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1 Introduction

In this work, we consider the enumeration problem of two-dimensional balanced binary n�m
arrays, in which each row, and respectively each column, has the same number of 0's and 1's

(n and m are even).

By a binary n-vector we refer to a vector in IRn with entries restricted to f0; 1g. A binary

n-vector v is called balanced if n is even and half of the entries of v are 1's. Much is known

about codes that map unconstrained input sequences to one-dimensional balanced binary n-

vectors. Those codes go also by the names DC-free or zero-disparity codes [10]. We denote

the set of all balanced binary n-vectors by An; clearly,

jAnj =
 

n

n=2

!
:

The ratio jAnj=2n = 2�n
�

n

n=2

�
will be denoted by �n.

The redundancy of a set C � f0; 1gn is de�ned by n � log2 jCj. The redundancy of An,

denoted �n, is given by
�n = n� log2 jAnj = � log2 �n : (1)

It is known that
1p
2n

� �n � 1q
�
2
n

(2)

(see [5], [8, p. 309]). A very e�cient encoding algorithm due to Knuth [5] maps unconstrained
binary words into An with redundancy dlog2 ne. See also improvements by Al-Bassam and

Bose [1], and Tallini, Capocelli, and Bose [12].

Less has been known about the redundancy of two-dimensional balanced arrays. By a binary

n�m array we mean an n�m array whose columns are binary n-vectors. A binary n�m

array � is called balanced if n and m are both even and each one of the rows and columns of

� is balanced. We denote by An�m the set (or the code) of all balanced n�m arrays. The

redundancy of An�m, denoted �n�m, is given by

�n�m = nm � log2 jAn�mj :

An e�cient coding algorithm into a subset of An�m is presented in [11] that has redundancy

n log2m+m log2 n+O(n+m log logn). In its simpler version, the algorithm in [11] balances
the rows using one of the algorithms in [1], [5], or [12]; by trading those algorithms with the

(more computationally complex) enumerative coding of Am, the redundancy can be reduced
to 1

2
(n log2m) +m log2 n+O(n+m log logn).

In Section 2 we prove the upper bound

�n�m � n�m + m�n � 1
2

�
n log2(2m) + m log2(2n)

�
;
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and in Section 3 we show that this bound is tight up to an additive term O(n + logm).

This bound implies that requiring balanced rows in a binary array does not \interfere" with

requiring balanced columns. Note, however, that those requirements are not independent:

for instance, if all n rows in a binary n�m array are balanced, and m�1 of the columns are

balanced as well, then so must be the remaining column.

The computation of the redundancy of two-dimensional balanced arrays can be relevant to

the coding application that we outline next. In currently-available magnetic and optical

memory devices, data is recorded along tracks, thus treating the recording device as one-

dimensional. Recent proposals for the design of optical storage|in particular holographic

memory|try to take advantage of the fact that the recording device is two-dimensional (or

even three-dimensional), thereby increasing the recording density [4], [9]. The new approach,

however, introduces new types of constraints on the data|those constraints now become

multi-dimensional in nature, rather than one-dimensional. The speci�c constraints to be
used in the recently suggested recording techniques are yet to be crystallized. Nevertheless,

experiments reported on holographic memory, and experience gathered in other existing
optical devices, suggest that 0's and 1's in the recorded data need to be balanced within
certain areas or patterns. The set An�m may turn out to be useful for that purpose.

2 Upper bound on the redundancy of An�m

In this section we prove the following upper bound on �n�m.

Proposition 2.1 For every even positive integers n and m,

�n�m � n�m + m�n � 1
2

�
n log2(2m) + m log2(2n)

�
:

Proposition 2.1 is a direct corollary of the following lower bound on the size of An�m,
combined with (1) and (2).

Proposition 2.2 For every even positive integers n and m,

jAn�mj � 2nm�nm�
m
n :

Proposition 2.2 is a special case of Lemma 2.4 which we state and prove below.

