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DETERMINING THE SMALL SOLUTIONS TO S-UNIT

EQUATIONS

N.P. SMART

Abstract. In this paper we generalize the method of Wildanger for �nding

small solutions to unit equations to the case of S-unit equations. The method

uses a minor generalization of the LLL based techniques used to reduce the

bounds derived from transcendence theory, followed by an enumeration strat-

egy based on the Fincke-Pohst algorithm. The method used reduces the com-

puting time needed from MIPS years down to minutes.

The main computational problem when solving a diophantine equation is usually

the location of the \small" solutions. In this paper we assume we are given the

generators of two �nitely generated multiplicative subgroups of some number �eld,

K. In what follows we shall denote these subgroups by G1 and G2. We also assume

that we are given two �xed algebraic numbers �1; �2 2 K�. In [4] the author gave

a practical algorithmic solution to the determination of all the solutions to the

equation

�1�1 + �2�2 + 1 = 0 with (�1; �2) 2 G1 �G2: (1)

That there are �nitely many solutions to such an equation follows from work of

Siegel. An e�ective proof of the �niteness of the number of solutions was �rst given

by Gy}ory, [3], using Baker's method of linear forms in logarithms.

Using an adaption of Gy}ory's method combined with the reduction techniques

of de Weger, [9], one can reduce the solution of (1) to the determination of the

\small" solutions. The technique used in [4] to determine such solutions was a

sieving technique which lent itself to implementation on a parallel computer or a

network of workstations. For further discussion of this sieving technique see [5].

Recently Wildanger, [10], has given a much more e�cient technique of determin-

ing the small solutions in the case where G1 = G2 = O�K . In this paper we extend

Wildanger's method to the general case. The main problem that one encounters is

the presence of �nite places in the support of the two groups.

Wildanger makes use of the algorithm of Fincke-Pohst, [2]. We try to avoid the

use of this algorithm for as long as possible. This is because we feel that applying

Fincke-Pohst to lattices generated by real vectors with very large coe�cients held

to very high precision can lead to 
oating point errors. This is due to rounding

errors in the algorithm for Cholesky decomposition and in the LLL algorithm itself.

Indeed rounding errors introduced in the 
oating point version of the LLL algorithm

can lead to the production of a basis which is not even LLL reduced. Below we

make use of the LLL algorithm on lattices generated by vectors with integer entries.

We can therefore make use of the integer version of the LLL algorithm due to de

Weger, [8], which does not su�er from numerical instability. We only apply the

algorithm of Fincke-Pohst and the 
oating point version of LLL when we have

reduced considerably the precision needed in the calculations.
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1. Notation

We shall let S1 and S2 denote the set of primes (places), both �nite and in�nite,

in the support of the groups G1 and G2 respectively. In other words

Si = fp 2MK : j�jp 6= 1 for some � 2 Gig = Supp(Gi):

We let ti denote the rank of the group Gi. We suppose that Gi has generators of

in�nite order given by �1;i; : : : ; �ti;i. We can then write

�i = �i

tiY
j=1

�
aj;i
j;i

where �i 2 Tors(O�K) and aj;i 2 Z. We let H = max jaj;ij and choose b and pg 2 Sb
such that

H = jak;bj for some k and j log j�bjpg j = max
p
j log j�bjpj:

Now by Lemma 1 of [4] we can determine a constant c1 such that

H � c1j log j�bjpg j: (2)

Using the method of Baker and the computational reduction techniques of de Weger,

see [4], we can �nd a constant, H0, of \reasonable" size such that H � H0. By

\reasonable" we mean \reasonable" when compared with the initial bound which

can be derived from the application of Baker's method alone. However the value

of H0 is usually still too large to allow direct enumeration of the solutions. It is

common to refer to the solutions such that H � H0 as the \small" solutions to the

equation. This is because any \large" solutions are eliminated by Baker's method

and any \medium" sized solutions are eliminated by the application of the method

of de Weger.

