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This paper presents a video cut detection algorithm
using multi-level Hausdorff distance histograms (HDH).
Hausdorff distance is obtained by comparing edge points
of successive frames, wherein the edge information is
extracted from compressed frames directly. The use of
Hausdorff distance histogram instead of the comparison
of entering/exiting edge pixel counts [9] makes the
algorithm more robust to complicated camera shots. The
extraction of edge information in compressed domain
greatly escalates the cut detection process, which is
critical for indexing of large amount of video materials in
large scale video databases. The performance of this
algorithm has been tested on a variety of videos. The
experimental results show that this algorithm can
robustly tolerate rapid changes in scene brightness as
well as multiple object and camera motions.
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1 Introduction

One of the key problems in video data management is the issue of video content representa-
tion. A widely accepted method for this purpose is the use of key frames. The extraction of
key frames from a video requires isolation of individual video shots by locating shot bound-
aries or cut point. Two types of shot transitions or boundaries are present in an edited video:
(1) the straight cut, and (2) the optical cut. A straight cut is an abrupt transition from one
shot to the next. Usually the straight cuts are well-defined and relatively easy to detect. An
optical cut provides a visually gradual transition between two shots and takes place over a
sequence of frames. Compared to the straight cuts, optical cuts are more sophisticated and
generally difficult to isolate.

Driven by video databases and multimedia applications, a large number of methods for au-
tomatic cut detection have been presented in recent years. Some earlier methods for cut
detection are based on measuring frame difference either at the pixel level or at the block
level. However, the frame difference methods are sensitive to camera or object movement,
noise, and illumination changes. In order to avoid this weakness, a number of methods
based on some global or local features have been proposed by many researchers. For exam-
ple, Zhang et al [11] used histogram differences to detect straight cuts and gradual transition.
Ueda, Miyatake,and Yoshizawa [10], and Zhang et al [11] used motion vectors to obtain im-
proved cut detection. Recently, Zabih et al [9] proposed a method based on edge features,
which appears to be more accurate at detecting cuts than intensity histograms. Most of
the methods for cut detection operate on uncompressed video, however. A number of cut
detection methods for compressed video have been suggested lately as digital video is be-
coming common place. Not only are such methods able to take the advantage of the lower
data rate of compressed video, they also avoid extra computation involved in decoding when
the incoming video is in compressed form. The examples of compressed video cut detection
methods include Arman, Hsu, and Chiu [1], Yeo and Liu [4], and Sethi and Patel [6]. Patel
and Sethi [5] have also shown how a number of cut detection methods suggested for uncom-
pressed video can be implemented for MPEG video. While compression domain methods
are superior in respect of computing requirements, these methods usually have lower success
rate compared to methods operating upon uncompressed video.

We propose in this paper a method possessing the accuracy of the feature-based method
and the efficiency of the compressed domain cut detection. The feature-based side of our
method is motivated by the work proposed in [9] wherein edge information has been shown
to provide excellent information for decisions of shot boundary. In [9], the entering and
exiting edge pixel counts were used to decide where a cut occurs in an image sequence.
Since a small amount of dilation is applied on the reference frame, this method can perform
well for camera shots containing small relative object motions. However, if one object in
the scene has a motion much larger than anther object (as would occur in many video
shots having objects at different depths), this method would generate many false cuts. To



improve this, we propose the use of Hausdorff distance histogram and develop a multi-pass
merging algorithm to get rid of noise at each pass. To improve computational efficiency,
our method uses a compressed domain edge extraction method to obtain edge information
rapidly [8]. The performance of the proposed method has been tested on a variety of videos.
The experimental results indicate that this method permits fast and accurate detection of
shot boundaries.

The reminder of the paper is organized as follows. Section 2 presents our cut detection
algorithm via the establishment of Hausdorff distance histogram. Section 3 describes our
convolution-based edge detection in the block DCT domain. The experimental results for
the detection of straight cuts and optical cuts are presented in Section 4. Finally, a summary
of the work and future directions are provided in Section 5.