We introduce some notations that will be used hereafter in this work.

Let � be a binary n �m array (not necessarily balanced). The row type of � is an integer

n-vector w = (w1; : : : ; wn) where wi is the sum of the entries of the ith row of �.
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For an integer n-vector w = (w1; : : : ; wn), de�ne Rm(w) to be the set of all binary n � m

arrays whose row type is w. Clearly,

jRm(w)j =
nY
i=1

 
m

wi

!

(we de�ne
�
m

w

�
= 0 if w < 0 or w > m).

For even n and an integer n-vector w, denote by Um(w) the set of all arrays in Rm(w) whose

columns are balanced. For even m we have An�m = Um((m=2) � 1n), where 1n denotes the

all-one vector in IRn.

For a real vector y, we denote by kyk = kyk1 the sum of the absolute values of the entries
of y and by kyk1 the largest absolute value of any entry of y. The support of y will be

denoted by supp(y). Note that when y1 and y2 are binary m-vectors, then ky1 � y2k is the
number of positions on which they di�er. The set f1; 2; : : : ; ng will be denoted by hni.

Lemma 2.3 Let X1; : : : ; Xn be independent Bernoulli random variables taking on f0; 1g
with probabilities Prob fXi = 1g = pi, i 2 hni, and suppose that

Pn
i=1 pi = n=2. Then,

Prob
n nX
i=1

Xi = n=2
o
� �n ;

with equality holding if and only if pi =
1
2
for all i.

Lemma 2.3 follows from a result due to Hoe�ding [7]. For the sake of completeness, we
provide a proof of Lemma 2.3 in Appendix A (see Proposition 3.6 therein). The proof we
present is simpler than the one in [7], as Lemma 2.3, which is what we need here, is less

general than Hoe�ding's result.

Lemma 2.4 Let n and m be positive integers, n even, and let w be an integer n-vector with

kwk = nm=2. Then,

jUm(w)j � �mn � jRm(w)j :

Proof. Consider the uniform measure Q on the elements of Rm(w); namely,

Q(�) =

(
jRm(w)j�1 if � 2 Rm(w)

0 otherwise
: (3)

It su�ces to show that, with respect to this measure,

ProbQ f� 2 Um(w)g � �mn :
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For j 2 hmi, let cj denote the jth column of the random array � 2 Rm(w), and let Bj

denote the event that cj is balanced. The key step in our proof is showing that for j 2 hmi,

ProbQ

n
Bj

��� c1=v1; : : : ; cj�1=vj�1o � �n ; (4)

where (v1; : : : ;vj�1) is any (j�1)-tuple of balanced vectors in An for which we have

ProbQ fc1=v1; : : : ; cj�1=vj�1g > 0. The left-hand side of (4) is the conditional probabil-

ity (implied by the measure Q) that cj is balanced, given that columns c1 through cj�1 are
equal respectively to the balanced vectors v1; : : : ;vj�1. For j = 1, the inequality (4) becomes

ProbQ fB1g � �n : (5)

Indeed, suppose that (4) holds. Then, computing the probability that the �rst j columns of
� are balanced, we obtain

ProbQ fB1; : : : ;Bj�1;Bjg
=

X
(v1;:::;vj�1)2Aj�1

n

ProbQ fBj; c1=v1; : : : ; cj�1=vj�1g

=
X

(v1;:::;vj�1)2Aj�1
n

ProbQ

n
Bj

��� c1=v1; : : : ; cj�1=vj�1o � ProbQ fc1=v1; : : : ; cj�1=vj�1g
(4)

� �n �
X

(v1;:::;vj�1)2Aj�1
n

ProbQ fc1=v1; : : : ; cj�1=vj�1g

= �n � ProbQ fB1; : : : ;Bj�1g

(the summations are over all (j�1)-tuples of balanced vectors in An). By induction on j we

thus obtain
ProbQ fB1; : : : ;Bjg � �jn ; j 2 hmi :

In particular,
ProbQ f� 2 Um(w)g = ProbQ fB1; : : : ;Bmg � �mn ;

as desired.

