
1

Evaluation of Micropayment Schemes

Ellis Chi
January 13, 1997 6:52 pm

1.0 Introduction..5

2.0 Background..5
2.1 Difference Between Macro- and Micropayment Schemes ..5

2.2 Entities and Trust Model..6

2.3 Anonymity ...6
2.3.1 Definition...6
2.3.2 Anonymity in Micropayment Schemes ...7

2.4 Common Features ..7

3.0 Millicent...8
3.1 Details of Millicent ..8

3.1.1 A Vendor Scrip ..8
3.1.2 Buying Vendor Scrip ...9
3.1.3 Making Purchases..9
3.1.4 Multiple Brokers..10
3.1.5 Redemption..11

3.2 Evaluation ..11
3.2.1 Forgery Prevention ..11
3.2.2 Double Spending Detection...11
3.2.3 Other Comments..11

4.0 MicroMint ..12
4.1 Details of MicroMint ...12

4.1.1 Coins..12
4.1.2 Buying User-Vendor-Specific Coins ...14
4.1.3 Making Purchases..14
4.1.4 Redemption..14

4.2 Evaluation ..14
4.2.1 Forgery Prevention ..14
4.2.2 Double Spending Detection...15
4.2.3 Other Comments..15

5.0 Payword ...15
5.1 Details of Payword...15

5.1.1 Paywords, Commitment, and User Certificate ..15
5.1.2 Making Purchases..16
5.1.3 Redemption..17

5.2 Evaluation ..17
5.2.1 Forgery Prevention ..17
5.2.2 Double Spending Detection...17
5.2.3 Policy Model ...18
5.2.4 Other Comments..18

6.0 Wenbo Mao’s Simple Payment Scheme ..19
6.1 Details of the Wenbo Scheme ..19

6.1.1 Coins, Bank Signature, Change, Spending Signatures, User Certificate.............19
6.1.2 Making Purchases..20
6.1.3 Redemption..21

Internal Accession Date Only

2

6.2 Evaluation ..22
6.2.1 Forgery Prevention ..22
6.2.2 Double Spending Detection...22
6.2.3 Anonymity ...23
6.2.4 Collusion..23
6.2.5 Other Comments..24

7.0 Conclusion ...24
7.1 Acknowledgment ...25

8.0 Appendix A - Summary Tables..25

9.0 Appendix B — Schnorr’s Signature Scheme...27
9.1 Signature Generation ...27

9.2 Signature Verification...28

9.3 Double Spending..28

10.0 References..28

3

FIGURE 1. Buying vendor scrip from a different broker ...10
FIGURE 2. The structure of a coin ...13
FIGURE 3. Summary of the Payword protocol..17
FIGURE 4. Summary of the Wenbo Scheme..22
FIGURE 5. The customer asksVE to sign a coin..23

4

TABLE 1. Summary of the features of the four payment schemes.............................25
TABLE 2. Summary of computation costs...26
TABLE 3. Storage requirements of the four payment schemes27

5

Evaluation of Micropayment Schemes

Ellis Chi

This paper evaluates four micropayment schemes: Millicent,
MicroMint, Payword, and Wenbo Mao’s simple cash payment tech-
nique for the Internet. The paper first describes the differences
between macro- and micropayment schemes, the notion of anonym-
ity in electronic commerce, and common features used in payment
protocols. It then examines details of the four payment protocols.
The paper concludes with a summary of the features of the four
payment schemes and compares their computation costs and stor-
age requirements.

1.0 Introduction

This paper focuses on four micropayment schemes: Millicent [3], MicroMint [9], Payword
[9], and Wenbo Mao’s simple cash payment technique for the Internet [8]. It first provides
some background about electronic payment schemes, including the differences between
macro- and micropayment schemes, the trust model, the notion of anonymity, and com-
mon features used in most payment protocols. Sections 3.0-6.0 each describes one of the
four payment protocols. The first part of each section introduces the payment protocol; it
describes the data types of the protocol, a purchase, and a redemption. The second part
evaluates the protocol, including forgery prevention, double spending detection, and other
issues specific to each protocol.

This paper does not require readers to have prior knowledge of electronic payment
schemes. Readers who design and implement micropayment schemes should also read the
original paper of the protocol being implemented and the Internet working draft for Micro
Payment Transfer Protocol (MPTP) [4], which shows some insights on design policy and
data flow models for a payment scheme.

2.0 Background

This section provides some background by describing the differences between macro- and
micropayment schemes. It also defines the entities involved in a payment, their relative
trustworthiness, and the meaning of anonymity as it is used in this paper.

2.1 Difference Between Macro- and Micropayment Schemes

Of the two types of payments, macropayment schemes transfer larger sums of money for
each transaction, so usually the security requirement is more rigorous. To date, public key
cryptography is normally used in macropayment for authentication (to prevent forgery)
and encryption (to preserve privacy of the data). Examples are Ecash of DigiCash [2] and
iKP of IBM [6]. Besides public key cryptography, macropayment schemes use on-line
broker activities to detect double spending prior to the acceptance of a payment by the

6

vendor. For example, Ecash requires both vendor’s broker and customer’s broker to be on-
line to verify the transaction amount. NetBill [10] (though claimed to handle micropay-
ments) requires the NetBill server to perform on-line verification and redemption.

The computational and storage costs of micropayment schemes are suitable for small pay-
ments (e.g., purchasing a web page). Compared with macropayment schemes, the compu-
tational times of micropayment schemes are less because they use one-way, collision-
resistant hashing extensively and minimize the use of public key cryptography. As a rough
estimate, hashing is roughly about 100 times faster than RSA signature verification, and
about 10,000 times faster than RSA signature generation [11]. Besides hashing, micropay-
ment schemes generally avoid on-line verification by the broker. This saves the broker on-
line processing time and on-line storage requirements. In addition, micropayment proto-
cols generally keep the customer-vendor relationship transient to avoid both the necessity
of setting up account-based systems on vendor sites [3, 11] and a potential performance
bottleneck for one-time or infrequent customer-vendor interactions.

The security of micropayment schemes is apparently not as good as that of macropayment
schemes. However, if a micropayment scheme is designed so that a customer only loses a
few cents when his transaction is tampered with, and the cost of counterfeiting a coin is
either computation- or policy-wise higher than the value of the coin, then the security is
considered to be adequate.

In short, the classification of both micro- and macropayment schemes is based on process-
ing time and storage requirements [4]. While macropayment schemes are more concerned
with the authenticity and privacy of data and therefore need demanding encryption algo-
rithms and on-line processing, micropayment schemes aim at providing a decent level of
security for transactions with more economical time and storage requirement.