2 Edge-based cut detection

Based on the edge feature extracted directly from the I frames of an input MEPG video
sequence, our scheme of using Hausdorff distance histogram (HDH) to locate cuts is presented
in this section. This approach is based on the following considerations. The distribution of
edges in current frame will be quite different from that in past frames if a cut occurs. On
the other hand, if there is no cut between two frames, then the corresponding edge points
from these two frames within a small region will have very similar movement. In most cases,
the edge point motion in adjacent regions will be similar to some extent. Therefore, we will
establish the Hausdorff distance histograms based on each small region. From computation
complexity point of view, it is same as obtaining the histogram based on the whole edge
map.

This approach consists of the following three steps:

1. The edge map of a frame is decomposed 8 times in both horizontal and vertical direction
to generate 64 regions. The Hausdorff distance histograms are obtained for each region
by comparing the edge points extracted from successive I frames.

2. The histogram of the whole frame is obtained by merging the histograms of subregions
in multiple passes. The merging algorithm is designed to increase SNR of true motion
during each pass while suppressing mismatch information introduced by noise.

3. The shot breaks can be accurately detected by using the peak value of the Hausdorff
distance histogram at the frame level.

Fig. 1 shows the flow chart of the algorithm. On the top row of the chart, the frames with
solid lines are treated as base frames for which the histograms will be established. The frames
with doted lines are the reference frames. Since both the current frame and the last frame



can be treated as base frames, two sets of histograms (using either last frame or current
frame as the base frame) are obtained and used for cut detection.
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Figure 1: Processing flow

2.1 Establishment of HDH in subregions

In this step, we divide the base frame into 64 regions and then establish the Hausdorff
distance histogram for each region. As we have mentioned above, when no cuts occur, the
edge points within a small region will have very similar movement, that is, these edge points
will have a distribution similar to the reference frame. If there is a cut, the distribution of the
edges will be quite different between the base frame and the reference frame. Thus, we can
detect the cuts by simply measuring the similarity of edge distribution between these two
frames. The Hausdorff distance, a very common tool for measuring the degree of resemblance
between two point-sets, is employed to measure this similarity.

As defined in [3], given two finite point sets A and B, the Hausdorff distance is computed
as:

H(A, B) = max(h(A, B), h(B, 4)) 1)
where
h(A, B) = maxmin ||a — b||,
acA beB
and || - || denotes a normalization on the points of A and B.



The function h(A, B) is called the directed Hausdorff distance from A to B. Most of the
applications use the best partial distance, a generalization of the Hausdorff distance. It is

expressed as :
hie(A, B) = KL%, min [l — b]]. 2)

In our approach, we fix the hx (A, B) as a threshold h, and calculate the value K to measure
the similarity. The quantity K denotes the number of points in model set A whose minimum
distance from the reference set B is less than threshold h. By calculating the K value for each
possible translation of the region, we can obtain a histogram {K;;} for each region in the
base frame, where 7 and j correspond to displacements in X and Y direction, respectively.
The threshold & is mainly related to the tolerance of the relative movement within a region
and the edge position error caused by edge detector. A fast implementation of this algorithm
is as follows.

1. The edge points in the reference frame are dilated by a disk of radius h.

2. For each region in the base frame, the histogram K; ; is calculated as

Kij= % fijlaey) il <Dyand|j| < D, (3)

Qg €A

where
Fi(0ny) = 1, if agyeA and byi;yy;eBT
WINTEYS 0, Otherwise

Here Dx and Dy are the maximum possible movement for a large object in z and y
direction, respectively. A is the set of edge points within a region of base frame. B*
is the dilated edge point set of the reference frame. Thus, we get a motion distance
histogram for each region within the base frame.

2.2 Multi-pass merging of HDH

The histograms based on small regions can robustly tolerate object and camera motion
but are sensitive to noise and contain mismatch information. We use a multi-pass merging
process to obtain the final HDH which has much less noise and mismatching in order to be
used in the final cut detection stage.

Since the actual movement of pixels within a region usually corresponds to a relatively high
value in the HDH, we can eliminate most of the noise and mismatches by simply using a
threshold and setting all those values below the threshold to zero:

r Kz’,j; Zf Ki,j >Th
Kij= { 0, Otherwise (4)



where
Th =max{a X n,3 x (p—m)+m}.