Returning to the proof of (4), we assume that the �rst j�1 columns of � are equal to
v1; : : : ;vj�1, and we let mi be the number of 1's in the �rst j�1 positions of the ith row of

� (with mi = 0 if j = 1); note that the condition ProbQ fc1=v1; : : : ; cj�1=vj�1g > 0 implies

that mi � wi for all i 2 hni. It is easy to see that

ProbQ

n
Bj

��� c1=v1; : : : ; cj�1=vj�1o = Prob
n nX
i=1

Xi = n=2
o
; (6)

where the Xi are independent Bernoulli random variables taking on f0; 1g with probabilities

Prob fXi = 1g = pi = (wi�mi)=(m�j+1). Note further that since v` is balanced for every
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` 2 hj�1i, then Pn
i=1mi = (j�1)(n=2). Recalling that kwk = nm=2 we thus have,

nX
i=1

pi =
1

m�j+1
nX
i=1

(wi �mi) =
nm

2(m�j+1) � 1

m�j+1
nX
i=1

mi

=
nm

2(m�j+1) � n(j�1)
2(m�j+1)

=
n

2
:

Incorporating this and (6) into Lemma 2.3 yields (4).

Proposition 2.2 can be generalized as follows. Let � be a rational number in the open interval

(0; 1), and let n and m be positive integers such that both �n and �m are integers. Denote
by An�m;� the set of all balanced n � m arrays in which the number of 1's in each row is

�m, and the number of 1's in each column is �n. Then,

jAn�m;�j � 2�nmH(�) �
 
m

�m

!n 
n

�n

!m

= 2nmH(�)�nm;��
m
n;� ; (7)

where H : [0; 1]! [0; 1] is the entropy function

H(x) = �x log2 x� (1�x) log2(1�x) (8)

(withH(0) = H(1) = 0), and �n;� = 2�nH(�)
�
n

�n

�
. The proof of (7) is carried out by replacing

Lemma 2.3 with Proposition 3.6 which we state and prove in Appendix A. Indeed, it can be

veri�ed that using Proposition 3.6, we can generalize the inequality of Lemma 2.4 to read

jUm;�(w)j � �mn;� � jRm(w)j ; (9)

where kwk = �nm and Um;�(w) stands for all arrays in Rm(w) in which each column has
�n entries equaling 1. The bound (7) is obtained by plugging w = (�m) � 1n in (9) and

recalling that jR((�m) � 1n)j = 2mnH(�)�nm;�.

It is known that [8, p. 309]

�n;� � 1q
8n�(1��)

:

So, from (7) we obtain the bound

log2 jAn�m;�j � nmH(�) � 1
2

�
n log2(�m) + m log2(�n)

�
;

where � = 8�(1��).
Estimates on jAn�m;�j exist in the literature for the case where � goes to zero as n and m

go to in�nity. See [3, p. 48] and the references therein (e.g., [2]).
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3 Lower bound on the redundancy of An�m

In this section, we prove the following lower bound on �n�m.

Proposition 3.1 For every even positive integers n and m,

�n�m � n�m + m�n � O(n+ logm) :

Note that there is asymmetry between n and m in the bound of Proposition 3.1, so trans-

position of the arrays may yield a better bound (note, however, that the presentation of the

bounds here is not suitable for speci�c values of n and m, since we will not be explicit in the

constant multipliers of the O(�) expressions).
Throughout this section, n and m will be even positive integers and tm will denote the value

bpmc. We denote by Dn�m the set of all integer n-vectors w such that kwk = mn=2 and
kw � (m=2) � 1nk1 � tm. Let wmin be a vector w 2 Dn�m for which jUm(w)j is minimal,
and de�ne �n�m by

�n�m = nm � log2 jUm(wmin)j :

The proof of Proposition 3.1 will be carried out through a sequence of lemmas. The �rst two

lemmas lead to a lower bound on �n�m, and the remaining lemmas provide a lower bound
on �n�m in terms of �n�m.