Let S denote a �nite set of places of K, including all the in�nite ones. We let

Sf denote the subset of �nite places of S. As the set of �nite places of K and the

set of prime ideals of OK are equivalent we shall also refer to Sf as being a set of

prime ideals. The order of S1 =M1
K is given by r + 1, where r is the rank of the

group O�K . We have r+1 = r1+ r2, where r1 is the number of real places and r2 is
the number of complex conjugate places. We place an order on S in the following

way;

j�jpi =

8<
:
j�(i)j 1 � i � r1
j�(i)j2 r1 + 1 � i � r1 + r2

p
�fiordpi (�)
i i > r1 + r2 ; pi 2 Sf

where the conjugates, �(i), of K are ordered in the usual way, see [7][page 225],

and pi and fi denote the rational prime lying below pi and its residual degree

respectively. The rami�cation index of pi will be denoted by ei. We of course

assume some implicit �xed order for the places in MK nM1
K , a �xed order for the

real places and a �xed order for the complex places. This gives an order on any

�nite set of places, S.
Let R 2 R>1 and S a �nite set of places of K, we de�ne

� R;S �=

�
� 2 K :

1

R
� j�jp � R for all p 2 S

�
:
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As a last bit of notation we let L denote the set of solutions that we wish to

determine, i.e.

L = f(�1; �2) 2 G1 �G2 : �1�1 + �2�2 + 1 = 0g :

We then let

LHi
= f(�1; �2) 2 L : H � Hig ;

by which we mean those solutions whose maximum exponent is Hi, hence L = LH0
.

We also de�ne

LHi
(R) = f(�1; �2) 2 LHi

: �1 2� R;S1 �g :

Now let

R0 = max
p2S1

exp

0
@H0

t1X
j=1

j log j�j;1jpj

1
A :

Lemma 1. We have L = LH0
(R0).

Proof. We need to show that for all p 2 S1 that we have

1

R0

� j�1jp � R0:

Let p 2 S1 then we have, as jai;j j � H0,

j log j�1jpj = j
t1X
j=1

aj;1 log j�j;1jpj �
t1X
j=1

H j log j�j;1jpj

� max
p2S1

0
@H0

t1X
j=1

j log j�j;1jpj

1
A = logR0:

Hence � logR0 � log j�1jp � logR0, from which the result follows.

2. Decomposing the solution space

We set

si = max
p2S1[S2

max
�
j�ijp; j��1i jp

�
for i = 1 and 2

and

s3 = max
p2S1[S2

min
�
j��12 jp

�
:

Now let Ri; Ri+1 2 R>1 with s1; s2; s3 < Ri+1 < Ri and let Hi 2 Z. We clearly

have Ri+1 > 1 as s1; s2 > 1. We shall also assume that Ri+1 > (s3�1)=s1. The idea
is then to �nd an integer Hi+1 < Hi and then decompose the space LHi

(Ri) into

the union of LHi+1
(Ri+1) and a union of sets which we can then show to be have

either no non-trivial elements or a few elements which can be easily determined.

If we can repeat his process eventually we will be left with enumerating a set

of the form LHj
(Rj) for small values of Hj and Rj . In a later section we shall

explain how the sets are shown to have either no non-trivial elements or a small

set of easily determined elements. In this section we shall be content with showing

how the solution space decomposes.
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We de�ne the following sets

T1;p(Hi; Ri; Ri+1) =

�
(�1; �2) 2 LHi

(Ri) : j � �1�1 � 1jp <
1

1 + s1Ri+1

�
;

T2;p(Hi; Ri; Ri+1) =

�
(�1; �2) 2 LHi

(Ri) : j �
1

�1�1
� 1jp <

1

1 + s1Ri+1

�
;

T3;p(Hi; Ri; Ri+1) =

�
(�1; �2) 2 LHi

(Ri) :
j � �2�2 � 1jp < s1

Ri+1
;