In the above equation, n is the total number of edge points in the region, p is the peak value
of the histogram, and m is the mean value of the histogram. « and 3 are two constants
ranged from 0 to 1. In our experiments, we choose 0.36 for a and 0.2 for .

Since the neighboring regions usually have similar motion, we can further improve the signal-
to-noise ratio by combining the HDHs of neighboring regions to obtain new histograms
at a higher level. In order to make the new histograms still robustly tolerate object and
camera motion, we apply an overlapped sampling on the old histograms to lower their motion
resolution before we merge them. The sampling process for each HDH is defined as the
selection of the peak values within overlapped sampling windows. It can be expressed as:

Kpp=max(K;;) Am—1)+1<i<Am+1)—1

and A(n—1)+1<j<An+1)—1
where A is an integer denoting the sampling rate. KJ ; is obtained from Eq. (4). After this
sampling, the new histogram will have A\ times fewer bins in both z and y direction. The

histogram for next higher level can be obtained by adding up the corresponding bins of the
neighboring four sampled histograms. This merge process is defined as:

4
K;“w = Z Kpn.
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Figure 2: Multi-level HDH sampling and merging process
Since we decomposed the original frame 8 times along both directions and obtained HDHs

for each 64 regions, we now repeat the sampling and merging processes discussed above.
As shown in Fig. 2, four neighboring regional HDHs are first sampled and then merged to



generate one HDH at each pass. Repeating the above process 4 times as shown in Fig. 2,
we can finally obtain a single HDH representing the whole base frame. We call it the frame
level HDH. Although this HDH has lower motion resolution, it can robustly measure the
similarly between the edges of two successive frames. If there is no cut between them, the
peak value of the HDH will be very high, otherwise, it will be very low.

2.3 Detection of cut location

The detection of shot breaks is based on the peak values of the histograms on frame level.
From the above discussion, for each regional HDH, lower peak value indicates the movement
of edge pixels is uniformly distributed, therefore, it could not be the result of an object
movement. It could be introduced by a scene cut, where incoming edges are largely different
than the out-going edges. However, it also could be simply because there is not so many
changes in edge pixel locations. Since the situation is excluded out by selection of threshold
in Eq. (4), lower peak value of HDH generally gives as indication of larger difference in
respect of distribution of edge points within that region between two frames. Through the
multi-pass merging of HDH from each region, our algorithm makes sure that the peak value
decreases if the difference is introduced due to the occurrence of a real cut. On the other
hand, the peak value is brought up during this multiple-pass merging if the difference is
introduced due to noise or mismatching. Therefore, the peak value of the HDH obtained at
the frame level denotes more correctly whether a cut occurs or not.

As we can see from Eq. (2), the HDH uses the number of edge points to measure the
similarity. Since the frames in a video sequence usually do not have uniform total number
of edge points, we need to normalize the HDHs. Letting P denote the total number of edge
points in the base frame, we express the normalized HDH as:

K
Km N = m,n
"TP

Since both the current frame and the last frame can be used as the base frame, we will get
two peak values for each frame. In our experiments, only the smaller peak values are used
to locate cuts. In order to localize shot breaks that occur over multiple frames, we restrict
the cuts to occur only when the lower peak value is a local minimum within a number of
consecutive frames that have HDH peak values below the threshold.

3 Edge extraction in compressed domain

Since compressed video offers a lower data rate, our cut detection method performs edge
detection directly on I frames of MPEG [2] video without full decompression. The details
of our edge detection scheme can be found in [8]; we provide here only a brief sketch of the
compressed domain edge detector.
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Figure 3: Block-DCT convolution

The main difficulty in performing edge detection in compressed domain is the presence of
blocks which are individually transformed during the compression process. To illustrate this
difficulty, consider Fig. 3. Since edge detection can be viewed as a convolution operation,
the result at pixel location (k,[) can be expressed as

g = 5 (S5 Al )

As we intend to use block DCT data as direct input, pixel location (k,1) is considered with
one of the blocks in the block-DCT domain. The doted lines in Fig. 3 show the 8x8 block
grid. These lines decomposes the convolution kernel into 9 regions, ¢° to ¢®. The nine
neighborhood blocks associated with them are marked as f° to f%.

