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Abstract. In this paper we examine di�erences between the two stan-

dard methods for computing the 2-Selmer group of an elliptic curve. In

particular we focus on practical di�erences in the timings of the two

methods. In addition we discuss how to proceed if one fails to determine

the rank of the curve from the 2-Selmer group. Finally we mention briey

ongoing research into generalizing such methods to the case of computing

the 3-Selmer group.

Computing the 2-Selmer group is a basic problem in the computational the-
ory of elliptic curves over the rationals. It is, assuming the Tate-Shaferevich
group, X, has no 2-primary part, the most e�cient way known of computing
the rank and generators of the Mordell-Weil group. That we do not have an al-
gorithm to compute the Mordell-Weil group in general is one of the major open
problems in the theory of elliptic curves. The computation of the Mordell-Weil
group is basic to many Diophantine problems such as computing the set of in-
tegral points on a curve via elliptic logarithms, [11], [22], [21], or verifying the
Birch-Swinnerton-Dyer conjecture, [2], [3].

Throughout this paper, by an elliptic curve we shall mean a curve of the form

E : Y 2 = X3
� 3IX + J (1)

where I; J 2 ZZ. We let � = 4I3 � J2 denote the discriminant of the curve.

There are currently two methods used to compute the 2-Selmer group, S2.
The �rst method, which is essentially part of the standard proof of the Mordell-
Weil theorem, uses number �eld arithmetic. This method works directly with
the Selmer group and can therefore make explicit use of the underlying group
structure of the elements. The second method, due to Birch and Swinnerton-
Dyer, [2], computes S2 in an indirect way by computing a set of binary quartic
forms which indirectly represent the elements of S2.

The indirect method of Birch and Swinnerton-Dyer has recently undergone
major improvement due to the work of Cremona, [8]. The method has complexity



O(
p
j�j), but is known to be very fast in practice. Cremona has implemented

this method in his program, mwrank, which is now widely used.
On the other hand the direct method can be shown to have conjectured sub-

exponential complexity in j�j, see [20]. This sub-exponential behaviour is due to
the conjectured sub-exponential complexity of determining the basic invariants
of cubic number �elds, such as generators of the unit and class groups.

We decided to compare the practical behaviour of the two methods. This pa-
per describes our �ndings. For the indirect method we used the code inmwrank

which we modi�ed slightly so that it only output S2 and did not try to determine
which quartics had small rational points. It turned out that this modi�cation
made very little di�erence in practice.

After comparing the methods to compute S2 we look at how one can over-
come the obstruction to computing E(Q)=2E(Q). The �rst way is by performing
further descents on the elements in S2. We shall see that the indirect method of
computing S2 is more suited to performing these second descents.

Finally we report on problems that one encounters when trying to generalize
the direct and indirect methods to compute the 3-Selmer group of an elliptic
curve, S3. If such a method could be made practical this would allow the com-
putation of the Mordell-Weil group when there exists no 3-torsion in X. This
clearly would be of importance when there elements of order 4 inX, as then the
methods for constructing S2 and performing further descents become useless.

The authors would like to thank P. Swinnerton-Dyer, E. Schaefer and J.
Merriman for useful conversations and communications during which the work
in this paper was carried out.

1 The Direct Method

If F (X) = X3 � 3IX + J is reducible then the curve has a point of order two
so decent via two-isogeny should always be the preferred method. We therefore
assume that F (X) is irreducible.

We shall quickly recap on the direct method, so as to explain our implemen-
tation in more detail. Let � denote a root of F (X) and set K = Q(�). Let S
denote the set of places of K which either divide 2� or are in�nite. We de�ne
K(S; 2) to be the set of elements ofK, modulo squares, which give an unrami�ed
extension away from S on addition of their square root to K.

Using the LiDIA, [14], and PARI, [1], libraries we wrote a C++ program to
compute a set of generators for the group K(S; 2) in any given example. This
is the \hard" part of the direct method which has conjectured sub-exponential
complexity. The method used was the one described in [20].