�2�2 2� 1 + s1Ri; S2 �

�
;

T4;p(Hi; Ri; Ri+1) =

�
(�1; �2) 2 LHi

(Ri) :
j � �2�2

�1�1
� 1jp < s1

Ri+1
;

�2�2
�1�1

2� 1 + s1Ri; S1 [ S2 �

�
:

We then de�ne the sets

T1(Hi; Ri; Ri+1) =
[

p2S2
T1;p(Hi; Ri; Ri+1);

T2(Hi; Ri; Ri+1) =
[

p2S1[S2
T2;p(Hi; Ri; Ri+1);

T3(Hi; Ri; Ri+1) =
[

p2S1
T3;p(Hi; Ri; Ri+1);

T4(Hi; Ri; Ri+1) =
[

p2S1
T4;p(Hi; Ri; Ri+1):

Lemma 2. Let Ri; Ri+1 and Hi be as above. We de�ne

c2 = max

�
log

�
s1Ri+1 + 1

s2

�
; log

�
s1Ri+1 + 1

s3

�
; log (Ri+1)

�
and set Hi+1 = c1c2 then

LHi
(Ri) = LHi+1

(Ri+1)

4[
j=1

Tj(Hi; Ri; Ri+1):

Proof. We assume that (�1; �2) 2 LHi
(Ri) and that (�1; �2) 62 LHi

(Ri+1). If this is

the case then there exists a q 2 S1 such that either j�1jq < 1=Ri+1 or j�1jq > Ri+1.

In the �rst case we deduce that

j � �2�2 � 1jq = j�1�1jq <
s1

Ri+1
:

Now if (�1; �2) 62 T1(Hi; Ri; Ri+1) then for all p 2 S2 we have

j�2�2jp = j � �1�1 � 1jp �
1

1 + s1Ri+1
:

We also have that

j�2�2jp = j � �1�1 � 1jp � 1 + j�1�1jp �
�

1 + s1Ri p 2 S1
1 + s1 p 2 S2 n S1

:

Hence, for all p 2 S2,

j log j�2�2jj � maxflog(1 + s1); log(1 + s1Ri+1); log(1 + s1Ri)g
= log(1 + s1Ri):

It therefore follows that if j�1jq < 1=Ri+1 and (�1; �2) 62 T1(Hi; Ri; Ri+1) then

(�1; �2) 2 T3(Hi; Ri; Ri+1).
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We now consider the case that j�1jq > Ri+1, this means������2�2

�1�1
� 1

����
q

=

���� 1

�1�1

����
q

<
s1

Ri+1
:

If (�1; �2) 62 T2(Hi; Ri; Ri+1) then for all p 2 S1 [ S2 we have������2�2

�1�1

����
p

=

����� 1

�1�1
� 1

����
p

� 1

1 + s1Ri+1
:

In addition������2�2

�1�1

����
p

=

����� 1

�1�1
� 1

����
p

�
���� 1

�1�1

����
p

+ 1 �
�

1 + s1Ri p 2 S1
1 + s1 p 2 S2 n S1

:

Hence we have (�1; �2) 2 T4(Hi; Ri; Ri+1).

So we have

LHi
(Ri) = LHi

(Ri+1)

4[
j=1

Tj(Hi; Ri; Ri+1):

Now assume that (�1; �2) 2 LHi
(Ri+1) then we have for all p 2 S1 [ S2 that

j log j�1jpj � logRi+1 and

j�2jp =
������1�1 � 1

�2

����
p

� j�1�1jp + 1

j�2jp
� s1Ri+1 + 1

s2
:

Now if (�1; �2) 62 T1(Hi; Ri; Ri+1) then for all p 2 S2 we have

j�2jp =
������1�1 � 1

�2

����
p

� s3

s1Ri+1 + 1
:

This last inequality clearly also holds for p 2 S1 n S2 so we deduce that for all

p 2 S1; S2 that if (�1; �2) 2 LHi
(Ri+1) n T1(Hi; Ri; Ri+1) then

j log j�1jpj � c2 ; j log j�2jpj � c2:

But from equation (2) we then deduce that we must have H � Hi+1. Hence the

solution space decomposes as stated.