2.2 Entities and Trust Model

Payment schemes usually have three entities: a customer or a user (U), a bank or a broker
(B), and a vendor (V). Occasionally a certificate authority (CA) appears in a payment pro-
tocol, and theCA is normally responsible for issuing certificates for identification. If it
appears, theCA is the most trusted entity in a transaction. A broker keeps track of custom-
ers’ and vendors’ accounts and may certify (or issue) coins to customers and/or vendors. If
the CA does not exist, the bank is the most trusted entity. The vendor is the next most
trusted, and the customer the least trusted.

2.3 Anonymity

2.3.1 Definition

In this paper, a payment is anonymous if it conforms to at least one of the following crite-
ria:

• It preserves the privacy of a customer’s identity from a vendor so that the vendor cannot
associate the customer’s identity with his purchases1.

• It preserves the privacy of a customer’s identity from a broker.2

7

Under this definition, a cash payment is anonymous. It satisfies both criteria because a
customer’s identity is not linked to a transaction at all. However, an electronic payment
often associates a user’s identity with the transaction (e.g., a payment that requires a cus-
tomer’s signature). Such a connection discourages the customer from double spending and
sometimes prevents a third party from forging a payment.

Even though an electronic payment requires a user identity, there are ways to retain ano-
nymity. One way is to use an intermediary between any two parties in the payment pro-
cess. An intermediary is a trusted third party who is responsible for hiding the identity of a
sender from a receiver, auditing all the interactions, and revealing the identity of an entity
only under controlled circumstances. An example of a payment protocol using an interme-
diary is described in [7].

Another way is to blind a customer’s identity in a payment. If a protocol requires a bank to
issue or certify money to a customer, the protocol should specify that the bank use a blind-
ing technique (such as blind signatures [1]) to certify the money. During a payment, a cus-
tomer uses the challenge-and-response technique [14]. A challenge-and-response
technique normally hides the customer identity but can disclose it if the customer double-
spends. However, using challenge-and-response will not help conceal the customer’s iden-
tity when a vendor requires a customer’s identity to complete a transaction (e.g., the cus-
tomer’s name and address for delivery). Nevertheless, if the protocol still requires
anonymity to the broker, the vendor should blind the customer’s identity at redemption.

2.3.2 Anonymity in Micropayment Schemes

Among the four micropayment protocols discussed in this paper, only the first version of
MicroMint (in Section 4.1.1.1) and Wenbo Mao’s payment scheme (in Section 6.0) offer
anonymity. The first version of MicroMint is like a cash-based system while Wenbo Mao’s
payment scheme uses blind signatures and the vendor’s cooperation to preserve the user’s
privacy from a broker. Other protocols in this paper are not anonymous according to the
definition in Section 2.3.1; they all expose the customer’s identity to the vendor and the
broker.

2.4 Common Features

The following are some common features assumed in each micropayment scheme to be
described.

Money generation: There are two ways of generating money for micropayment schemes.

• Money is created or certified by a broker: A customer is assumed to buy micropay-
ment’s money in bulk from a broker through a macropayment protocol, and the broker
debits the customer’s account. To both the customer and the broker (or whoever creates
or certifies the money), this is a debit-based approach because the customer has to pur-

1. A user identity is defined as any form of representation consistently used to identity the customer to
another entity. Under this definition, a pseudonym [1] is also considered a user identity.

2. It is almost impossible for a broker to know what a customer has purchased based on the amount that the
customer has authorized the broker to pay a vendor.

8

chase a specific form of money in advance; whoever certifies the money will benefit
from the “float.” A return policy is required for a customer to refund or renew unused,
expired money.

• Money is generated by a customer: The money generated by a customer may not need
direct certification by a broker. In this case, no bulk purchase or macropayment scheme
is required. The payment scheme is credit-based to a customer, vendor, and broker
because the customer’s account will not be debited until a redemption takes place.

Double spending detection:Database lookup is used in all payment protocols (either
macro- or micro) to detect double spending. Different protocols have different sets of data
to serve this purpose. In each of the following micropayment schemes discussed, this set
of data will be specified in the subsection titled “Double Spending Detection.”

Redemption: A redemption process is assumed to be off-line if it is required in a micro-
payment protocol.

Notion of time: Time is not discussed in any of the four payment protocols. However, each
payment scheme uses time (e.g., an expiration date) as a factor to define the validity of the
electronic money. Each must provide a definition of time in order to avoid a race condi-
tion.

Pay-before or pay-after: The micropayment protocols described in this paper do not
address the issue of when a delivery takes place, whether before or after the payment;
however, whether a protocol is pay-before or pay-after should not affect the mechanism of
the payment scheme.

3.0 Millicent

The Millicent protocol was initiated by Mark Manasse at DEC SRC in 1995 and predated
the other proposals reviewed in this paper. Millicent usesscrip and is a debit-based proto-
col to a customer, vendor, and broker.

3.1 Details of Millicent

3.1.1 A Vendor Scrip

A vendor scrip consists of two parts: the scrip body and its certificate.1 Scrip_body con-
sists of two parts:

• id_material consists of the vendor’s ID, the scrip’s ID, and the customer’s ID

• cert_material contains the value of the scrip, the expiration date, and other parameters

1. A bank scrip and a vendor scrip have the same scrip structure. For the ease of specifying the parameters,
this subsection focuses on only a vendor scrip.

9

The certificate ofScrip_body is the result of hashingScrip_body and the master scrip
secret (MSS) which is known only to the vendor (more specifically, the creator of the
scrip).H is a one-way and collision-resistant hash function.

The vendor scrip appears as [3]:

SV = Scrip_body, H(Scrip_body, MSS)
where
Scrip_body = id_material, cert_material (EQ 1)

3.1.2 Buying Vendor Scrip

A broker can get a lot of vendor scrip in two ways. The broker can buy the scrip in bulk
from a vendor, or the broker can get a license for scrip production. In the latter case, the
broker buys the parameters required to generate vendor scrip and produces the scrip on
demand. Licensing is a better approach than bulk purchasing the scrip because the vendor
does not need to invest in resources for scrip production, and sending only the parameters
reduces the network transmission time [3].

Before a customer makes a purchase from a vendor, he buys vendor scrip with broker
scrip. The customer is assumed to get the broker scrip through a macropayment. The pro-
tocol for the exchange is similar to that for a purchase done between the customer and the
vendor, and the protocol for a purchase is discussed in the next subsection.

3.1.3 Making Purchases

To make a purchase,1 the customer sends to a vendor a request (request), the vendor’s
scrip (SV), and the authenticator. The authenticator is the result of hashingrequest, SV, and
customer_shared_key (CSK).2 CSK is given by the broker and is also known to the cus-
tomer and the vendor.