Generally, the kernel does not have to be square, we assume square kernel of size N for
simplification. For N less than or equal to 17, n is no larger than 9. It means there are at
most 9 neighborhood blocks that are involved in the computation of the convolution result
for pixel location (k,1).

Detail derivation can be found in [8], here we show the final equation for computing of the
convolution result directly from DCT blocks:

hk,l = Z < Fn,Gn’k’l > (6)

where
okl _ nk i,
G —ZZgiJ T, (7)
i
T is one of the 8x8 (indexed by z,y) DCT matrix and defined as:

. .0 (2i+1)zr (2] +1)yn
oy = 1 Y cos 16 Cos 16 :
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From above, G™ is a sum of tensor blocks scaled with corresponding mask entry. It is an 8x8
matrix or a vector of size 64 and can be calculated before hand and kept in memory. We call
it convolution tensor. Therefore, the convolution result at location (k,1) is nothing but the
sum of several inner products of two vectors of size 64. F™ is the DCT block in compressed
domain, typically only 10% of its coefficients are nonzero which means approximately 7
coefficients in F™ is nonzero. The computation of Eq. (6) only needs 7n multiplications and
6n additions.

Specifically, for isotropic kernel, which is often used in many edge detection algorithms, we
can take advantage of the symmetric property of DCT itself to derive even more efficient
algorithms. For instance, the convolution tensors at symmetric locations within a block can
be represented by one tensor with some sign-reversal processes. The convolution tensor at
location (k,7 — 1), (7 — k,1) and (7 — k,7 — [) can be computed easily from the convolution
tensor at (k,[), that is:

GO? k,l [S][G()kl]
GOk? l [GOkl][S] (9)
G0,77k,7fl [S] [GO Kk, l][S]

where the entries of [S] is defined as S;; = (—=1)%(i, j), (¢,7) = (0,0)...(7,7).
Therefore, the contribution of region 0 to the four symmetric locations can be expressed as
iy =< F°,G**' >
W _py =< F°,SG"™ > (10)
hipro =< F°,G"MS >
hy_pg =< F°,SG**'S > .

The above four equations only need one set of multiplications — the multiplications required
by inner product of the first equation of Eqs. (10). The only difference for the rest of
equations in Egs. (10) is to accumulate the products from the same set of multiplications
with different signs.

Some algorithmic tricks have to be applied on the algorithm to perform convolution on the
whole image [8]. Mathematically, it has been proved that the speedup is proportional to the
sparseness of the DCT blocks. Denote N the kernel size and P the average percentage of
non-zero coefficients in DCT blocks, the number of multiplications required in our method is
P(L%J +4)2. In general, we experience a speedup of 3 to 11 for each I frame of some QCIF
MPEG videos. Fig. 4 shows the edge detection results from a MPEG stream (“Erikal”).
An 11x11 LoG operator is used with zero-crossing to extract out the row edge pixels. No
additional edge linking or individual edge points exclusion processes are performed.

Edges in P or B frames can be derived from the edge map of reference frames using motion
vectors. It should be noted that interframes may contain intra macroblocks. Thus, edge



Figure 4: Raw edge maps from compressed domain edge detection

extraction discussed above can be applied on them directly. In fact, the percentage of intra
macroblocks contained in an interframe may give some clue on whether a cut occurs. Since
we concentrate on using edge information, we shall not discuss it here.

4 Experimental results

To evaluate the performance of this suggested cut detection scheme, we examine the behavior
of this method on a variety of videos. These videos consist of one MPEG benchmark sequence
— table-tennis video, two musical videos, two movie videos and two small TV video sequences.
The two musical videos are the “Madonna” video and a small sequence from a Machael
Jackson music video (Danger). The “Madonna” video has fast motion in close-ups with
special effects and very smooth optical transitions. The two movie videos, the “Few Good
Man” video (Moviel)and the “Body Guard” video (Movie2), contain a large number of shots
with rapid brightness change, fast camera motions and multiple moving objects. The two
small TV video sequences (Erikal and Erika2) involve fast object and camera motions.

