
Experiments Using an Analogue of the
Number Field Sieve Algorithm to Solve
the Discrete Logarithm Problem in the
Jacobians of Hyperelliptic Curves

Nigel P. Smart
Networked Systems Department
HP Laboratories Bristol
HPL-97-130
October, 1997

discrete logarithm,
hyperelliptic curves,
cryptography

In this paper we report on an implementation of the
algorithm of Aldeman, De Marrais and Huang for the
solution of the discrete logarithm problem on Jacobians
of hyperelliptic curves. The method of Aldeman, De
Marrais and Huang is closely related to the Number
Field Sieve factoring method which leads us to consider a
“lattice sieve” version of the original method.

 Copyright Hewlett-Packard Company 1997

Internal Accession Date Only

EXPERIMENTS USING AN ANALOGUE OF THE NUMBER

FIELD SIEVE ALGORITHM TO SOLVE THE DISCRETE

LOGARITHM PROBLEM IN THE JACOBIANS OF

HYPERELLIPTIC CURVES

N.P. SMART

Abstract. In this paper we report on an implementation of the algorithm

of Aldeman, De Marrais and Huang for the solution of the discrete logarithm

problem on jacobians of hyperelliptic curves. The method of Aldeman, De

Marrais and Huang is closely related to the Number Field Sieve factoring

method which leads us to consider a \lattice sieve" version of the original

method.

The supposed intractability of the discrete logarithm (DLOG) problem in the
Jacobians of curves de�ned over a �nite �eld can be used as the basis of public
key cryptosystems. For curves of genus one, elliptic curves, this was proposed
in [11] and such systems are now in use. For hyperelliptic curves the analogous
system was proposed in [12]. The reason for preferring the use of Jacobians of
curves as the underlying group, rather than �nite �elds, is due to the fact that
there is no known subexponential algorithm for solving the DLOG problem in the
Jacobian of a general curve. This should be contrasted to the case of �nite �elds
where there exists conjectural subexponential time methods (based on the number
�eld sieve factoring algorithm) to solve the DLOG problem. There are provably
subexponential time methods for solving the discrete logarithm problem in �nite
�elds, however in practice these are not as fast as the number �eld sieve algorithm.

In [1], Adleman, De Marrais and Huang (ADH), proposed a conjectural subex-
ponential method for the DLOG problem in Jacobians of hyperelliptic curves of
large genus. This method was based on the ideas of the function �eld sieve algo-
rithm which can be used to solve the discrete logarithm problem in F2n , [2]. The
function �eld sieve is itself based on Pollard's Number Field Sieve, NFS, algorithm
for factoring integers, [14].

The ADH method appears to be only of theoretical interest as for practical sys-
tems the genus is usually chosen to be small so that the underlying group operations
can be performed quickly. Indeed the group is usually the genus one case of the
group of points on an elliptic curve. There is however some, at least theoretical,
interest in studying where the cross over point comes between the various methods
to solve the DLOG problem such as the exponential methods of Pollard, Pohlig and
Hellman and the method of ADH.

Recently Paulus, [16], and Flassenberg and Paulus, [8], have carried out such a
comparison for imaginary quadratic function �elds (or hyperelliptic curves with one
rami�ed point above in�nity). Flassenberg and Paulus did not, however, use the
method of ADH directly. Instead they made use of the fact that hyperelliptic curves
correspond to degree two function �eld extensions. Then using the analogy between

1

quadratic function �elds and quadratic number �elds they adapted the class group
method of Hafner and McCurley, [10] (see also [6]). This combined with a sieving
operation provided a working method which could be applied to hyperelliptic curves
of small genus. It should be pointed out that although Flassenberg and Paulus did
not solve discrete logarithm problems their methods are such that they can be easily
extended so that they do.

The NFS algorithm can itself be used to compute class groups of arbitrary degree
number �elds. There are many similarities between the NFS method and that
of Hafner-McCurley (and its generalizations). They are both relation generation
methods, in that one chooses a set of factor base elements and then one uses some
method to produce random relations between elements of the factor base. These
relations are stored in a relation matrix which is �nally used to compute the group
structure or solve a DLOG problem by application of the Smith and Hermite normal
form algorithms.