C —> V : SV , request, H(SV , request, CSK) (EQ 2)

The vendor receives the message, derivesCSK, and hashes it withSV and the request. If
the result is same as the hashed value received, the message is considered valid. To prevent
double spending, the vendor looks up the scrip in the vendor’s database. If still valid, the
vendor sends back a reply and, if any, the changeS’V. The message looks like this:

V —> C : S’V , reply, H(S’V , reply, cert, CSK). (EQ 3)

This message is also authenticated byCSK; cert is used to verify the correspondence of
the reply to the request. To make the next purchase, the customer usesS’V.

1. The proposal outlined in [3] describes a set of Millicent protocols; the one presented here is more
suitable for a micropayment based on the classification in Section 2.1 on page 5.

2. In the original paper [3],customer_shared_key is calledcustomer_secret. The original name implies that
the parameter is known only by the customer. As a result, the word “shared” is added for sake of clarity;
“key” is used instead of “secret” to show that the parameter is known by more than one entity.

10

3.1.4 Multiple Brokers

The Millicent protocol can be used in a multiple broker environment. Typically a customer
is trying to make a purchase from a vendor who has an account with a different broker [3].
The following steps are shown in Figure 1:

1. The customerC asks his own brokerBC for vendor scripSV.

2. BC finds out thatV does not have an account with him, so he asksV if he would like to
open one.

3. V has his own brokerBV, so he givesBC a contact forBV.

4. BC buysBV’s scrip and sends it toC.

5. C then buys the vendor’s scrip from the vendor’s broker.

This model has some flexible features. First, the vendor does not need to open an account
with every Millicent broker (step 2). Second, the customer’s broker does not buy the ven-
dor’s scrip directly from the vendor (although the broker could have in step 2). This is
because having the broker make purchases from each outside vendor increases the net-
work traffic and possibly the storage requirement of the broker’s server, and having the
broker get the vendor’s scrip directly requires a macropayment protocol if the vendor does
not accept the customer’s broker scrip (step 4). The same reason applies to having the ven-
dor’s broker give his own scrip to the customer’s broker, rather than giving the scrip
directly to the customer. This protocol is similar to a person buying foreign currency from
his own bank before going to another country.

FIGURE 1. Buying vendor scrip from a different broker.

C BC BV V

Request for SV

Interested in opening an account?

BV

Request BV’s scrip

Scrip of BV Scrip of BV (buy in bulk)

Request for SV

SV

Transaction

11

3.1.5 Redemption

The Millicent protocol does not require vendors to redeem for payment. This is because a
customer always makes a purchase with a vendor’s own scrip. The vendor gets the profit
when he sells the scrip.

3.2 Evaluation

3.2.1 Forgery Prevention

A scrip hashes the master scrip secret,MSS, (known only to the owner of the scrip) with
the scrip body to prevent the forgery of the scrip. A sender has to certify all messages by
hashing them with a shared key (known only to the sender and the receiver) to prevent the
forgery of the message.

3.2.2 Double Spending Detection

Double spending is found by looking up for duplicates of a valid scrip. The scrip’s ID and
MSS should be sufficient for double spending.

3.2.3 Other Comments

Some nice features of the Millicent protocol:

• It is simple.The use of scrip is easy to understand.

• No public key encryption is used.One hash is used for generating a valid scrip, one
hash for sending the scrip over an insecure link, and one hash and one database lookup
to verify the scrip.

• Verification is decentralized. While most of the payment schemes require vendors to
redeem for payment with a bank off-line, Millicent vendors receive and verify their
own scrip and do not need a broker to perform another verification.

Some undesirable features of the Millicent protocol:

• It uses shared keys. Millicent requires both a vendor and a broker to know the
customer_shared_key (described in Section 3.1.3). It is okay for the broker to know
about the key; however, having the vendor know aboutCSK requires the vendor to
either maintain an extra database or perform an on-line query to the broker.

• Scrip buyers can be spoofed.Since only the owner of scrip knows about its secret, scrip
buyers, including customers, cannot verify scrip.

• A long-term relationship is assumed:The Millicent protocol can be inconvenient if a
customer tends to make infrequent purchases with vendors. He needs to go back to his
broker and exchange for different vendor scrip for each transaction with a new vendor.

12

4.0 MicroMint

MicroMint was proposed by Ronald Rivest of MIT LCS and Adi Shamir of Weizmann
Institute of Science. MicroMint is debit-based to a customer and a broker, while it is
credit-based to a vendor. MicroMint uses difficult-to-producecoins “minted” by a broker.

4.1 Details of MicroMint

4.1.1 Coins

This subsection shows all three coin structures proposed in the original paper, even though
the author of this paper intends to evaluate only the third one. The first two versions are
simpler, and hopefully they help the third version seem more comprehensible to readers.

4.1.1.1 First Version: Generic Coins

Each coin is am-bit k-tuple, {x1,... xk}, where each element (xi) has the samen-bit hash
value (y). This feature is called ak-way collision.

Coin = {x1, ... xk}
where
h(xi) = y for i = 1, ...,k (EQ 4)

h is a one-way, collision-resistant function.m is the length of anx-value, andm should be
so large that storing allx-values possibly generated is not quite feasible [11]. As shown
later, this is an important feature to prevent forgery. The broker avoids getting into the
same problem during the production by secretly assigning a criterion for each coin circu-
lated in a certain period of time, such as a month. This monthly criterion is presented as a
fixed bit string ({bn, ... , bn-t+1}) in the firstt bits of the hash values. Therefore, a valid coin
now looks as follows:

h(xi) = y= {bn, ... , bn-t+1, bn-t, ... b1} for i = 1, ..., k
where
{bn, ..., bn-t+1} = criterion of a month (EQ 5)

This version of coins is a cash-based protocol and is anonymous (according to the defini-
tion in Section 2.3.1 on page 6) because the coins do not embed any customer’s informa-
tion.

Forgery is discouraged in this version of coins; however, coins can easily be stolen and
replayed because they are like cash that does not embed any user identification.

4.1.1.2 Second Version: User-Specific Coins

This version of coins contains user-specific information so that the coins are useful to only
a particular customer.

In a user-specific coin, thek-tuple collides according to the following rule:

13

Coin = {x1, ... xk}
where
h(xi) = yi ; for i = 1, ...,k
and
yj+1 - yj = dj mod 2u; for j = 1,..., k-1 and u = n - t
and
h(U) = (d1, d2, ..., dk-1) (EQ 6)

whereU is the unique customer identity. Since the monthly criterion is enforced, allyi

vary only in the lastu bits. This is reflected in the module difference in the above equation.

4.1.1.3 Third Version: User-Vendor-Specific Coins

Coins can be made user-vendor-specific to further discourage a customer or a malicious
hacker from spending the same coin with other vendors.