Clearly when applying this result we need to choose a value of Ri+1 such that the

methods of the following sections allow us to deduce that the sets Tj;p(Hi; Ri; Ri+1)

are either trivial or easy to determine. Wildanger gives a heuristic method to

determine the best values for Ri+1 in the case where G1 = G2 = O�K . The analysis
in the general case appears similar and the choices ofRi+1 as indicated byWildanger

seem to su�ce.

3. Showing Tj;p(Hi; Ri; Ri+1) is trivial

In all four cases our problem can be phrased as trying to show that there are

no non-trivial solutions to the following problem; Let � 2 K� and �1; : : : ; �t denote
multiplicatively independent elements of K�. Set


 = �b0
tY

i=1

�bii
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with < � >= Tors(O�K). Let � 2 (0; 1) then we wish to show that there are no

solutions to the inequality

j�
 � 1jp < �

where p is some place of K and jbij � B some given positive constant. There are

two methods which we employ, depending on whether p is an in�nite or �nite place.

3.1. p in�nite. Note that for any z 2 C , jz � 1j < � implies that j log jzjj <
log(1=(1� �)). Hence we can immediately deduce that

j log j�
jpj � �0 =

(
log 1

1�� p real;
1
2
log 1

1�
p
�

p complex:

Notice that if � is very small, then �0 will also be very small. We choose an integer

constant, C, of the size of 10t and then look at the lattice, �, generated by the

columns of the matrix

A =

0
BBB@

1 0
. . .

0 1

[C log j�1jp] : : : [C log j�t�1jp] [C log j�tjp]

1
CCCA 2 Zt�t;

where [:] denotes the nearest integer function, with some �xed convention for num-

bers of the form (2m+1)=2. We also de�ne the vector ~y = (0; : : : ; 0;�[C log j�jp])t 2
Zt. Using the integer version of the LLL-algorithm and [9][Lemmata 3.4 and 3.5]

we can compute a lower bound, c4, on

`(�; ~y) =

8<
:

min
~x2�

k~x� ~yk ~y 62 �

min
~06=~x2�

k~xk ~y 2 �

We can then hopefully eliminate the set under consideration using the following

Lemma. If the following Lemma does not work then we either need to increase C,
increase Ri+1 or use the technique of the next section.

Lemma 3. Let

Q = (t� 1)B2 +

�
tB + 1

2
+ C�0

�2
then if c24 > Q then we can conclude that there are no non-trivial elements, 
, such
that j�
 � 1j < �.

Proof. Put

� = [C log j�jp] +
tX

i=1

bi[C log j�ijp]

then ������� C

 
log j�jp +

tX
i=1

bi log j�ijp

!����� � tB + 1

2
:

Hence

j�j � j�� C log j�
jpj+ jC log j�
jpj

� tB + 1

2
+ C�0:
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Now consider the lattice point ~x = A~z, where ~z = (b1; : : : ; bt)
t, then

~x� ~y = (b1; : : : ; bt�1;�)
t
:

So, if ~y 6= ~x, we must have

c24 � `(�; ~y)2 � (t� 1)B2 +�2 � Q:

But as c24 > Q we see that ~y = ~x and b1 = : : : = bt�1 = 0 and [C log j�jp] +
bt[C log j�tjp] = 0. If such a solution exists it is easy to determine and will therefore

be called trivial.

3.2. p �nite. Let p denote the rational prime lying below p and let e and f denote

the rami�cation index and residue degree of p. We shall assume that

�0 = � log �

ef log p
� 1;

which is not a large restriction as we are assuming that � is very small.