The main di�erence is in how the relations are computed. In the Hafner-
McCurley method the relations are obtained by reducing random power products
of the factor base. This can lead to the production of very dense relation matrices.
In the NFS method the relations are obtained by sieving to �nd elements of smooth
norm. This leads to generally sparse relation matrices.

Generalizing Hafner-McCurley to non-quadratic number �elds can be done but
is rather one has to be careful as to how one reduces the power products of elements
of the factor base, see [6] for how this can be done. The NFS method clearly does
not su�er from this problem and recent experiments have shown it to be rather
e�cient for computing class groups of general number �elds, [4].

For function �elds of degree greater than two the merits of the NFS type approach
are immediate as reducing power products of divisors appears to be at least as
complicated as the number �eld case. Hence, one could argue that, the analogue
of Hafner-McCurley would be relatviely hard to implement for non-hyperelliptic
curves, whilst the analogue of NFS would be relatively easy. Jacobians of non-
hyperelliptic curves may be of interest in the distant future if a sub-exponential
algorithm for solving the DLOG problem on Jacobians of hyperelliptic curves is
ever found.

In this paper we describe an implementation of the analogue of NFS for hyper-
elliptic function �elds. We essentially adapt the method of ADH, however we use
the sieving techniques of Flassenberg and Paulus, [8], and, unlike ADH, we include
the rami�ed primes in the factor base. We also make use of optimizations and ex-
perience from the factoring problem. For instance we make use of Pollard's Lattice
Sieve, [17]. It remains to note that one can probably generalize the method of this
paper to Jacobians of non-hyperelliptic curves. This should be especially easy when
the curve has only one rami�ed divisor lying above in�nity.

The author would like to thank S. Paulus for making available preprints of his
work and some helpful electronic conversations.

1. The Basic Method

Let C denote a hyperelliptic curve of genus g de�ned over Fq , with imaginary
quadratic function �eld K. For simplicity we shall assume that the characteristic
of Fq is not equal to 2. In particular this means that C can be given in the form

C : Y 2 = F (X)
2

where F (X) is a square free, monic polynomial of degree 2g + 1, with coe�cients
in Fq . A divisor on C will be called semi-reduced if it is e�ective and if when a

point, P , occurs in the support of the divisor then the point ~P does not, where ~P
denotes the image of P under the hyperelliptic involution. A semi-reduced divisor,
which is de�ned over Fq , can be represented by two polynomials a; b 2 Fq [x] which
satisfy

i) deg b < deg a.
ii) b is a solution of the equation b2 � F (mod a).

Such a divisor we shall denote as div(a; b), and it represents the Fq -rational divisorX
xi

mi(xi; b(xi))

where the sum is over all roots xi of a, where each root has multiplicity mi.
The Jacobian of C, which we shall denote by J(C), can be represented uniquely

by reduced divisors. A reduced divisor is a semi-reduced divisor as above but of
degree less than or equal to g. Hence the polynomial a above will have degree less
than or equal to g. The identity of the group law on J(C) is given by O = div(1; 0),
and addition can be performed using the well known algorithm of Cantor, [5].
Cantor's algorithm contains a subprocedure which takes a semi-reduced divisor
and reduces it to a reduced divisor; we shall denote this procedure by reduce and
will return to it below.

The Jacobian we recall is equal to the group of divisors of degree zero modulo
principal divisors. An element of J(C) we shall represent by div(a; b), which will
represent the Fq -rational degree zero divisorX

xi

mi(xi; b(xi))� (deg a)1;

with xi and mi as above.
As K is a quadratic function �eld, prime divisors, P , in K come in one of three

varieties. We let p denote the prime of Fq [x] which lies below P in which case we
have:

P rami�es

In this case p divides F and there is only one rami�ed prime divisor, P , lying above
p. We shall denote this prime divisor by div(p; 0).

P is inert

In this case p does not divide F and there is no solution to the equation

Y 2 � F (x) (mod p)

in the �eld L = Fq [x]=(p). Whether such a solution exists can either be determined
using a standard generalization of the legendre symbol or by factoring Y 2�F over
the �eld L. Such prime divisors we shall ignore in our algorithm.