As in the first and second versions, the hash value (y) in this version hasn bits, and the first
t bits ofy gives the monthly criterion assigned by the broker. The remainingu bits can be
divided into two: a (u-v)-bit upper part,y’, and av-bit lower part,y’’ . V is the unique ven-
dor ID, andy” 1 is the unique coin ID. The vendor can redeem a coin only if it satisfies the
monthly criterion (in EQ 7), the user’s and the vendor’s specification (in EQ 8 and EQ 9),
and the uniqueness of the coin ID (y” 1) (in EQ 10). Figure 2 graphically shows the struc-
ture of a user-vendor-specific coin.

FIGURE 2. The structure of a coin. m is supposed to be larger than n. The scale is skewed to show
the y-value details.

Coin = {x1, ... xk}
where
h(xi) = yi= {bn, ..., bn-t+1, bn-t, ... b1}i ; for i = 1, ..., k
and
{bn, ..., bn-t+1}i = criterion of the month (EQ 7)

and

h

u-vt v

x1:

x2:

xk:

.

.

.

y1:

y2:

yk:

ally i equals
the monthly
criterion

all y’i
combine
to form
U_id

all y” i
combine
to form
V_id

.

.

.

Unique coin

n

m

ID (y” 1)

14

y’i+1 - y’i = d’ i mod 2u-v; for i = 1, ..., k-1
where
h’(U) = (d’ 1, ..., d’k-1) (EQ 8)

and

y’’ i+1 - y’’ i = d’’ i mod 2v; for i = 1,..., k-1
where
h’’(V) = (d’’ 1, ..., d’’k-1) (EQ 9)

and

y” 1 is unique (EQ 10)

4.1.2 Buying User-Vendor-Specific Coins

A broker can organize all validx-values into groups. In each group, thex-values have the
same firstt+u-v bits. When a customer buys coins from the broker, he sells the groups that
satisfy EQ 8.

4.1.3 Making Purchases

When the customer makes a purchase from a vendor, he picks onex-value out of each
group ofx-values and assembles a coin according to EQ 9 and EQ 10. The vendor checks
the validity of the coin by hashing and prevents double spending by checking the unique-
ness ofy” 1.

The MicroMint paper [11] does not mention how coins are sent or received. It is believed
that the payment is done either in cleartext or in a manner similar to the Millicent protocol
shown in Section 3.1.3.

4.1.4 Redemption

The broker performs the same type of operations as the vendor to verify the coins. Since
the vendor does not get the payment until the bank accepts the coins, MicroMint is a
credit-based protocol from the vendor’s viewpoint.

4.2 Evaluation

4.2.1 Forgery Prevention

A MicroMint broker prevents counterfeiting by making it a rarely profitable business.
There are a few ways of forging coins. In one case, the forger tries to generate a coin for
future months. Recall that anx-value hasm bits, and its hash value hasn bits. If the forger
does not know the monthly criterion but wants to have the same capability of coin distribu-

tion as the broker, the forger has to store 2m x-values in advance, while the broker needs to

store only 2m-n+u. If m>>u andm is not a lot larger thann, the forger needs a lot more stor-
age than the broker.

15

In another case, the criminal generates coins once the monthly criterion has been
announced. To prevent this approach, the length ofx-values can be made so long that it
will take at least a month to generate a significant number of coins to make a profit.

However, this analysis is based on many assumptions. For example, it assumes that the
forger is unable to save the unusedx-values for the future.

4.2.2 Double Spending Detection

y” 1 in each coin serves as the unique identity of the coin and is used to detect double
spending.

4.2.3 Other Comments

Some nice features of the MicroMint protocol are as follows:

• No public key encryption is used.Like Millicent, MicroMint does not use public key
encryption. For the details of computation costs, see Table 2 on page 26.

• No shared secret is required. All information in a coin is public; therefore, it does not
have the bottleneck problem that occurs in Millicent where the vendors and the brokers
have to know customer shared secrets for verification.

• The broker is off-line when a customer establishes a transaction with a new vendor.
Unlike Millicent, a MicroMint customer does not need to buy new vendor’s scrip from
a broker. This is also true for Payword and Wenbo’s payment scheme discussed in the
next two sections.

• Users can verify coins. Unlike Millicent, a MicroMint customer can verify his coins.

Some undesirable features of the MicroMint protocol are as follows:

• Resources are wasted.Generating coins well in advance rather than on demand can be a
waste of resources.

• Forgery prevention is based on many assumptions. This problem was discussed in
Section 4.2.1.

5.0 Payword

The Payword protocol is proposed together with MicroMint. Payword is a credit-based
protocol to a customer, vendor, and broker. It is based on a chain of hash values, called
paywords [11]. Each payword represents a particular denomination or unit of value.

5.1 Details of Payword

5.1.1 Paywords, Commitment, and User Certificate

Paywords are generated by a customer. They can be generated in advance or at the time of
a purchase. To make a payword chain, a customer picks a random number as thenth pay-

16

word,wn, and it is the “seed” for generating the rest of the paywords in the chain accord-
ing to the following rule:

wi-1 = h(wi) where i = 1, ..., n (EQ 11)

whereh is a cryptographically strong function, such as MD5 [12], which has to be one-
way and collision-resistant. The last value computed,w0, is not part of the payword chain;
it is the “root” of the chain and is embedded in a user-vendor-specific commitment.

A commitment authenticatesw0, andw0 verifies the payword chain ({w1,... wn}). The
chain is committed to a particular user-vendor relationship once its w0 has been bound to a
commitment (M). M is a signed message by a customer (shown in EQ 12). It consists of
w0, a vendor identity (V), the customer’s certificate (CU), an expiration date (D), and other
information (IM) necessary for the commitment.

M = {w0, V, Cu, D, (EQ 12)

Before any transaction takes place, the customer must get a user certificate from a broker.
The certificate (CU) authenticates the customer’s public key, which is used to sign a com-
mitment during a purchase.CU is a signed message consisting of the broker’s identity, the
customer’s public key, the expiration date, and other related information.

CU = {Broker_id, customer_public_key, expiration_date,
other_ (EQ 13)

The three types of data work together to provide a secure purchase. A payword is sent
unencrypted, but it is authenticated by a user-vendor-specific commitment. The user’s
public key used for signing the commitment is in turn authenticated by the user’s certifi-
cate.

5.1.2 Making Purchases

First, a customer sends a vendor a commitment (M, defined in EQ 12). The vendor
decryptsM with the customer’s public key and verifiesV andD. The customer signature is
proven byCU. Thus, a third party cannot forge a commitment by signing it with an invalid
key, nor can he pretend to be the customer without knowing the customer’s private key. If
M is verified, the vendor stores it until it expires.