Our method proceeds using the p-adic analogue to the previous method for

in�nite places. If j�
 � 1jp < � < 1 then we must have ordp(�
) = 0. Using the

method explained in [4][Lemma 3] we can replace �; �1; : : : ; �t with a �nite set of

possibilities for �0; �1; : : : ; �s 2 K� such that

�
 = ��

tY
i=1

�bii = �0

sY
i=1

�mi

i

with ordp(�i) = 0 for i = 0; : : : ; s and max jmij � max jbij � B So we are left with

trying to determine if there are any solutions, mi, to the inequality

j�0
sY

i=1

�mi

i � 1jp < �

with jmij � B. For � 2 K� we let logp(�) denote the p-adic logarithm of � when

we consider � as an element of Kp. If we set

� = logp �0 +

sX
i=1

mi logp �i 2 Kp

then, as �0 � 1,

ordp(�) = ordp(logp(�
)) = ordp(�
 � 1) � � log �

ef log p
= �0:

Let n = [Kp : Qp ] and Kp = Qp (�) then we can write

� =

n�1X
i=0

�i�
i

where

�i = �0;i +

sX
j=1

mj�j;i; with �j;i 2 Qp and 0 � i � n� 1:

It then follows, see [7][Page 257], that, for all i,

ordp(�i) � �0 � 1

2
Dp(�) = c5; (3)
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where Dp(�) = ordp(DiscKp=Qp
(�)). We then choose � 2 Qp such that

ordp(�) = min
0�i�s

�
min

0�j�n�1
(ordp(�i;j))

�
= c6:

We set

�i=� = �0;i +

sX
j=1

mi�j;i for i = 0; : : : ; n� 1;

and so �i;j 2 Zp. We then have that

ordp(�i=�) � c5 � c6 = c7:

We let u 2 N be such that pu is roughly the size of B1+s=n and such that u � c7.
The constant u plays a similar role to the constant C in the method for in�nite

places. For � 2 Zp we let �
(u) denote the unique rational integer such that � � �(u)

(mod pu) and 0 � �(u) < pu. We then let � denote the lattice which is generated

by the columns of the matrix

A =

0
BBBBBBBBB@

1 0
. . .

0 1

�
(u)
1;0 : : : �

(u)
s;0 pu 0

...
...

. . .

�
(u)
1;n�1 : : : �

(u)
s;n�1 pu

1
CCCCCCCCCA
2 Z(n+s)�(n+s):

We also de�ne the vector ~y = (0; : : : ; 0;��(u)0;0 ; : : : ;��
(u)
0;n�1)

t 2 Zn+s. Using the

integer version of the LLL-algorithm we can compute a lower bound, c8, on `(�; ~y).
If the following Lemma does not work then we either need to increase u, increase
Ri+1 or use the method of the next section, just as we did when considering in�nite

places. However we must remember that we must always satisfy u � c7, this is a
severe restriction of the method in practice, especially when the ideal p is rami�ed.

If p is rami�ed then c7 can become very small due to inequality (3).

Lemma 4. If c28 > sB2 then there are no non-trivial solutions to the inequality

j�
 � 1jp < �:

Proof. As ordp(�i=�) � c7 � u for i = 0; : : : ; n� 1, we have, for all i,

zi =
�
(u)
0;i +

Ps
j=1mi�

(u)
j;i

pu
2 Z:

Therefore, we can consider the lattice point ~x = A~z, where

~z = (m1; : : : ;ms;�z0; : : : ;�zn�1)t 2 Zn+s:

Hence

~x� ~y = (m1; : : : ;ms; 0; : : : ; 0)
t:

So either c28 � `(�; ~y)2 � sB2 or ~x = ~y. The �rst possibilities is ruled out by

assumption which leaves us to deduce that m1 = : : : = ms = 0.
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4. Enumerating Tj;p(Hi; Ri; Ri+1)

After application of the above techniques we will reach a space LHi
(Ri) which

we cannot decompose any further as Lemma 2 gives rise to sets Tj;p(Hi; Ri; Ri+1)

which we cannot show have only trivial elements.