P splits

As in the inert case p does not divide F but now the equation

Y 2 � F (x) (mod p)
3

has two solutions, r1 and r2 both of degree less than p. The prime, p, then splits
into the two divisors

P = div(p; r1) and ~P = div(p; r2):

The values of the polynomial r1 (and hence r2) can either be determined by factor-
ing Y 2 � F over the �eld L = Fq [x]=(p), or using an obvious generalization of the
ressol algorithm of Shanks, see [6][Algorithm 1.5.1]

The method of ADH generates random elements of the function �eld of the form

f = a(x)y + b(x);

with coprime a(x); b(x) 2 Fq [x]. The method then tries to factor the divisor div(f)
over a predetermined set of prime divisors (the factor base). In the original pre-
sentation the factor base is chosen to be the set of all split prime divisors of small
degree in K. The small degree is the drawback to curves of small genus, for elliptic
curves the factor base would essentially consist of half of the points on the curve
over Fq .

The decision as to whether an element of the required form factored over the
factor base was decided, in [1], using the fact that in random polynomial time one
can factor polynomials over �nite �elds. In the standard NFS factorizations are
expensive so one replaces them by a sieving procedure. Factoring polynomials over
�nite �elds is on the other hand cheap so for a complexity theoretic answer one does
not need to use a sieving technique. However in practice a sieving technique for
function �elds, developed by Flassenberg and Paulus, has proved to be particularly
useful.

Determining the prime divisor decomposition of the function f can be done via
the following proposition, once we have found the factorization of b2 � a2F .

Proposition 1. Let a(x); b(x) = Fq [x] be coprime polynomials, let f denote the

function a(x)y + b(x) and set

Nf = NK=Fq [x](a(x)y + b(x)) = b(x)2 � a(x)2F (x) =

rY
i=1

pi(x)
mi ;

where pi(x) 2 Fq [x] are irreducible. Then div(f) has only rami�ed or split primes

in its support and we have

div(f) =

rX
i=1

midiv(pi; ri)� (

rX
i=1

mi)1;

where ri is the unique polynomial of degree less than the degree of pi such that

a(x)ri(x) + b(x) � 0 (mod pi(x)) or � a(x)ri(x) + b(x) � 0 (mod pi(x)):

2. The Implementation

In this section we describe our basic implementation of the NFS-type method of
ADH. In our description we assume that q denotes a rational prime, small changes
need to be made when q is a prime power. We assume we are given two reduced

4

divisors D1 and D2 and we wish to determine a solution (if one exists) to the
equation

D2 = [m]D1:

2.1. Choosing the Factor Base. We �rst enter into the factor base all prime
divisors of K which lie in the support of our two divisors D1 and D2. We then add
in all rami�ed divisors in K, although this is not done in ADH, we have found that
this increases the yield of the sieve quite dramatically for very little extra work.
Then we add in a random set of split prime divisors of various degrees up to g. A
parameter B is entered to the factor base generation algorithm and we choose at
most B degree one split prime divisors, B=2 of degree two, B=3 of degree three and
so on. For the curves with Jacobians with orders greater than around ten million
we also limited the number of large degree primes in the factor base, this was to
ensure the size of the factor base was not too large and consisted mainly of small
degree primes. Practical experiments have shown this to be a reasonable strategy
for choosing the factor base, however more research needs to be carried out on what
an optimal choice would be. We note in passing that if a prime divisor P is in the
factor base then we need not include its conjugate ~P in the factor base as we have
the trivial relation;

P + ~P � 21 � div(1; 0) = O in J(C):

In what follows we let N denote the number of elements in the factor base we have
chosen.

2.2. Setting up the matrix. The idea of the NFS/ADH method is to generate
random relations on the elements of the factor base and then perform an index
calculus method to solve the discrete logarithm problem. The relations that we
�nd are stored in the columns of a matrix with N + 2 rows. The �rst 2 rows
correspond to the virtual elements of the factor base given by D1 and D2 whilst
each of the last N rows correspond to an element in the factor base. We can
instantly generate three relations;

1. Place a �1 in row one, column one and then enter the factorization of the
divisor D1 over the factor base in the relevant rows of column one.