When the customer wants to make a purchase with one payword, he sends a pair,P = (wi,
i), where . The vendor will see ifh(wi) equals the payword previously sent. If veri-
fied, the vendor stores this last received payword pair(Plast), and the payment is consid-
ered valid. Figure 3 gives a summary of the Payword protocol (including redemption,
which will be discussed in next subsection).

If a purchased item costs more than the value of one payword, the customer can pay more
by skipping paywords. Assuming that the next unspent payword iswi+1, each payword is
worth one cent, and the item costs 5 cents, the customer can skip the first four unspent

I M }
SKU

info}SKB

1 i n≤ ≤

17

paywords and send (wi+5, i+5). The vendor verifies this pair by hashing the payword 5
times.

FIGURE 3. Summary of the Payword protocol. Thick arrows represent interactions using non-
Payword protocols.

5.1.3 Redemption

A vendor only needs M and the last payword pair received(Plast) for redemption. A broker
verifiesM and makes sure the last payword can be hashed intow0 afterlast times. If every-
thing looks right, the broker debits the customer’s account and credits the vendor’s.

5.2 Evaluation

5.2.1 Forgery Prevention

Spent paywords are the one-way hash values of the unspent paywords of the same chain;
therefore, knowing the spent paywords should not expose the value of the unspent ones.

A payword chain is authenticated by a commitment, and it is signed by the customer. The
identity of the customer is ensured by the user certificate (CU), and it is signed by the bro-
ker.

5.2.2 Double Spending Detection

A payment in the Payword protocol consists of a commitment and its corresponding set of
paywords. Therefore, double spending in Payword means replaying the same paywords
with the same commitment. The last spent payword and the root allow a vendor or a bro-
ker to keep track of all the spent paywords of a commitment. Replaying valid commit-
ments can be found by searching for duplicates in a database. A vendor should store all the
valid commitments received to prevent a customer from replaying a valid commitment.
The broker should do the same to prevent the vendor from double depositing.

Customer Vendor Broker

Request for CU, send in PKU, AU

CU = {Broker_id, customer_public_key, expiration_date, other info }
SKB

w0, ..., wn;
M

M = {w 0, V, CU, D, IM}
SKU

P

M, Plast

Redemption

18

The original paper [11] does not mention reusing paywords in different commitments;
however, a customer should not do so, particularly, to the same vendor (described in detail
in the next subsection).

5.2.3 Policy Model

The Payword protocol allows customers to generate their own money without requiring
the bank to certify the paywords; this feature may cause a problem. Suppose customer A
and customer B generated two sets of chains, and part of the chains contain the same pay-
words. If a vendor finds A and B turning in the same payword, and A happens to have
spent the next few, the vendor now knows the next few unspent paywords in B’s chain and
can redeem more payment from the bank than he should have.

Therefore, Payword should be accompanied with a policy model to ensure that the pay-
words of a chain are distinct, and that every chain (and itsw0) ever generated is disjoint
and nonadjacent to one another in the universe of the hash values. In other words, the pol-
icy model must carefully assign space to each customer for payword generation to prevent
any overlaps. One possible solution is to incorporate user- and time-specific criteria in
paywords; another one is to have users define their own hashing functions and send them
along with payments.

5.2.4 Other Comments

The idea of paywords is adopted by the payment protocol proposed by Wenbo Mao (dis-
cussed in the next section) and the working draft of MPTP [4].

Some nice features of the Payword protocol are as follows:

• Customers do not need to pay in advance. Unlike Millicent, Payword is a credit-based
system [11]. Instead of paying in advance, a Payword customer generates his own pay-
word chain, and his account is debited only when the vendor redeems the payment.

• Customers generate their own paywords. This feature provides many flexibilities. For
example, a customer can generate paywords based on demand. Also the customer can
generate the exact amount for a payment.

• It uses the latest state for verification. Vendors and brokers only need to store all the
valid commitments and the corresponding last-spent payword pairs. They can use hash-
ing to derive all the paywords ever paid.

Some undesirable features of the Payword protocol are as follows:

• Public key cryptography is required. Signature generation and verification are required.
See Table 2 on page 26 for details.

• A long-term relationship is expected. Payword is based on customer-vendor-specific
payword chains that are suitable for long-term and frequent transactions between a cus-
tomer and a vendor. However, Payword becomes inefficient if the relationship is one-
time, e.g., random access of a rarely visited web site. In this case, one commitment is
useful for only one payment, rather than being used for many payments, which can
amortize the costs of public key cryptography.

19

• Chains should be disjoint. Paywords in each chain should be unique to prevent such
problems as the one described in Section 5.2.3 from happening.

6.0 Wenbo Mao’s Simple Payment Scheme

Wenbo Mao at Hewlett-Packard Laboratories, Bristol, proposed “Simple Cash Payment
Technique for the Internet” (hereafter, referred to as the Wenbo Scheme). The Wenbo
Scheme is an anonymous and non-vendor-specific Payword-based protocol. However,
unlike Payword, it is debit-based to a customer and broker.

6.1 Details of the Wenbo Scheme

6.1.1 Coins, Bank Signature, Change, Spending Signatures, User Certificate

Coins in the Wenbo Scheme are the same as paywords in the Payword scheme. They are
both generated by customers. In the Wenbo Scheme, the seed for generating a chain of
coins and the root of the chain are notated asCn andC0, respectively.

In Payword, a commitment (a message signed by a customer) certifies a chain of coins. In
the Wenbo Scheme, a commitment is carried out by a bank signature and a change of pay-
ment (which includes a signature from a vendor). These signatures allow a customer to use
a chain of coins with any vendor. If a chain of coins is only used with one vendor, only a
bank signature is ever needed for certifying the chain. This is the same as the Payword
protocol. However, to allow a customer to pay the unspent coins with another vendor in
the next payment, the previous vendor has to certify the unspent portion of the chain.
Another way to think of the protocol is that a vendor has to sign the last coin being paid to
him so that the next vendor knows how much of the chain has been consumed. A bank is
just like another vendor to which the customer has paid aC0.

This subsection will only talk about the structure of a bank signature; receiving change
from a payment will be discussed later.

A bank signature (shown in EQ 14) certifies a chain of coins by signing the root (C0) and
the length of the chain (n). In addition, the bank certifies a user’s identity (v), which is
blinded by a one-way hash function (g) so that the real customer identity will not be
revealed to the broker at redemption. Moreover, the message contains the hash value of the
key used to generate the spending signature for the first payment (g(x1)). A bank uses the
blind signature technique [1] to sign the message, so the bank cannot relate the chain of
coins to a customer’s identity. When the message is signed, the bank also deducts the
amount from the customer’s account. Thus, the Wenbo Scheme is debit-based to custom-
ers and brokers.

