992.

[27] OptiVision Inc., OptiVision Live MPEG Communication
System, User’s Guide, Version 1.2f, September 1996.