We need to enumerate all the possible elements in Tj;p(Hi; Ri; Ri+1). It is at

this stage that we make use of the Fincke-Pohst algorithm. However we hope that,

as we at least have a reduced value of Ri compared to our initial value R0, we can

handle any numerical instability which occurs.

As before we write


 = �b0
tY

i=1

�bii ;

where bi 2 Z. We can assume that c0 2 f0; : : : ; w � 1g, where w denotes the

number of elements of �nite order in O�K . We have, for some R 2 R>1 , � 2 K� and
� 2 (0; 1),

1

R
� j�
jq � R

for all q 2 S = Supp(< �1; : : : ; �t >) and

j�
 � 1jp < �:

We have two cases to consider; either p is �nite or in�nite.

4.1. p in�nite. Just as before we deduce that

j log j�
jpj � �0 =

(
log 1

1�� p real;
1
2
log 1

1�
p
�

p complex:

We also have, with an obvious notation, that

jArg((�
)(p))j � arccos
p
1� � = �00:

As p 2 S we can write p = qj for some value of j. Consider the sublattice of R#S+1

generated by the columns of the matrix, A, which is obtained from the matrix

1

logR

0
BBB@

log j�1jq1 : : : log j�tjq1 0
...

...
...

log j�1jq#S
: : : log j�tjq#S

0

0 : : : 0 0

1
CCCA 2 R(#S+1)�(t+1) :

by replacing the jth row by

1

�0
�
log j�1jqj ; : : : ; log j�tjqj ; 0

�
;

and the last row by

1

�00

�
Arg(�

(p)
1 ); : : : ;Arg(�

(p)
t );Arg(�(p))

�
:

Note that the jth and last row of A we expect to have much larger entries than the

other rows. Also consider the vector, ~y, obtained from the vector

1

logR
(� log j�jq1 ; : : : ;� log j�jqt ; 0)

t 2 Rt+1 :
9



by replacing the jth element by� log j�jqj=�0 and the last element by Arg((1=�)(p))=�00.
We then have, if ~x is the lattice vector A(c1; : : : ; ct; c0)

t, that

k~x� ~yk2 = log2 j�
jp
�02

+
Arg2((�
)(p))

�002
+

X
q2S;q6=p

log2 j�
jq
log2R

� #S + 1:

We can then combine a variant of the Fincke-Pohst algorithm, [2], with the sieving

ideas of [4] to determine all elements in Tj;p(Hi; Ri; Ri+1).

4.2. p �nite. We proceed as before but now the ideal p allows us to alter the

generators we are using. As before we have

j�
 � 1jp < � < 1

and so ordp(�
) = 0. So we again can reduce to one of a �nite set of similar problems

where �0
Qs

i=1 �
mi

i = �
, with ordp(�i) = 0. Suppose p has residue degree f and

lies above the rational prime p. We put q = pf and choose n to be an integer such

that

� � q�n:

As j�0
Qs

i=1 �
mi

i � 1jp = j�
 � 1jp < � we have

�0

sY
i=1

�mi

i � 1 (mod p
n):

LetM denote the subgroup ofK� generated by �0; : : : ; �s. Now as ordp(�i) = 0 for

all i we can consider the groupM=pn. Using an algorithm like the ones in [1] or [6],

one can determine the group structure of the M=pn as a product of cyclic groups

C1�: : :�Cg. These two algorithms are based on the Baby-Step/Giant Step strategy

of Shanks and Pollard's Rho method respectively. However these algorithms are

far too general to work in a fast and e�cient manner in our problem.