Bank Signature : (EQ 14)

A spending signature is generated by a customer to authenticate himself in a payment and
to certify how much he is paying to a vendor. It is used to detect double spending during a
redemption (discussed in Section 6.2.2 on page 22). A spending signature is a customer-

C0 g v() g x1() n, , ,{ }
SKB

20

vendor-specific signed message, and it is represented as a pair of values (e, y). This pair is
generated using a variance of Schnorr’s signature scheme. The use of Schnorr’s signature
scheme in the Wenbo Scheme can reveal a customer’s identity if he double spends. For the
details of how Schnorr’s signature scheme works, refer toAppendix B — Schnorr’s Sig-
nature Schemeon page 27. The spending signature for the first coin (C1) is as follows:

Spending_Signature = (e, y)
where
e = H(m, g(x1)) for m = C1, vendor_id, timestamp
y = f(e, other parameters) (EQ 15)

H is a one-way, collision-resistant hash function, andf is a signature-generating function
of Schnorr’s signature scheme.

A user certificate in the Wenbo Scheme, unlike Payword, is used as a parameter for verify-
ing a spending signature and is sent in plaintext.

In a secure purchase, a coin is sent unencrypted, but a bank signature authenticates and
certifies the initial chain of the coin. The customer uses a spending signature and a user
certificate to vouch his payment to the vendor and to prove that the coin indeed belongs to
him. Finally, a change certifies the unspent portion of the chain after a payment.

6.1.2 Making Purchases

6.1.2.1 Spending Coins with One Vendor

Suppose a customer generates a one-coin chain and pays the coin to a vendor. In this situ-
ation, the customer will not receive a change from the vendor. The customer sends to the
vendor the bank signature, the spending signature, the customer’s certificate issued by a
certificate authority, the coin, the number of coin(s) spent (in this case, 1), and a times-
tamp.

 Bank_Signature,
C —> V1 : Spending_Signature, Cert(v)1

 C1, 1, timestamp (EQ 16)

The vendor needs to verify three things. First, he uses Schnorr’s signature scheme to verify
if the cleartext portion of the message was originated by the customer (by using the spend-
ing signature and the customer’s public key (v)). Second, the vendor makes sure thatC1 is
certified by the bank (by trying to hashC1 into C0 found in the bank signature). Third, the
vendor ensures thatC1 belongs to the right customer by matching the user identity in the
bank signature with that in the spending signature.

If the customer is paying more than one coin, the treatment is the same as in Payword. The
customer simply replaces the first coin and the index with other values.

1. In Wenbo’s paper [8], the certificate is Cert(customer_id, v). It was found that thecustomer_idis not nec-
essary in the protocol as the result of a discussion between Wenbo Mao and the author [9].

21

6.1.2.2 Making a Purchase with thekth Vendor and Getting Change for the Payment

Suppose the customer has spentCj coins and is spendingi coins with thekth vendor, the
customer sends the following to thekth vendor:

 Bank_Signature, , ,

C —> Vk : kth_Spending_Signature, Cert(v),
 Cj+i , i, timestamp,
 g(xk+1) (EQ 17)

As in EQ 16, the first line consists of the bank’s signature for the chain. The bank signa-
ture is required in each payment to show that the chain was once certified by a bank. The
additional information, and , is the change from the previous

payment. The signature of the change certifies that the chain has been used up to thejth
coin. The second and third lines are similar to those in EQ 16. The fourth line is added to
provideVk the key for the next paymentg(xk+1). It will be embedded in the change (certi-
fied byVk) for the current payment.

If the payment is valid and the chain is not all spent, the vendor needs to send the change
for the payment to the customer. The change consists of the vendor’s certificate and a sig-
nature. The signature is the same as a bank signature except that this signature does not
contain the user’s identity:

Vk —> C : Change = , (EQ 18)

6.1.3 Redemption

To redeem for a payment,Vk sends the following to the broker:

 Bank_Signature, , ,

Vk —> B : kth_Spending_Signature, timestamp,
 Change,

(EQ 19)

The first two lines come from the payment of the customer toVk. Bank_Signature provides
the certification from a bank. gives the starting index for redemption.

Thekth_Spending_Signatureis used when double spending occurs.timestamp is believed
to indicate the “freshness” of the payment.Change shows the end index for redemption.
E(z) embeds the customer’s identity, which can only be decrypted by a certificate author-
ity. The certificate authority discloses the customer’s identity only if the broker proves that
the customer colludes with a vendor.

The broker first verifies the bank signature. Then he hashesCj+i i times. If it is equal toCj

in the k-1th vendor’s signature, the broker hashes itj more times to see if it equalsC0.
Then the broker checks if the range of coins {Cj+1, ... Cj+i } has already been redeemed.
This happens if the customer has double spent or the vendor double deposited. These two
situations can be detected and are discussed in the next subsection. If the redemption is
valid, the broker credits the vendor’s account and stores all the signed information for

Cj g xk(), n j–{ , }
SKVk 1–

Cert Vk 1–()

Cj g xk(), n j–{ , }
SKVk 1–

Cert Vk 1–()

Cj i+ g xk 1+(), n j– i–{ , }
SKVk

Cert Vk()

Cj g xk(), n j–{ , }
SKVk 1–

Cert Vk 1–()

E z()

Cj g xk(), n j–{ , }
SKVk 1–

22

detecting possible future frauds. Note that the broker cannot verify the spending signature
because he does not know the customer’s identity in the form required for Schnorr’s signa-
ture scheme verification. The bank signature givesg(v), while the signature verification
requiresv. Thus, the broker can only check if the spending signature is duplicated. A sum-
mary of the Wenbo Scheme is shown in Figure 4.

FIGURE 4. Summary of the Wenbo Scheme. The thick arrow refers to an interaction of a non-
Wenbo Scheme.

6.2 Evaluation

6.2.1 Forgery Prevention

A bank signature authenticates and certifies the initial chain of coins, and a change certi-
fies the unspent portion of the chain after each payment. A spending signature and a user
certificate authenticate a payment and vouch it to the vendor.

6.2.2 Double Spending Detection

A customer’s identity can be revealed if he attempts to double spend. This is because his
user identity is inside the key for the next payment(g(xi)), and this key is embedded in
either a valid bank signature or a change from the previous payment. To generate a valid
spending signature during a payment, the customer has to use the same key. When a cus-
tomer double spends with valid spending signatures, a vendor or a broker finds that the
bank signature and the coins are replayed and the spending signatures are different. In this
case, the vendor or a broker can apply Schnorr’s signature scheme to the spending signa-
tures to reveal the customer’s identity.