Lemma 3.2

jDn�mj � (2tm + 1)n�1

n�1 :

Proof. Let X(n�1)�m denote the set of all integer (n�1)-vectors v = (v1; : : : ; vn�1) such
that kv � (m=2) � 1n�1k1 � tm. For such a vector v and an index i 2 hn�1i, let vi denote
the vector (m�v1; : : : ; m�vi; vi+1; : : : ; vn�1); namely, vi is obtained from v by changing the

�rst i entries into the respective entries in m �1n�1�v. Generalizing the balancing technique
of Knuth in [5], it can be shown that for every v 2 X(n�1)�m there is at least one index

i 2 hn�1i such that
���kvik �m(n�1)=2

��� � tm. Let i(v) denote the �rst such index i and let

w(v) be the n-vector obtained by appending mn=2� kvi(v)k as an nth entry to vi(v). The

mapping

v 7! w(v)

sends X(n�1)�m to a subset of Dn�m. Furthermore, each element of Dn�m has at most n�1
pre-images in X(n�1)�m. Hence, jDn�mj � jX(n�1)�mj=(n�1) = (2tm + 1)n�1=(n�1).
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Lemma 3.3

�n�m � m�n + (n�1) log2(2tm + 1) � log2(n�1)
= n�m + m�n � O(logm+ logn) :

Proof. The set of all binary n � m arrays whose columns are balanced can be written asS
w Um(w), where the union is taken over all integer n-vectors w. Now, Um(w) is nonempty

only when kwk = mn=2, and Um(w) and Um(w0) are disjoint when w 6= w0. So,
X

w : kwk=nm=2

jUm(w)j =
���[
w

Um(w)
��� = jAnjm : (10)

On the other hand,

jUm(wmin)j � 1

jDn�mj
X

w2Dn�m

jUm(w)j � 1

jDn�mj
X

w : kwk=nm=2

jUm(w)j (11)

Combining (10) and (11) yields

jUm(wmin)j � jAnjm
jDn�mj ;

and by taking logarithms we obtain

�n�m � m�n + log2 jDn�mj :
The result now follows from Lemma 3.2, (1), and (2).

Let w = (w1; : : : ; wn) and w0 = (w0
1; : : : ; w

0
n) be two vectors in Dn�m. We say that (w;w0)

is an incremental pair if the following conditions hold:

1. There are indexes i; ` 2 hni such that w0
i + 1 = wi � m=2 � w` = w0

` � 1.

2. wj = w0
j for all j 2 hni n fi; `g.

The next lemma is proved in Appendix B.

Lemma 3.4 Let (w;w0) be an incremental pair. Then

jUm(w0)j
jUm(w)j � 1�O

�
1=
p
m
�
:

Lemma 3.5

�n�m = �n�m � O(n) :
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Proof. Let w0;w1; : : : ;wh be a shortest sequence of distinct elements of Dn�m such that

w0 = (m=2) � 1n, wh = wmin, and (wj�1;wj) is an incremental pair for every j 2 hhi. It is
easy to see that h is bounded from above by tmn=2 �

p
m � n=2. Hence, by Lemma 3.4 we

have

jUm(wmin)j
jUm((m=2) � 1n)j =

hY
j=1

jUm(wj)j
jUm(wj�1)j �

�
1� O

�
1=
p
m
��pm�n=2

= exp(�O(n)) ;

where m is assumed to be at least some valuem0 for which the term 1�O (1=
p
m) is positive

(note that for m < m0 the claim holds trivially). Taking logarithms, we obtain the desired

result.