We then restrict our attention to the subgroup, H , of K(S; 2) which is the
kernel of the norm map:

NK=Q : K(S; 2)! Q�=Q�2:

Clearly determining the generators ofH is simply an application of linear algebra
over IF2. Then for every element � 2 H we need to determine whether there



exists X;Z 2 Q such that we can �nd a � 2 K with

X � �Z2 = ��2:

Using a standard method, see [5][Page 70], this reduces the problem to deter-
mining a simultaneous solution to a system of quadratic forms

Q1(x1; x2; x3) = 0;

Q2(x1; x2; x3) = �x24;

where Q1 and Q2 are quadratic forms in three variables. The 2-Selmer group
is those set of �'s which give rise to a pair as above which have a solution
everywhere locally. The �rst test is whether Q1 = 0 has a solution everywhere
locally. If it does we can �nd a global solution, by the Hasse Principle for curves
of genus zero, and use this to express the general solution, (x1; x2; x3), as three
quadratic forms in two variables. Substituting these into the second equation
gives a \quartic" of the form

x24 = G(m;n)

whereG(m;n) is a binary quartic form. We can then test whether this equation is
locally soluble everywhere using the random polynomial time method described
in [15]. This last method only works for p 6= 2 but for small p, in particular
p = 2, we can use the standard method which is explained in [7].

If one naively carries out this method the two forms, Q1 and Q2, we obtain
can have rather large coe�cients. The global solution to Q1 = 0 can be hard
to determine as the standard solution method, due to Lagrange, requires square
root extraction modulo composite moduli. The quartic form, G(m;n), will in
general also have prohibitively large coe�cients. It should be noted that the
indirect method does su�er from this problem as it computes \reduced" quartic
forms.

To get around these problems we note that we need only check locally sol-
ubility at each stage for primes dividing 2� and in�nity. We could therefore
carry the above computations out for each prime in turn and not work glob-
ally. Suppose we wish to test � for the prime p, it would be advantageous if we
could decide what level of p-adic precision we would need before starting any
computation. To see how to do this write the two quadratic forms as

Q1(x) = x
tAx = 0;

�Q2(x) = x
tBx = x24;

where A and B are symmetric integer matrices. Then by a unimodular change
of variable we can diagonalize A. The matrices of the new equivalent quadratic
forms we shall by abuse of notation also refer to as A and B. We let @(A;B)
denote the discriminant of det(XA�B).

Lemma1. There is an algorithm to detect the local solubility of the pair of

quadratic forms at an odd prime p which runs in random polynomial time and

which requires working to a p-adic accuracy of pe where e = ordp(2
12@(A;B) det(A)2).



Proof. We �rst check whether xtAx = 0 has a solution modulo p. If it does then
we �nd a p-adic solution (x1; x2; x3) � (�1; �2; �3) (mod pe) such that, after
a possible reordering of the variables, we have �i 2 ZZ and �1 6� 0 (mod p).
This last step can be done in polynomial time using Hensel's Lemma. As A =
diag(a1; a2; a3) we set

r = �

�
a2m

2 + a3n
2

2a2m�2 + 2a3n�3

�
;

for two new variables m and n. Then all solutions to Q1 � 0 (mod pe) are
parameterized by m and n where

x1 = r�1;

x2 = r�2 +m;

x3 = r�3 + n:

Substituting these into x24 = x
tBx and clearing the denominator of 4(a2m�2 +

a3n�3)
2 we obtain a binary quartic form, G(m;n) (mod pe). The discriminant

of G(m;n) is equal to
� = 212@(A;B)a21a

2
2a

2
3�

6
1;

as can be veri�ed by a computer algebra system. To check the local solubility
of x24 = G(m;n) at p we need only have computed G(m;n) to an accuracy of at
most pordp(�) = pe. That we can determine the local solubility of x24 = G(m;n),
when p is odd, in random polynomial time follows from Section 7 of [15], as has
already been mentioned.

A similar method to the one above can be applied when one wishes to check the
pair of forms for local solubility over IR or over Q2. Care of course needs to be
taken that one works to a su�cient number of decimal or 2-adic digits.

One does not actually have to perform the above for all values of � 2 H ,
which we recall was the kernel of the norm map from K(S; 2) to Q�=Q�2. This
is because we can make use of the underlying group structure. We adopted the
method in [20] for this purpose which greatly sped up the overall computation.

The entire method was programmed in C++ using the LiDIA library and
using the program for K(S; 2) which we mentioned previously.

2 The Indirect Method

The indirect method proceeds by computing the binary quartic forms directly.
This is done by application of what is essentially 19th century invariant theory.
This idea is due to Birch and Swinnerton-Dyer, [2], and in recent years the
method has been greatly improved and simpli�ed by work of Cremona, [8]. We
note that the map, �, from the curve

D : z2 = G(m; 1)

to the elliptic curve, E, in the \descent diagram"



D

E E-

6

�
�
�
���

[2]

�

is given by the covariant syzygy of the binary quartic G. This map, �, can be
used to map rational points on D to representatives of the cosets of E(Q) in
E(Q). Classical invariant theory, see [10] or [12], tells us that G(m;n) has two
fundemental invariants denoted by I and J . These are the values of I and J
used to de�ne our elliptic curve in equation (1). By appealing to [2][Lemmata 3,
4 and 5] we can assume that G(m;n) has integral coe�cients at the expense of
increasing the possible values of (I; J) from a single pair to a couple of pairs. It
is then possible to construct all the possible binary quartic forms, G(m;n), upto
equivalence, using a standard reduction theory, [13]. As this method is explained
well elsewhere we shall be content with just giving the following references, [2],
[7] and [8].