A customer can double spend with an invalid spending signature if a vendor colludes with
him. In this case, the broker has to ask the certificate authority to reveal the encrypted cus-
tomer’s identity (E(z)).

When a vendor double deposits the payment, the spending signature is replayed because
he cannot forge a customer’s signature. Since the vendor is not anonymous to the broker at

Customer Vendor Broker

Request for bank signature (using blind signature)Generate
coins

Generate
spending
signature

Payment (incl. Bank_Signature,

Change (optional)

Spending_signature, and
change from previous payment,

Bank sig, Change from previous payment,

and key for next payment)

spending sig, E(z), Change

23

redemption, the vendor can be caught easily. However, the customer’s identity will not be
revealed because the spending signature is the same.

6.2.3 Anonymity

The Wenbo Scheme satisfies the criterion of preserving a customer’s identity from a bro-
ker, and thus it is anonymous (refer to Section 2.3 on page 6 for the definition of anonym-
ity applied in this paper).

To prevent the bank from relating the coins to a customer, the scheme uses the blind signa-
ture technique during a withdrawal and a blinding function (g) to hide the customer iden-
tity in the bank signature. Moreover, it requires a vendor to encrypt the customer identity
(decrypted only by a certificate authority) at a redemption.

6.2.4 Collusion

This subsection only describes the type of collusion that may not be solved. Other types of
collusion are illustrated in the original paper ([8]).

In the Wenbo Scheme, a customer-vendor collusion means that a collusive vendor gener-
ates a valid change without receiving a valid spending signature from the customer. A
valid spending signature means that the key (g(x)) in the spending signature must match
the key in the previous change.

Suppose a customer wants to double spend his chain after(k-1)th payment by havingVE

sign an extra change. After that, the customer paysVk with Vk-1’s change, andVk’ with
VE’s change. WhenVk andVk’ turn in their payments, the broker detects the double spend-
ing, but he cannot use Schnorr’s signature scheme to find the customer identity because
the keys for the payments are different. Moreover, he cannot determine which party is col-
luding with the customer.

The broker has to rely on the key inVk-2’s redemption to prove thatVE colludes with the
customer. However, it is not known ifVk-2 will ever redeem the payment. In other words,
the case may never be solved. Figure 5 summarizes the collusion.

FIGURE 5. The customer asks VE to sign a coin. VE is malicious while others are honest. If Vk-2
does not redeem the payment, the bank cannot find out which party is at fault.

Vk-2 Vk-1 VE Vk Vk’

finds out

Valid change
signed by VE

Valid change
signed by Vk-1

(dishonest)

payment to Vk

payment to Vk’

payment to
Vk-1

payment to

VE cheats

Vk-2

24

6.2.5 Other Comments

Since Wenbo Scheme adopts the idea of authenticating a chain of hash values from Pay-
word, some of its features are the same as Paywords. They are listed as follows:

• Customers generate their own paywords.

• It uses the latest state for verification.

• Public key cryptography is required.

Some features that are different from Payword’s are as follows:

• Customers need to pay in advance.Unlike Payword, the Wenbo Scheme is debit-based
to customers and brokers. A customer’s account must be debited when the bank signa-
ture is issued to the coins because a broker cannot relate the coins to the customer at a
redemption.

• A long-term relationship is not required. Because a chain is not committed to a particu-
lar vendor, there is no preference for a long-term customer-vendor relationship.

• Chains need not be disjoint. The hash function can be a counter. Unlike other payment
schemes described in this paper, the hash function (h) in the Wenbo Scheme does not
need to be one-way or collision-resistant since it requires a spending signature to prove
that a purchase is initiated by the customer. In other words, the hash values of different
chains need not be distinct.

Other nice features of the Wenbo Scheme are as follows:

• Chains are universal. Unlike payword chain that is customer-vendor specific, the chain
of coins can be used to pay any vendors.

• Customers are anonymous. A customer identity is anonymous to a broker as long as the
customer does not double spend and the vendor hides the customer identity at redemp-
tion.

Undesirable features of the Wenbo Scheme are as follows:

• The Wenbo Scheme is more complicated. Making the chain universal and having ano-
nymity make the payment scheme more difficult to understand than the previous three
payment protocols.

• The number of signatures required grows with the number of payments. A spending sig-
nature and change must be generated for each payment.

7.0 Conclusion

Four micropayment schemes have been evaluated in this paper: Millicent, MicroMint,
Payword, and the Wenbo Scheme. They reduce computation costs by avoiding or amortiz-
ing the use of public key cryptography and by applying one-way and collision-resistant
hash functions to improve both on-line and off-line performance. They also cut down the
on-line storage and computation requirement by having an off-line broker. In addition,
they allow a more transient relationship between customers and vendors. However, readers

25

should keep in mind that all four micropayment schemes require a secure channel to
exchange secrets before a micropayment can take place.

Appendix A includes a summary of the features of the four payment schemes and com-
pares their computation costs and storage requirements. Appendix B describes the details
of Schnorr’s signature scheme used in the Wenbo Scheme.

7.1 Acknowledgment

I would like to thank Keith Moore, Hal Abelson, Evan Kirshenbaum, and Tracy Sien-
knecht for their helpful feedback and Michelle Hogan and Justin Liu for editing the paper.

8.0 Appendix A - Summary Tables

TABLE 1. Summary of the features of the four payment schemes. C = user or customer. V= vendor.
B = broker or bank.

Denomination
Produced
 by Anonymity

Credit- or Debit-
Based?

Millicent V- or B-specific scrip V and/or
B

No Debit to C, V and
B

Micro-
Mint

Coins satisfying
monthly criterion,
U_id, and V_id

B No Debit to C and B,
credit to V

Payword U-V-specific chains of
paywords

U No Credit

Wenbo
Scheme

Chains of coins U, certi-
fied by B

Yes, if no dou-
ble spending

Debit to C and B,
credit to V

26

TABLE 2. Summary of computation costs. Macropayment and double spending are excluded.
Assume no frauds discovered during verification. CU = customer’s certificate.