Proof of Proposition 3.1. Combine Lemmas 3.3 and 3.5.

Appendix A

For a vector p = (p1; : : : ; pn) 2 IRn and an integer k, 0 � k � n, de�ne

Sk(p) =
X

I�hni : jIj=k

Y
i2I

pi
Y

i2hninI
(1�pi) ;

and Sk(p) = 0 if k < 0 or k > n. The closed unit n-dimensional real hyper-cube [0; 1] �
[0; 1] � � � � � [0; 1] will be denoted by [0; 1]n, and the respective open hyper-cube will be

denoted by (0; 1)n. We also de�ne C(n)k = fp 2 [0; 1]n : kpk = kg.
The quantity Sk(p) equals Prob fPn

i=1Xi = kg, where X1; : : : ; Xn are independent Bernoulli

random variables taking on f0; 1g with Prob fXi = 1g = pi. In particular, Sk(p) � 1 for
every p 2 [0; 1]n.

Recalling the de�nition of the entropy function in (8), we prove the following result.

Proposition 3.6 Let k and n be integers, 0 � k � n. For every p 2 C(n)k ,

Sk(p) �
 
n

k

! 
k

n

!k  
n�k
n

!n�k
=

 
n

k

!
� 2�nH(k=n) ;

with equality holding if and only if p = (k=n) � 1n.

In particular, if n is an even positive integer, then for every p 2 C(n)n=2,

Sn=2(p) �
 

n

n=2

!
� 2�n = �n ;

with equality holding if and only if p = (1=2) � 1n.
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Lemma 3.7 For 0 � k � n, let @
@pi

Sk(p) be the partial derivative with respect to pi of the

mapping (p1; : : : ; pn) 7! Sk(p1; : : : ; pn) when de�ned over IRn. Then,

nX
i=1

pi(1�pi) @Sk(p)
@pi

= (k � kpk)Sk(p) :

Proof. For a vector p = (p1; : : : ; pn) 2 IRn, de�ne the generating polynomial S(x;p) in the

indeterminate x by

S(x;p) =
nX

k=0

Sk(p) � xk :

The generating polynomial can also be written as

S(x;p) =
nY
i=1

(1�pi + pix) :

Taking partial derivatives of S(x;p) with respect to pi yields

@

@pi
S(x;p) = (x� 1)

Y
1�j�n
j 6=i

(1�pj + pjx) =
(x� 1)S(x;p)

1�pi + pix
; i 2 hni : (12)

Multiplying (12) by pi(1�pi) and summing over i, we obtain

nX
i=1

pi(1�pi) @

@pi
S(x;p) =

nX
i=1

pi(1�pi)(x� 1)S(x;p)

1�pi + pix
(13)

=
nX
i=1

(pix� pi(1�pi + pix))S(x;p)

1�pi + pix

= x �
nX
i=1

piS(x;p)

1�pi + pix
�

nX
i=1

piS(x;p)

= x
@

@x
S(x;p) � kpkS(x;p) : (14)

The lemma follows by equating the coe�cient of xk in (14) to its counterpart in the left-hand
side of (13).

Lemma 3.8 [6, p. 52] For r 2 hni and any vector p 2 (0; 1)n,

(Sr�1(p))
2 > Sr�2(p) � Sr(p) :

Proof of Proposition 3.6. The cases k 2 f0; ng are trivial since jC(n)0 j = jC(n)n j = 1.

Therefore, we assume from now on that 0 < k < n. The set C(n)k is compact; so, the
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mapping p 7! Sk(p) over C(n)k attains a minimum (with value less than 1) at some point

q = (q1; : : : ; qn) 2 C(n)k . Without loss of generality we can assume that qi 2 (0; 1) for i 2 hmi
and qi 2 f0; 1g for i 2 hni n hmi; note that m > 0 (or else Sk(q) would be 1). We denote by

q0 and q00 the vectors (q1; : : : ; qm) and (qm+1; qm+2; : : : ; qn), respectively.