3 Numerical Results

We ran both mwrank and our own program for the direct method on a list of
over 2900 curves, made up of a subset of the list of curves of conductor less than
one thousand plus some randomly chosen curves with large coe�cients or ranks
of the order of 4 and 5. The results we summarize in the table below.

The indirect method in the range of � we considered often had much shorter
running times on average. However there was wild variation in the running times
for the indirect method.

The direct method on the other hand exhibited remarkably small variation in
running times. Clearly, the direct method is as fast as the underlying programs
one is using to compute �eld invariants, in our case PARI. There were some
curves of "small" discrmininant which took mwrank a couple of hours to perform
the computation but which took the direct method under twenty seconds. John
Cremona has informed us that later versions of mwrank will overcome these
problems using new improvements he has been developing. However, for curves
of large discriminant, the direct method can fail because PARI does. Sometimes
for these curves mwrank succeeded and other times not.

We divided the curves up into twenty equal groups ranked according to the
size of j�j. In Table 1 we give the average and worst case running times for
each of these twenty groupings. The timings are given in seconds and represent
processor time and not user time.

An obvious course of future investigation would be to investigate the indi-
rect method more closely. Perhaps there is an automatic decision which can be
performed which would select the best method from the two available.



Table 1. Comparison of the Direct and Indirect Methods

Indirect Method Direct Method

log j�j Mean Worst Mean Worst

4.88-7.03 0.29 14.25 14.17 17.56

7.06-8.03 1.02 116.98 13.79 30.05

8.04-8.52 0.32 6.42 13.79 18.04

8.52-8.83 50.40 7205.7 14.56 42.39

8.83-9.05 0.27 2.27 14.81 27.82

9.05-9.24 0.28 4.15 14.66 29.64

9.24-9.39 6.49 448.18 14.95 24.21

9.39-9.66 1.24 149.04 14.91 30.03

9.66-9.91 0.44 7.95 15.84 81.91

9.91-10.11 23.48 3351.45 15.38 75.47

10.11-10.35 18.68 2650.16 15.02 29.94

10.35-10.55 7.51 747.76 16.45 102.15

10.55-10.74 0.34 7.96 15.50 37.96

10.74-10.91 0.29 2.08 16.14 47.86

10.91-11.17 3.15 386.26 16.77 111.06

11.18-12.02 47.15 2629.17 15.99 32.95

12.02-12.49 35.88 3025.83 18.36 51.35

12.49-12.90 1.46 76.62 19.50 152.16

12.90-15.34 2052.7 141682 18.56 55.99

15.34-21.55 3133.9 95520 19.91 215.52

4 Further descents and the Mordell-Weil group

We now discuss how one can perform further descents with both the direct and
the indirect methods and in addition determine elements in the Mordell-Weil
group and not just S2. As will be seen the indirect method is more e�cient than
the direct method in this case as well.

We now let r denote the rank of the Mordell-Weil group of E. The above
two methods as described compute S2 which, assuming there is no two torsion
on E, has order 2r. If one can �nd r independent rational points on E then we
then know that the rank is r. We hence have a sublattice of �nite index which
we can pass to a procedure for enlargement to the whole of E(Q), see [19] for
such a procedure.

If we cannot �nd enough points we could be in one of two positions:

1. The points exist but the smallest ones are far too large to be spotted by a
simple search procedure.

2. There exists a non-trivial element inX of order two.

We would clearly like to be able to cope with both occurances. In the �rst
situation it is better to work with the representation that the indirect method



gives us for elements of S2, namely the global quartics;

z2 = G(m; 1) = am4 + bm3 + cm2 + dm+ e:

In the second situation it is better to represent elements in S2 by means of an
algebraic integer � 2 K(S; 2).

If we let p = 3b2 � 8ac denote the seminvariant of G(m;n) of degree two
and weight two then we can pass from the representation used in the indirect
method to that used in the direct method using the formula

� =
4a� + p

3
;

see [8]. To go the other way is a little more tricky, which is a major drawback of
the direct method as we shall now see.