2. We do the same in column two with the divisor D2, except now we place the
�1 in row two, column two.

3. In column three we can enter the free relation given by factorizing div(F)
over the factor base. This gives us a relation between the rami�ed primes.

2.3. The Sieving Condition. We wish to �nd polynomials a; b 2 Fq [x] such that
the divisor of the function

f = ay + b

has support on the factor base only. Just as in the number �eld sieve we notice
that if an element of the factor base lies in the support of f then we can derive a
congruence condition between a and b. This we described in Proposition 1 above.

We organize a sieve in the function �eld case as is described in [8]. To every
polynomial g(x) 2 Fq [x] we associate a code given by g(q) 2 N. This is a unique
integer which we use to index a sieving array. The sieving array is a two dimensional
matrix indexed by the polynomial codes. Each array element is initialized at the
start of the sieve to the value of

deg(NK=Fq [x](ay + b)) = deg(b2 � a2F);
5

where a and b are the polynomials whose codes represent the row and column index
of the array.

The sieve proceeds by taking every element, P = div(p; r), of the factor base in
turn. We decrease the sieving array element by the degree of p if either

ar + b � 0 (mod p)

or

�ar + b � 0 (mod p):

So we take every polynomial, a0 (mod p), in the a-direction and compute b0 = �a0r
(mod p). We then subtract the degree of p from every array element which satis�es

(a; b) = (a0 + e1p;�b0 + e2p)

where e1 and e2 are polynomials. This can be done rather e�ciently but care needs
to be taken as to how we jump through the array. Details of how this can be done
can be found in [8].

In our implementation we did not use polynomial arithmetic to compute the
jumps. This would mean to deduce the next array element we would need to
convert the current array position to polynomials, perform the polynomial addition
or left shift and then convert back to two polynomial codes. It is far more e�cient
to implement polynomial addition and left shift directly on the codes themselves.
A left shift is nothing but a multiplication by q, while an addition can be carried
out e�ciently by computing a base q expansion of the codes of the polynomials
which need to be added.

2.4. The Lattice Sieve. One way to increase the yield of relations in the standard
NFS algorithm is by replacing the standard sieve by the lattice sieve of Pollard, [17].
In the lattice sieve we �rst choose a special element of the factor base, div(p; v).
We then sieve in the sub-lattice of the (a; b)-plane which is given by all values of
(a; b) which give rise to a divisor whose support contains div(p; v).

We assume that div(p; v) is not a rami�ed divisor (a small change to the following
needs to be made if it is). Under this assumption we know that gcd(p; v) = 1 and
so by the extended euclidean algorithm we can �nd polynomials s and t such that

sp+ tv = 1:

The sublattice we are interested in are those values of (a; b) such that�
a

b

�
=

�
�t p

1 0

� �
c

d

�

where c and d are any two polynomials. For this any choice of (c; d) the pair (a; b)
will always satisfy the sieving condition, as

av + b = �vtc+ pdv + c = c(1� tv) + pdv

= p(sc+ dv) � 0 (mod p):

If f = ay+ b is in this sublattice, called the (c; d)-plane from now on, then we know
that p divides Nf . This should increase the chance of factoring Nf over the factor
base.

The above basis of the lattice may not be suitable, as its elements may be
too large. For real two dimensional lattices there is a reduction method, due to
Gauss, which turns a large lattice basis into a small one. This is closely linked

6

to reduction theory of de�nite binary quadratic forms and general lattice basis
reduction algorithms like LLL, [15].

In our situation we need a similar reduction procedure. For a vector b in our
lattice we let jbj1 denote the maximum value of the degree of the constituent
polynomials. Our reduction procedure then proceeds as follows,

2� 2 matrix reduction algorithm

INPUT: Two basis vectors b1 and b2 which generate the lattice.

OUTPUT: Two basis vectors which are reduced.

1. Repeat

2. If jb1j1 > jb2j1 then swap the vectors b1 and b2 around.

3. Set d = b1
tb1.

4. If deg d = 2jb1j1 then choose m and r such that

5. b1
tb2 = md+ r, deg r < deg d.