De�ne the mapping 	k : IR
n ! IR by

	k(p1; : : : ; pn) = Sk(k�Pn
j=2 pj; p2; p3; : : : ; pn)

(	k does not depend on p1; nevertheless, for the sake of having simpler notations we inserted

p1 as a redundant variable). For every real p on the line kpk = k we have

@	k(p)

@pi
=

@Sk(p)

@pi
� @Sk(p)

@p1
; i 2 hni : (15)

If we �x pi = qi, i 2 hni n hmi, then the mapping p0 7! 	k(p
0;q00), over IRm, must have a

local minimum at p0 = q0. Hence, by (15) we have

@Sk(p)

@pi

���
p=q

=
@Sk(p)

@p1

���
p=q

; i 2 hmi : (16)

This, together with Lemma 3.7, yields

@Sk(p)

@p1

���
p=q

�
mX
i=1

qi(1�qi) =
nX
i=1

qi(1�qi) @Sk(p)
@pi

���
p=q

= (k � kqk)Sk(q) = 0 :

Since
Pm

i=1 qi(1�qi) 6= 0 we thus have

@Sk(p)

@pi

���
p=q

=
@Sk(p)

@p1

���
p=q

= 0 ; i 2 hmi : (17)

We show next that m = n by proving that qn =2 f0; 1g. For a vector p = (p1; : : : ; pn) 2
IRn and integers ` and i, 1 < i � n, let S`;i = S`;i(p) denote the expression

S`(p2; p3; : : : ; pi�1; pi+1; : : : ; pn). We de�ne S0;2 = 1 if n = 2, and let S`;i = 0 if ` > n�2 or

` < 0. Note that S`;i does not depend on p1 or pi. We have

Sk(p) = p1piSk�2;i + (p1(1�pi) + pi(1�p1))Sk�1;i + (1�p1)(1�pi)Sk;i :

Taking partial derivatives with respect to p1 and pi, we obtain

@Sk(p)

@p1
= piSk�2;i + (1�2pi)Sk�1;i + (pi�1)Sk;i (18)

@Sk(p)

@pi
= p1Sk�2;i + (1�2p1)Sk�1;i + (p1�1)Sk;i : (19)
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Now, suppose to the contrary that qn = 0 and compute Sk�2;n, Sk�1;n, and Sk;n for p = q.

By (17) and (18) we obtain

@Sk(p)

@p1

���
p=q

= Sk�1;n � Sk;n = 0 (20)

i.e., Sk�1;n = Sk;n. Also, the partial derivative @
@pn

	k(p) at p = q must be nonnegative,

or else we could increase qn to some small � > 0 (and decrease q1 by �) to obtain a vector

q� 2 C(n)k such that Sk(q�) < Sk(q), thereby contradicting the minimality of q. Hence,

by (15), (19), and (20) we have

@	k(p)

@pn

���
p=q

=
@Sk(p)

@pn

���
p=q

= q1(Sk�2;n � Sk�1;n) � 0 :

So, Sk�2;n � Sk�1;n = Sk;n � 0, or

S2
k�1;n � Sk�2;n � Sk;n : (21)

On the other hand, observe that S`;n = S`�kq00k(q2; q3; : : : ; qm) for every integer `. Noting

that 0 < kq0k = k�kq00k < m and that (q2; q3; : : : ; qm) 2 (0; 1)m�1, we can apply Lemma 3.8
to the vector (q2; q3; : : : ; qm) with r = k � kq00k to obtain

S2
k�1;n > Sk�2;n � Sk;n ;

thus contradicting (21). Hence, we cannot have qn = 0.