The results of our cut detection scheme are shown in Table 1. The number of cuts are
represented in the form of straight cut:optical cut. The performance in terms of recall and
precision is also given. Recall is defined as the percentage of desired cuts that are retrieved,



Precision is defined as the percentage of retrieved cuts that are desired. They are computed
by the following expression:

nC
Recall =
Ne + Ny,
and n
. . (64
Precision =
Ne+ Ny

where n.,n, and n; are the number of correct missed and false cuts, respectively. From
Table 1, we can notice that recall and precision are very high although these videos contain
a large number of complicate shots with multiple moving objects, fast camera motions, or
rapid scene brightness changes.

‘ MPEG ‘ GOP size ‘ Frame # ‘ Actual Cut ‘ Detected ‘ Missed ‘ False ‘ Recall ‘ Precision

Erikal 1 48 2:0 2:0 0:0 0:0 100 100
Erika2 1 50 4:1 4:1 0:0 0:0 100 100
Tennis 12 150 2:0 2:0 0:0 0:0 100 100
Danger 1 150 4:0 4:0 0:0 0:0 100 100
Madana 4 3150 60:3 60:1 0:2 0:0 96.8 100
Moviel 3 7600 39:29 36:27 3:2 6 92.6 91.3
Movie2 3 17627 76:65 75:61 1:4 5 96.5 96.5

Total 28775 187:98 183:90 4:8 11 95.8 96.1

Table 1: Cut detection result

The algorithm is implemented on a Sparc workstation with a 70-MHz RISC processor. The
running time of performing the edge detection and cut detection on I frames of MPEG
sequence is given in Table 2. The running time mainly depends on the number of edge points
and histogram bins. Experiments show that a reasonable high threshold for the edge detector
will give an impressive speedup without affecting the accuracy of cut detection. Although
this algorithm has already shown a reasonably high speed, many other methods can be
derived to further improve the performance of the Hausdorff distance search. For example,
we can use Hausdorff distance information in the previous frame and motion information.
This is especially useful when we have the video sequence in MPEG form.

To further evaluate our approach, we reconstructed the method proposed in [9]. Its result on
the “Erika2” sequence is shown in Fig. 5b. Fig. 5a shows our method using the normalized
peak value of HDH obtained from each frame of the same video.

Fig. 5 shows our method has superior performance. The first four true cuts can be detected
by both methods, except that our method gives more discrimination on the dynamic range.
From frame 32 to 39, as shown in the top row of Fig. 6, there is a complex camera shot. It
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| MPEG File | Frame Size | GOP Size | Frame/Sec. |

Tennis 352x240 12 0.53
Erika2 160x128 1 1.62
Danger 160x128 1 1.88

Table 2: Cut detection speed
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Figure 5: Comparison of two methods.

contains object occlusion (a hand moves through part of the head) while the head is rotating
(actually in 3D space), and in the mean time, the camera is panning right. Also shown in
bottom row of Fig. 6 is the edge maps for frames 40 to 42 where an optical (cross-dissolve)
cut occurs. In both two cases, our method can provide better discrimination between true-
cut and non-cut frames. As can be noticed from Fig. 5b, if a global threshold has to be
chosen for the cut detection of the whole sequence, Zabih’s method will get false detections
at frame 34 and frame 38 in order not to miss the true cut at frame 12. Of course, these
false detections can be avoided in this case by using a window technique [9]. However, the
selection of the window size would pose a limitation on the system.

11
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5 Conclusion and future work

We have presented a method performing cut detection via compressed domain edge extrac-
tion. As we can notice from the experimental results, this method can detect shot breaks
accurately and efficiently. Using the edge features, this method can effectively decrease the
influence of rapid changes in scene brightness. Using the Hausdroff distance histograms on
subregions and merging them up through multiple passes, this algorithm can robustly tol-
erate multiple object and camera motions. The scheme of performing the detection directly
on the compressed domain leads to a significant computational speedup. We are currently
investigating the possibility of using some simple features of P and B frames to further
improve the performance of our cut detection method. We are also exploring the issue of
performing shot break classification based on the features of Hausdorff distance histogram.
It is expected that such a classification scheme will further aid in shot boundary detection.
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