6. else choose m and r such that

7. b2
(1) = mb1

(1) + r, deg r < degb1
(1)

.

8. Put b2 = b2 �mb1.

9. Until (jb1j1 � jb2j1).

Clearly this algorithm will terminate and produce a sort of \reduced" basis if we
can show the new value of b2, which we shall denote b�

2
, satis�es

Lemma 2. After executing Step 8 of the above algorithm we have

jb�
2
j1 � jb2j1:

Proof. We know jb1j1 � jb2j1 and � = det(b1;b2) satis�es j�j1 � jb1j1 +

jb2j1. If we put d = b1
tb1 then there are two cases to consider:

i) deg d = 2jb1j1
Here we have

b�
2

=
1

d
(db2 �mdb1)

=
1

d

�
db2 + rb1 � (b1

tb2)b1
�

=
1

d

rb1

(1) � b1
(2)�

rb1
(2) + b1

(1)�

!
:

So

jb�
2
j1 � max(deg(rb1

(1) � b1
(2)�); deg(rb1

(2) + b1
(1)�))� deg d

� max(jb1j1 + deg�; deg r + jb1j1)� 2jb1j1

� max(deg�� jb1j1; 0) � jb2j1:

ii) deg d 6= 2jb1j1
In this case, which can only happen when p � 1 (mod 4), we have that

degb1
(1) = degb1

(2) = jb1j1:

Clearly we have

degb�
2

(1)
= deg r < jb1j1 � jb2j1:

7

For the other component of b�
2
we notice that

b�
2

(2) =
1

b1
(1)

�
�+ rb1

(2)
�

and so

degb�
2

(2)
� max(deg�; deg(rb1

(2))) � jb2j1:

For our purposes the reduction algorithm above is su�cient, however we note that
Lenstra, [13], has given an analogue of the LLL algorithm for lattices over function
�elds. This would lead to a slightly better behaved basis but with the expense of
slightly more work. Lenstra of course gives the algorithm for arbitrary dimensional
lattices and not just those of dimension two.

We then perform a sieve as above in the (c; d)-plane. Suppose we have�
a

b

�
=

�
a1;1 a1;2
a2;1 a2;2

� �
c

d

�
and we wish to sieve with respect to an element of the factor base given by div(q; w).
The condition in the (a; b)-plane is aw+ b � 0 (mod q), there is also the condition
�aw+ b � 0 (mod q) but for clarity we look at one sign only. The condition in the
(c; d)-plane becomes

aw + b = (a1;1c+ a1;2d)w + (a2;1c+ a2;2d) = c(a1;1w + a2;1) + d(a1;2w + a2;2)

= u1c+ u2d � 0 (mod q):

So we have three cases to consider:

u1 � u2 � 0 (mod q)

In this case every entry in the sieving array in the (c; d)-plane can be reduced by
the degree of q.

u1 6� 0 (mod q) and u2 � 0 (mod q)

Here the sieving condition is that we can reduce all those elements in the sieving
array whose position represent a polynomial, c, such that c � 0 (mod q).

u1 6� 0 (mod q) and u2 6� 0 (mod q)

For every possible value of the polynomial c0 (mod q) in the c-direction we compute

d0 = (�u1c0=u2) (mod q):

Then we need to reduce all array elements, by the degree of q, of the form

(c; d) = (c0 + e1q; d0 + e2q)

where e1 and e2 are polynomials. This can be done using the method of [8] men-
tioned above.

2.5. Solving the DLOG problem. When computing the group structure using
a relation generation method, such as the one here, it is crucial that the factor
base generates the whole group. It is also crucial that the production of relations
proceeds until at least the resulting matrix has full rank. When solving a discrete
logarithm problem we do not need to be quite so rigorous. Of course if our factor
base and matrix satisfy the above conditions then we will be more than satis�ed.

8

Suppose we at some point column reduce our matrix, using either the Hermite
Normal Form algorithm or fraction free gaussian elimination. We assume that
this algorithm produces an upper triangular matrix with the �rst column being
non-zero.