A similar contradiction results if we assume that qn = 1 (in this case, the partial derivative
@

@pn
	k(p) at p = q must be nonpositive). Thus, we must have m = n, and q is there-

fore a local minimum of p 7! 	k(p). By (17), (18), and (19) it follows that the vector
(Sk�2;i; Sk�1;i; Sk;i)T , when computed for p = q, belongs to the right null space of the array

A(q1; qi) =

 
qi 1�2qi qi�1
q1 1�2q1 q1�1

!
:

On the other hand, the vector (1; 1; 1)T is also in the right null space of A(q1; qi). However,

Lemma 3.8, when applied to the vector (q2; q3; : : : ; qi�1; qi+1; : : : ; qn) 2 (0; 1)n�2 with r = k,

implies that the vectors (Sk�2;i; Sk�1;i; Sk;i) and (1; 1; 1) are linearly independent. Therefore,
the rank of A(q1; qi) is less than 2, which is possible only when q1 = qi. Since i is any index

between 2 and n, it follows that all the entries of q are equal. And, since kqk = k, we must
have qi = k=n for all i 2 hni. Finally, by symmetry it follows that q = (k=n) � 1n indeed

satis�es (17).

It is worthwhile pointing out that the mappings p 7! Sk(p) are generally not [-convex over

C(n)k . For example, let p1 = (:1; :1; :9; :9), p2 = (0; :2; :9; :9), and p3 = (:2; 0; :9; :9). Then

p1 = (p2 + p3)=2, yet S2(p1) > (S2(p2) + S2(p3))=2 = S(p2).
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Appendix B

We provide here the proof of Lemma 3.4. For a nonnegative integer vector v = (v1; v2)

with v1 � v2, denote by Rm(v; r) the set of all pairs of binary m-vectors (y1;y2) such that

(ky1k; ky2k) = v and jsupp(y1 � y2)j = ky1 � y2k = 2r + v2 � v1. We have

jRm(v; r)j =
 
m

v2

! 
v2

v1 � r

! 
m� v2

r

!
: (22)

In particular, Rm(v; r) is nonempty if and only if 0 � r � minfv1; m� v2g.

Lemma 3.9 Let v = (v1; v2) be an integer vector such that m=2 � tm � v1 � m=2 � v2 �
m=2 + tm. If s � m=4� tm, then

P
r�s jRm(v; r)j
jRm(v)j

� 2m(H(2s=m)�1)+o(m) :

Proof. Write � = v2 � v1. It is easy to see that

X
r�s

jRm(v; r)j �
 
m

v2

! X
k�2s+�

 
m

k

!
:

Recalling that jRm(v)j =
�
m

v1

��
m

v2

�
, we thus have

P
r�s jRm(v; r)j
jRm(v)j �

P
k�2s+�

�
m

k

�
�
m

v1

� :

We now combine this inequality with the lower bound

 
m

v1

!
� 2mH(v1=m)q

8v1(1� v1=m)
= 2mH(v1=m)�o(m)

and the following upper bound that holds for � = 2s+� � m=2,

X
k��

 
m

k

!
� 2mH(�=m)

(see [8, p. 310]). This yields

P
r�s jRm(v; r)j
jRm(v)j � 2m(H(2s=m+2tm=m)�H(1=2+tm=m))+o(m) = 2m(H(2s=m)�1)+o(m) ;
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where we have used the continuity of H(x) and that H(1=2) = 1 and tm=m = O (1=
p
m) =

o(1).

For a k-vector y and a nonempty subset B of hki, we denote by (y)B the subvector of y

indexed by B.

Let w = (w1; : : : ; wn) 2 Dn�m and suppose that w1 � m=2 � w2 (in fact, there are always

i; ` 2 hni such that wi � m=2 � w`; we assume here that i = 1 and ` = 2). We will use the

notation wh2i for the vector (w)h2i = (w1; w2). Also, the rows of an n �m array � will be

denoted by [�]1; : : : ; [�]n. Let (y1;y2) be a pair in Rm(wh2i; r) and consider the set

Um(w;y1;y2) = f� 2 Um(w) : ([�]1; [�]2) = (y1;y2)g :

The set of all arrays � 2 Um(w) with k[�]1 � [�]2k = 2r+w2 �w1 is invariant under a �xed
permutation on the columns of its elements. Therefore, the size of Um(w;y1;y2) depends

on r, but not on the particular choice of (y1;y2) 2 Rm(wh2i; r). We denote that size by
Vm(w; r) and prove the following result.