In the indirect method we can, given an element of S2

D : z2 = G(m; 1);

determine whether it has any small solutions and then map these to E using the
covariant syzygy. Any element of E(Q) we �nd in this way we would expect to
have much larger height than the corresponding point on D. Hence this is a way
of �nding points of large height on the curve. As the image of a point on each
D 2 S2 gives a representative of a coset of 2E(Q) in E(Q), this hopefully allows
us to determine r independent points on E.

Now suppose that we cannot �nd any small solutions on the curveD. We �rst
test whether the curve D could arise as an image of an element of the 4-Selmer
group, S4, if not then D must be an element of order two inX. To test whether
D is an image of an element in S4 we map the curve, D, to the corresponding
element � 2 K(S; 2) and then use the method of [6], which makes use of the
Cassels-Tate pairing onX. Finally, if D does arise as an image of an element of
S4, we can apply the method of [15] to perform a further descent on the curve
D and actually determine the element of S4. Searching for points on this further
descent gives us a way of �nding points on D of large height, which in turn gives
us a way of �nding points on E of very large height.

In the direct method such a variety of techniques are not available to us.
Given � 2 K(S; 2) we cannot determine a corresponding curve D with ease,
which is why we only worked locally in the algorithm of Section 1. We only have
available the Cassels-Tate pairing to detect whether � corresponds to the image
of an element of S4. In practice this may be all that is required but we do fail
to obtain a method of searching for points of large height.

5 The 3-Selmer group

Clearly the problem that remains is; what should we do when we have a curve
which has an element of 4-torsion inX ? If we could construct S3 we would have
at least solved our problem in the cases whereX has no elements of order three.



However there is a problem, although the algorithms to construct the m-Selmer
group in the standard literature are constructive they are not exactly practical
methods. For example they often involve determining the m-Selmer group of
the curve over a large degree number �eld and then constructing the m-Selmer
group over Q using Galois theory.

We shall assume that our curve does not possess a 3-isogeny. If a 3-isogeny
does exist one can attempt to determine the rank of the curve using descent via
3-isogeny. This has been explained in the literature in many places, see [24] for
a very accessable account.

Firstly we look at the generalization of the indirect method. As was noted by
Swinnerton-Dyer, [4][Page 269], an element of S3 can be represented as a ternary
cubic form

C :
a300x

3 + 3a210x
2y + 3a201x

2z + 3a120xy
2 + 3a102xz

2

+6a111xyz + a030y
3 + 3a021y

2z + 3a012yz
2 + a003z

3 = 0

and the map, �, in the \descent diagram"

C

E E-

6

�
�
�
���

[3]

�

is given by the covariant syzygy, [16][Page 203], of the ternary form, C, just as
it was in the indirect method for computing S2. Hence if we can determine all
possible curves C upto the necessary equivalence then we can test them for local
solubility and determine S3. In addition, using the covariant syzygy, we can map
any rational points on C to representatives of cosets of 3E(Q) in E(Q).

The curve C has two classical fundamental invariants, usually denoted S and
T , these play the exactly the same role as the invariants I and J before. The
curve is non-degenerate if T 2 + 64S3 6= 0. Using the covariant syzygy one can
relate the pair (S; T ) to the pair (I; J) which de�ne the elliptic curve (1).

Swinnerton-Dyer has pointed out to us, [23], that if the curve C has integral
coe�cients, by which we mean the aijk above are integral, then one can construct
representatives of equivalence classes of all such curves with given invariants. A
simpli�cation of the method of Swinnerton-Dyer is given in the following result;

Theorem2. Let S and T be two given integers such that T 2+64S3 6= 0. There is
an algorithm which computes a complete set of representatives from the GL3(ZZ)-
equivalence classes of ternary cubic forms with integral coe�cients and invari-

ants given by S and T .

Proof. We �rst determine a �nite set of SL3(IR)-equivalence classes. Let F (x; y; z)
be a ternary cubic form with invariants S and T . By [9] there is a real unimodular
transformation which sends F to the form

G = �(X3 + Y 3 + Z3) + 6�XY Z;



where �; � 2 IR. The invariants of G, and hence of F , are given by

S = �3� � �4;

T = 8�6 � �6 + 20�3�3:

Hence, by solving these two equations for � and �, we can determine a �nite set
of possible pairs (�; �) 2 IR2. Now

0
@X
Y
Z

1
A = A

0
@x
y
z

1
A

where A = (�1;�2;�3) 2 SL3(IR). We then apply a GL3(ZZ) transformation to
F (x; y; z) to obtain a form, which we also denote by F (x; y; z), for which the
columns of A form a Minkowski reduced basis. Hence

j�1j � j�2j � j�3j and j�1�2�3j � 2:

Now if

F (x; y; z) =
X

i1+i2+i3=3

3!

i1!i2!i3!
ai1i2i3x

i1yi2zi3

then it is easy to see that

jaijk j � c1j�1j
i
j�2j

j
j�3j

k; (2)

where c1 = j3j�j+ 6j�jj.