If the only non-zero element, t, in the �rst column is in row one then this tells
us that the divisor D1 has order dividing t in J(C). If the second column has only
two non-zero entries which lie in rows one and two (which we shall call r and s)
then our discrete logarithm problem can be solved from the linear equation

sm � r (mod t):

It is a trivial matter to deduce the solutions to this equation. Each solution can
then be tested to see if it gives a solution to the discrete logarithm problem. There
may be many such solutions but any one will do if, say, we are trying to solve a
Di�e-Hellman type problem.

3. Numerical Results

The above method was implemented and we produced the run times in Table
1, which are all given in seconds. Note that these times appear much worse than
the times needed by the Hafner-McCurley variant in [8]. In the ADH method
to achieve the smallest run times we required much larger factor bases and sieving
arrays than in the Hafner-McCurley variant. On the other hand the relation matrix
we produced was sparse as opposed to dense. Hence for large scale implementation
the method of ADH may be preferable.

Table 1. The standard method

Time to produce Size Of
Genus Fq Factor Base Relation Matrix HNF Factor Base Sieving Array

1 F11 0.05 0.34 0.04 7 4 x 15
2 F11 0.18 1.01 0.13 17 4 x 18
3 F11 1.74 1.8 0.53 41 4 x 400
4 F11 6.16 45.96 3.67 95 20 x 700

1 F101 0.34 5.43 0.47 37 5 x 45
2 F101 1.85 59.3 1.13 70 8 x 400

We found it di�cult with the implementation to attempt problems in Jacobians
in larger orders than the ones indicated above. It is for this reason that we at-
tempted to modify the method to work better with quadratic function �elds. The
technique we used, which is also used in the method of Hafner-McCurley, and which
is special for imaginary quadratic function �elds, is that from a semi-reduced divi-
sor we can quickly produce a reduced divisor using the function reduce mentioned
earlier. As such this second method is a hybrid version of the ADH and Hafner-
McCurley methods.

The sieving stage remained the same but we created more reports from the sieve
by using the following strategy. Suppose using the sieve we know we can write the
divisor of f = ay + b as

div(f) = D1 +D2 � (degD1 + degD2)1
9

where D1 and D2 are both semi-reduced, D1 has support entirely in the factor base
and the support of D2 does not contain any intersection with the factor base. If
the degree of D2 is zero then we have a relation just as before. If however D2 does
not have degree zero then the standard algorithm will reject this value of a and b.
However if D1 and D2 both have degree greater than g we can quickly proceed in
the following way to hopefully produce a new relation:

We know D1 already factorizes over the factor base. We can reduce the divisor
D2 to an equivalent divisor D3 using the function reduce, so we have

div(f) � D1 +D3 � (degD1 + degD3)1:

We then may be lucky that D3 factorized over the factor base, a property which can
be detected by factoring a polynomial. We however found it more e�cient to just
use trial division by a subset of around half the elements in the factor base. Using
this trick the number of reports increased dramatically, as Table 2 demonstrates.

Table 2. The hybrid-method

Time to produce Size Of
Genus Fq Factor Base Relation Matrix HNF Factor Base Sieving Array

1 F11 0.01 0.15 0.02 7 2 x 15
2 F11 0.08 0.45 0.08 15 2 x 50
3 F11 0.45 1.43 0.11 19 4 x 250
4 F11 0.94 7.31 0.35 34 5 x 400
5 F11 4.31 15.42 1.17 73 3 x 1000
6 F11 4.12 29.74 0.95 83 30 x 5000
7 F11 4.83 61.76 1.43 88 50 x 5000
8 F11 31.9 857.85 18.84 237 40 x 5000
9 F11 27.39 1822.48 108.24 282 50 x 5000
10 F11 26.29 3875.67 110.88 287 50 x 5000

1 F101 0.13 6.78 0.19 19 4 x 150
2 F101 1.06 23.64 1.1 63 10 x 500
3 F101 5.31 56.22 4.09 137 10 x 900

1 F1009 0.37 164.53 0.5 42 10 x 9000

4. Conclusions

Our numerical experiments have shown that the method of ADH is practical,
when combined with the lattice sieve of Pollard and other tricks, to solve the discrete
logarithm problem in the Jacobian of certain hyperelliptic curves. However these
Jacobians do not have group orders anywhere near the size that would be required
for use in a practical cryptosystem.