Lemma 3.10 Let w = (w1; : : : ; wn) 2 Dn�m with w1 � m=2 � w2. Then Vm(w; r) is

nondecreasing for values of r in the range

0 � r � minfw1; m� w2g : (23)

Proof. Assume that both r and r+1 lie in the range (23). Let (y1;y2) 2 Rm(wh2i; r) be
such that (y1)h2i = (y2)h2i = (0; 1); the existence of such a pair follows from the assumption

that r+1 satis�es (23). Let y02 be the binary m-vector obtained from y2 by 
ipping the bits
indexed by h2i; that is, (y02)h2i = (1; 0) and (y02)hminh2i = (y2)hminh2i. Clearly, the pair (y1;y02)
is in Rm(wh2i; r+1) and Vm(w; r+1) = jUm(w;y1;y

0
2)j.

De�ne a mapping

� : Um(w;y1;y2) ! Um(w;y1;y
0
2)

where �0 = �(�) is an n�m array obtained as follows:

1. [�0]2 = y02.

2. Let U be the set of row indexes b 2 hni n h2i for which ([�]b)h2i 2 f(0; 1); (1; 0)g.
Denoting the �rst column of � by c1 and the �rst two columns of �0 by c01 and c02,

(c01)U = 1jU j � (c02)U = �((c1)U) ;

where � is a particular 1{1 mapping from the set of all binary (n�2)-vectors y with
kyk = n=2 into the set An�2.

13



3. The remaining entries of �0 (including the row [�0]1) are the same as in �.

It is easy to check that � is 1{1 and that �0 is in Um(w;y1;y
0
2). Hence,

Vm(w; r) = jUm(w;y1;y2)j � jUm(w;y1;y
0
2)j = Vm(w; r+1) ;

as desired.

Proof of Lemma 3.4 Assume without loss of generality that w and w0 are such that

w0
1 + 1 = w1 � m=2 � w2 = w0

2 � 1. Write � = w2 � w1, and let Um(w; r) be the set of all
arrays in Um(w) with jj[�]1 � [�]2jj = 2r +�. Then

jU(w; r)j = jRm(wh2i; r)j � Vm(w; r) :

Observing that Vm(w; r) = Vm(w
0; r�1) and using (22), we obtain

jUm(w; r�1)j
jUm(w; r)j =

r

�+ r + 1
:

Letting L = minfw1; m� w2g, we have

jUm(w0)j
jUm(w)j =

PL
r=1 jUm(w0; r�1)jPL
r=0 jUm(w; r)j

=

PL
r=0(r=(� + r + 1))jUm(w; r)jPL

r=0 jUm(w; r)j

�
PL

r=0(r=(� + r + 1))jRm(wh2i; r)jPL
r=0 jRm(wh2i; r)j

;

where the last step follows from the monotonicity of jVm(w; r)j as stated in Lemma 3.10.
Now,

PL
r=0(r=(� + r + 1))jRm(wh2i; r)jPL

r=0 jRm(wh2i; r)j
�

PL
r=dm=8e(r=(� + r + 1))jRm(wh2i; r)jPL

r=0 jRm(wh2i; r)j

� (m=8)

� + (m=8) + 1
�
PL

r=dm=8e jRm(wh2i; r)jPL
r=0 jRm(wh2i; r)j

=
�
1�O

�
1=
p
m
�� �

1� 2m(H(1=4)�1)+o(m)
�
;

where the last step follows from Lemma 3.9. The result now follows.
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