Before Payment
For U, During
Payment V Verification Redemption

Millicent (assume C has V’s scrip
for payment already)

1 hash/request 1 hash/request verifica-
tion

1 hash/V’s scrip verifi-
cation

1 hash/change genera-
tion

1 hash/reply generation

None

Micro-
Mint

(Assumes
a coin is a
U-V-spe-
cific k-
tuple

1 hash and storage/valid
x-value generated

k-1 subtraction to
locate the groups of x-
values satisfying U_id

k searches to get the
groups of x-values

1 hash/V_id

k-1 subtraction

k searches/coin
built

For each coin:

k hashes of x-values

k comparison for
monthly criterion

2(k-1) subtraction

1 hash/ U_id

1 hash/V_id

Same as V’s

Payword 1 request for CU

1 verification for CU

1 user signature genera-
tion/commitment

1 hash/payword genera-
tion

(optional if not
stored in
advance) 1 hash/
payword genera-
tion

1 signature verification/
commitment

1 signature verification/
CU

#(paywords-paid)
hashes

commitment
verification

CU verifica-
tion

#(paywords-
redeemed)
hashes

Wenbo
Scheme

1 request for CU

1 blind sig for bank sig-
nature generation/chain

1 hash/coin generation

1 key/payment for
using Schnorr’s scheme

1 spending sig-
nature genera-
tion/payment

(optional if not
stored in
advance) 1 hash/
coin generation

1 bank signature verifi-
cation

1 spending signature
verification using
Schnorr’s signature
scheme

1 verification for
change from Vlast

1 signature generation
for change

#(coins-paid) hashes

1 bank signa-
ture verifica-
tion

previous V
signature veri-
fication

1 change sig-
nature verifi-
cation

#(coins-paid)
hashes

27

TABLE 3. Storage requirements of the four payment schemes. () means the item is optional,
depending on the implementation of a protocol. CSK = customer-shared-key.

9.0 Appendix B — Schnorr’s Signature Scheme

This section is for those who are interested in the details of the signature generation, the
verification, and the mechanism for finding the user identity when the user double spends
in the Wenbo Scheme.

9.1 Signature Generation

The customer chooses a user secret (s) to generate his public key (v). p is a large prime (p

> 2512), andq is another large prime such thatq|(p-1).

v = a -smod p
where
aq = 1 mod p (EQ 20)

To sign a messagem, the user selects a one-time random number (r) such that

x = ar mod p
e = H(m, x)

 mod q (EQ 21)

(e, y) is the signature pair for message m. In the Wenbo Scheme, this pair is called the
spending signature of the coin (in this case,m). H is a one-way and collision-resistant hash
function.x is the public key ofm, and it is hashed intog(x). e, x, y, andv are all public
parameters.

Customer Vendor Broker

Millicent Scrip purchased

CSK

All V’s valid scrip

(CSK)

All B’s valid scrip

(V’s scrip)

CSK

MicroMint Coins purchased Valid received coins All valid coins

Customer purchase record

Payword (Payword chain, commit-
ments)

CU

For each chain:
n, i, wn

All valid Plast’s and M’s
received

All valid Plast’s and M’s
redeemed

Wenbo
Scheme

(coin chain)

CU

For each chain:
bank signature, last coin,
n, i, change from Vlast ,
and parameters for
Schnorr’s scheme

All valid signatures (and
certificates)

All valid signatures (and
certificates)

y r s e×+=

28

9.2 Signature Verification

To verify a received message (m’) with its signature(e, y), find z:

z = ayve mod p (EQ 22)

If e = H(m’, z) (i.e.x can be substituted withz), m’ is verified.

9.3 Double Spending

If a user double spends, there will be two spending signatures for a common range of
coins,(e, y) and(e’, y’), and they both are generated by the samex. The user secret (s) can
be found using the following relationship:

 mod q (EQ 23)

10.0 References

1. D. Chaum. Security without identification: Transaction systems to make big brother
obsolete. Communications of the ACM, 28(10): 1030-1044, Oct. 1985. http://
www.digicash.com/publish/bigbro.html.

2. DigiCash Inc. http://www.digicash.com/

3. S. Glassman, M. Manasse, et. al.The Millicent Protocol for Inexpensive Electronic
Commerce. http://www.research.digital.com/SRC/millicent/papers/millicent-w3c4/
millicent.html.

4. P. M. Hallam-Baker.Micro Payment Transfer Protocol (MPTP), Version 0.1. W3C
Working Draft Nov. 22, 1995. http://www.w3.org/pub/WWW/TR/WD-mptp.

5. P. M. Hallam-Baker.Electronic Payment Schemes. http://www.w3.org/pub/WWW/
Payments/roadmap.html.

6. Internet Keyed Payment Protocols (iKP). http://www.zurich.ibm.com:80/Technology/
Security/extern/ecommerce/iKP_overview.htm

7. S. Low, N. F. Maxemchuk, and S. Paul.Anonymous Credit Card. Proceedings of the
2nd ACM Conference on Computer and Communication Security, Fairfax, Virginia,
Nov. 2-4, 1994. ftp://ftp.research.att.com/dist/anoncc/anoncc.ps.Z.

8. W. Mao.A Simple Cash Payment Technique for the Internet.Proceedings of 1996
European Symposium on Research in Computer Science (ESORICS’96), Springer-
Verlag, September 1996. http://wenbomao.hpl.hp.com/esorics96.ps.

9. W. Mao. Personal email addressed to the author on Aug. 23, 1996.

10. The NetBill Electronic Commerce Project at Carnegie Mellon University. http://
www.ini.cmu.edu:80/NETBILL/

11. R. Rivest and A. Shamir.PayWord and MicroMint: Two simple micropayment
schemes. May 7, 1996. http://theory.lcs.mit.edu/~rivest/RivestShamir-mpay.ps.

s
y y'–
e e'–
------------=

29

12. R. Rivest. The MD5 Message Digest Algorithm, Internet RFC 1321. http://
theory.lcs.mit.edu/~rivest/Rivest-MD5.txt.

13. RSA Inc., “How large is a Modulus (Key) Should be Used in RSA?”Frequently Asked
Questions About Today’s Cryptography. Version 3.0 http://www.rsa.com/rsalabs/
newfaq/q12.html.

14. B. Schneier. Section 6.4, “Digital Cash,”Applied Cryptography: Protocols,
Algorithms, and Source Code in C. John Wiley & Sons, New York, 1993.

15. B. Schneier. Section 14.5, “MD5,”Applied Cryptography: Protocols, Algorithms, and
Source Code in C. John Wiley & Sons, New York, 1993.
This section has a missing + operation and misdefined <<<. Please refer to [17] for corrections.

16. E. Stefferud. Payment Systems for Electronic Commerce.Berkeley Multimedia and
Graphics Seminar. University of California at Berkeley. Sep. 11, 1996.

17. H. P. Sun. “Lecture 6, 9-27-1995.”6.915 Computer and Network Security. Lecture by
R. Rivest of Massachusetts Institute of Technology. http://theory.lcs.mit.edu/~rosario/
6.915/lecture6.ps.

18. J. Thomas. “Lecture 17, November 7, 1995.”6.915 Computer and Network Security.
Lecture by R. Rivest of Massachusetts Institute of Technology. http://
theory.lcs.mit.edu/~rosario/6.915/lecture17.ps.