Instead we �rst compute the orders of �i inM=pn. This can be done very quickly,
assuming p is \small", as the orders must be equal to a pth power times a divisor

of q � 1. All that is then required, to determine the group structure, is a lattice

enlarging procedure to determine the full lattice of relations given the sublattice

given by the relations �hii � 1 (mod pn) for some hi. Such a lattice enlarging

procedure is given in [6], as algorithm MINIMIZE. It seems to work very well

in practice however its complexity is worse than O(jM=pnj), but for smooth group

orders the method works very fast.

We can then map the equation

�0

sY
i=1

�mi

i � 1 (mod p
n)

to an equivalent equation in C1�: : :�Cg . We therefore generate a set of congruence

conditions on the exponents mi modulo the orders of the groups Ci. Using these

congruence conditions we can now write

�
 = �00

sY
i=1

�0i
ni

for some new values �0i 2 K�. Let S0 denote the support of the elements �01; : : : ; �
0
s.

Clearly S0 � S. We now proceed in a similar manner to the case of in�nite places;
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Consider the sublattice of R#S0

generated by the columns of the matrix

A =
1

logR

0
B@

log j�01jq1 : : : log j�0sjq1
...

...

log j�01jq#S0
: : : log j�0sjq#S0

1
CA 2 R#S0�s:

Also consider the vector

~y =
1

logR

�
� log j�00jq1 ; : : : ;� log j�00jq#S0

�t
2 R#S0

:

We then have, if ~x is the lattice vector A(n1; : : : ; ns)
t, that

k~x� ~yk2 =
X
q2S0

log2 j�
jq
log2R

� #S0:

We can then determine as before all the elements in Tj;p(Hi; Ri; Ri+1) using the

Fincke-Pohst algorithm.

5. Example

We now consider one of the examples from [5]. Let K denote the number �eld

generated by �, where

�8 + 1 = 0:

The unit rank of O�K is three and as generators of in�nite order we can take

�1 = �2 + �4 + �6; �2 = �(�2 + �3 + �4); �3 = 1 + �3 � �5:

The element � = ��7 generates the sixteen roots of unity in K. There is one

prime ideal, t, lying above (2) and it has rami�cation index eight. This ideal is

principal and as a generator we can take � = 1� �. In [5], as part of a much larger

computation, it was necessary to compute the 795 solutions to the unit equation

�1 + �2 + 1 = 0;

where

�1 = �a0�a11 �a22 �a33 �a4 ; �2 = �b0�b11 �b22 �b33 �b4 :

Clearly we can assume that 0 � a0; b0 � 15, whilst for i = 1; : : : ; 4 we can determine

that we must have jaij; jbij � 1066 = H0. Using a sieving technique alone it took

around 27 MIPS years to compute all the solutions to the S-unit equation. This

meant having to run a network of workstations on this problem for nearly three

weeks.

We apply the method of this paper and determine R0 = 103598 and c1 = 1:63189.
Hence by Lemma 1 we have that L = LH0

(R0). If we set R1 = 1090 then it is easy to

determine, using Section 3, that the sets Ti;p(H0; R0; R1) are empty for i = 1; : : : ; 4
and p 2 M1

K . A similar result holds for the �nite place, t, once we compute that

11



the 2-adic logarithms of our fundamental units are given by

log2(�1) = 186899879855629�6+ 59390724766195�2+ 351843720888320+O(250);

log2(�2) = 65657308478134�7+ 195695972877837=2�6+ 54554746468923�5

+55396416308677�3+ 24206352677363=2�2+ 79478226388298�

+43980465111040+O(250);

log2(�3) = 90580788397509�7+ 94575096855027=2�6+ 162414331722422�5

+57487993832778�3+ 345229554255373=2�2+ 129321537157691�

+43980465111040+O(250):

Hence from Lemma 2 we conclude that L = LH1
(R1) where H1 = 338. The total

time needed to compute this reduction was less than one second. We however have

a problem in carrying out this step again using the LLL-based method of Section

3, to show that the sets Ti;t(H1; R1; R2) are trivial for some R2. This is because

of inequality (3), which means that we must choose a constant u in the algorithm

such that

u � c7 = c5 � c6 =
� log �

8 log 2
� 11;

with � � 1=R2. For the values of � now under consideration this means that u
must be chosen too small to be of any use. For the sets Ti;t(H1; R1; R2) we must

therefore use the method based on the Fincke-Pohst algorithm.