It appears that the analogue of the method of Hafner-McCurley is better suited
to quadratic function �elds than the analogue of the number �eld sieve method.
This should come as no surprise as this is what happens for quadratic number �elds.
It remains an open question as to how e�cient in practice is the NFS type method
at solving the DLOG problem in Picard groups of non-quadratic function �elds ?

At present this is only of academic interest as no cryptosystem has been proposed
which makes use of non-hyperelliptic curves. Clearly the protocols go over to the

10

non-hyperelliptic case, the only problem being the existence of fast and e�cient
group law algorithms. For instance one could probably use the method without
much alteration to solve DLOG problems in Jacobians of non-hyperelliptic curves
of genus three with one Fq -rational hyper
ex. Such curves are given by equations
of the form

y3 + f1y + f2 = 0

where f1 and f2 are polynomials in x of degree 2 and 4 respectively.
One should note that the algorithm used can only be proved to be of sub-

exponential type when the genus is very large in comparison to the modulus. We
also have not implemented some tricks which would allow the consideration of large
groups; for instance a large prime variation or implementation in parallel over a
network of computers. A major improvement would result from the development
of algorithms to compute the Hermite Normal Form for use on large sparse integer
matrices. If one was only interested in the group structure then there exist proba-
bilistic algorithms to compute the Smith Normal Form of sparse integer matrices,
[9], which would be of use.

References

[1] L. Adleman, J. De Marrais, and M.-D. Huang. A subexponential algorithm for discrete log-

arithms over the rational subgroup of the Jacobians of large genus hyperelliptic curves over

�nite �elds. In [3], pages 28{40.

[2] L. Adleman. The function �eld sieve. In [3], pages 108{121.

[3] L.M. Adleman and M-D. Huang, editors. ANTS-1 : Algorithmic Number Theory. Springer-

Verlag, LNCS 877, 1994.

[4] J. Buchmann and S. Neiss. Private communication. 1997.

[5] D.G. Cantor. Computing in the Jacobian of a hyper-elliptic curve. Math. Comp., Vol 48,

95{101, 1987.

[6] H. Cohen. A Course In Computational Algebraic Number Theory. Springer-Verlag, GTM

138, 1993.

[7] H. Cohen, editor. ANTS-2 : Algorithmic Number Theory. Springer-Verlag, LNCS 1122, 1996.

[8] R. Flassenberg and S. Paulus. Sieving in function �elds. Preprint, 1997.

[9] M. Giesbrecht. Probabilistic computation of the Smith Normal Form of a sparse integer

matrix. In [7], pages 173{186.

[10] J.L. Hafner and K.S. McCurley. A rigorous subexponential algorithm for computation of class

groups. J. AMS, Vol 2, 837{850, 1989.

[11] N. Koblitz. Elliptic curve cryptosystems. Math. Comp., Vol 48, 203{209, 1987.

[12] N. Koblitz. Hyperelliptic cryptosystems. J. of Cryptography, Vol 1, 139{150, 1989.

[13] A. Lenstra. Factoring multivariate polynomials over �nite �elds. J. of Computer and System

Sciences, Vol 30, 235{248, 1985.

[14] A.K. Lenstra and H.W. Lenstra, editors. The development of the number �eld sieve. Springer-

Verlag, LNM 1554, 1993.

[15] A.K. Lenstra, H.W. Lenstra, and L. Lov�asz. Factoring polynomials with rational coe�cients.

Math. Ann., Vol 261, 515{534, 1982.

[16] S. Paulus. An algorithm of sub-exponential type computing the class group of quadratic

orders over principal ideal domains. In [7], pages 243{257.

[17] J.M. Pollard. The lattice sieve. In [14], pages 43{49.

Hewlett-Packard Laboratories,Filton Road, Stoke Gifford, Bristol BS12 6QZ, U.K.

E-mail address: nsma@hplb.hpl.hp.com

11