Suppose j�2j < c
�1=3
1 then we obtain ja300jj; ja210j; ja120j; ja030j < 1. As these

are all integers we have a300 = a210 = a120 = a030 = 0, which implies that

T 2 + 64S3 = 0, a contradiction. So we can assume that j�2j � c
�1=3
1 .

Now suppose that j�1j < c
�4=3
1 =2. Then as j�1j

2j�3j � 2jj�1j=j�2j < c�11 we
have that a300 = a210 = a201 = 0 which again implies that T 2 + 64S3 = 0. So

we must have j�1j � c
�4=3
1 =2.

All that remains is to bound the values of aijk which we can now do using
the three inequalities

j�1j � c
�4=3
1 =2; j�2j � c

�1=3
1 ; j�3j � 4c

5=3
1

and inequality (2). We obtain

ja300j; ja210j; ja120j; ja201j; ja111j � 2c1;

ja102j � 8c31;

ja030j; ja021j; ja012 � 16c41;

ja003j � 64c61:

So to �nd all forms F (x; y; z) up to GL3(ZZ)-equivalence we loop through all
coe�cients which are bounded by the inequalities above and determine which
forms have invariants given by S and T . Such a set will contain a representative



from each GL3(ZZ)-equivalence class. To determine a unique representative from
each class we need to determine which forms in the list are GL3(ZZ)-equivalent.
But this is just a matter of solving a set of eleven non-linear equations in nine
integer unknowns.

However there is a problem; before we can apply this result we need to reduce
to the consideration of forms with integral coe�cients. As mentioned earlier this
was done in the case of computing S2 by applying to Lemmata 3, 4 and 5 of [2].
The standard method for doing this for binary quartic forms, which is explained
in detail in [18], appears to su�er from combinatorial explosion when applied to
ternary cubic forms. We have therefore been unable to fully work out the details
of how this can be done for S3.

We now turn our attention to the direct method. We apply the procedure
which is explained in [17]. Let L denote the algebra

L = Q[�; � ]=(f(�); g(�; �)) �= Q[� ]=(h(�))

where

f(�) = �4 + 2A�2 + 4B� �A2=3;

g(�; �) = �2 � �3 �A� �B;

h(�) = �8 + 8B�6 + (8A3=3 + 18B2)�4 � 16A6=27� 8B2A3
� 27B4;

where A = �3I and B = J . Then (�; �) represents a generic point of order 3
on our elliptic curve. The algebra L decomposes into a sum of number �elds,
L =

Pa
i=1Ki, and as we are assuming that E possesses no rational 3-isogeny we

have a = 1 or 2. Every element of E(Q) can be represented by a rational divisor
class of degree zero,

nX
i=1

Pi �

nX
i=1

Qi;

where Pi; Qi 2 E(Q) are not points of order 3. Let Si denote the set of primes
ideals of Ki lying above 3;1 and the primes of bad reduction of the curve E.

There is then an injective group homomorphism given by

� :

�
E(Q)=3E(Q) ! KerfNL=Q :

Pa
i=1Ki(Si; 3)! Q�=Q�3gPn

i=1 Pi �
Pn

i=1Qi !
Qn

i=1 �(Pi)=�(Qi)

where
�(x; y) = 2�y � 2�2 + (3�2 +A)(� � x) (mod L�3):

Using a minor adaption of the program mentioned earlier we can compute
K(S; 3). However the problem is that one needs the equivalent local maps, �p, at
all the \bad" primes to also be injections. A little group cohomology reveals that
this means that for all \bad" primes, p, the galois group Gp = Gal(Qp(E[3]);Qp)
must not be equal to either the cyclic or symmetric group on three elements.
Unluckily such groups occur quite often and the method fails.



In a future paper we intend to show how one can remove such an obstruction

and compute explicitly S3 for any given elliptic curve using the direct method

outlined above.

6 Summary

We have shown that for the case of computing the 2-Selmer group that the

indirect method of Birch and Swinnerton-Dyer appears to be more suitable.

This is even though it has a much worse complexity than the direct method

using number �eld arithmetic. On the other hand our early investigation of the

case of computing the 3-Selmer group seems to point in the direction that the

direct method via number �elds is to be the preferred one.
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