For our second application of Lemma 2 we choose R2 = 1030. The LLL-based

technique of Section 3 allows us to show that the sets Ti;p(H1; R1; R2) are trivial for

the places not equal to t. However for Ti;t(H1; R1; R2) we need to use the method

of Section 4. This means that we must determine all the solutions to the following

problem

j log j�jpj � log(1 +R1) � 208 for p 2M1
K ;

j�� 1jt < 10�30;

where

� = �c0�c11 �c22 �c33 �c44
and jc1j; jc2j; jc3j; jc4j � 2�H1 = 676. Clearly we must then have c4 = 0 and � � 1

(mod p99). This is much too high an exponent to work with, so we try to determine

the larger set of all � with

� = �c0�c11 �c22 �c33 � 1 (mod p
44):

Using the group theoretic algorithms mentioned previously we determine the struc-

ture of the group M=p44, where M =< �; �1; �2; �3 >. It is easy to determine

that

�16 � �321 � �642 � �643 � 1 (mod p
44);

we can then determine the group structure in under two seconds using the lattice

enlarging procedure of [6]. The group turns out to be isomorphic to C64 � C32 �
C32 � C16 and we deduce that we have

� = (�321 )d1(�642 )d2(�322 �323 )d3 ;

for some integers d1; d2; d3. Using the four inequalities j log j�jpj � log(1+R1) � 208

for p 2 M1
K we can then determine that there are no non trivial elements in

Ti;t(H1; R1; R2) for i = 1; : : : ; 4 using the algorithm of Fincke-Pohst, which takes

about a second of computing time.
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We are therefore left, by Lemma 2, with determining the solutions in LH2
(R2)

with H2 = 112. We now choose R3 = 1015, none of the LLL based methods

now work. For the �nite place the computation in the previous paragraph will

su�ce as 2�44 > 10�15. For the in�nite places the application of the Fincke-Pohst

based method of Section 4 allows us to show, in around one second, that the sets

Ti;p(H2; R2; R3) contain only the trivial elements. Hence we need only consider the

solutions in LH3
(R3) where H3 = 56.

We now set R4 = 106, when considering the �nite place we now need to look at

all solutions of

j log j�jpj � log(1 +R3) � 35 for p 2M1

K ;

� � 1 (mod t
20)

where

� = (�4
1
)d1(�16

2
)d2(�8

3
)d3(�12

2
�4
3
�4)d0

with d0 2 f0; : : : ; 3g and di 2 Z. It then takes a few seconds to determine all the

elements in Ti;t(H3; R3; R4) for i = 1; : : : ; 4 using the algorithm of Fincke-Pohst.

For the in�nite places we apply the method of Section 4 and determine in under �ve

seconds that there are no non-trivial elements in Ti;p(H3; R3; R4) for i = 1; : : : ; 4

and p 2 M1

K . So we can conclude that we need only consider the set LH4
(R4)

where H4 = 22.

Finally we perform the whole process again for R5 = 103. Once again the sets

Ti;p(H4; R4; R5) are empty for i = 1; : : : ; 4 and p 2 M1

K . The sets for the �nite

place, t, are non-trivial but can be determined in a matter of seconds. We are

�nally left with enumerating the set LH5
(R5) for H5 = 11. Enumerating this set

can be accomplished using an adaption of the methods in Section 4.

We conclude that we can compute all the solutions to the S-unit equation above

in a matter of minutes rather than MIPS years as was the previous case.
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