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In this short note we describe an elementary technique
which leads to a linear algorithm for solving the discrete
logarithm problem on elliptic curves of trace one.  In
practice the method described means that when choosing
elliptic curves to use in cryptography one has to
eliminate all curves whose group orders are equal to the
order of the finite field.

  Copyright Hewlett-Packard Company 1997

Internal Accession Date Only



THE DISCRETE LOGARITHM PROBLEM ON ELLIPTIC

CURVES OF TRACE ONE

N.P. SMART

Abstract. In this short note we describe an elementary technique which leads

to a linear algorithm for solving the discrete logarithm problem on elliptic

curves of trace one. In practice the method described means that when choos-

ing elliptic curves to use in cryptography one has to eliminate all curves whose

group orders are equal to the order of the �nite �eld.

Recently attention in cryptography has focused on the use of elliptic curves in
public key cryptography, starting with the work of Koblitz, [1], and Miller, [3].
This is because there is no known sub-exponential type algorithm to solve the
discrete logarithm problem on a general elliptic curve. The standard protocols in
cryptography which make use of the discrete logarithm problem in �nite �elds, such
as Di�e-Hellman key exchange, El Gamal and Massey-Omura, can all be made to
work in the elliptic curve case.

Due to work of Menezes, Okamoto and Vanstone, [2], it is already known that
one must avoid elliptic curves which are supersingular, these are the curves which
have trace of frobenius equal to zero. Menezes, Okamoto and Vanstone reduce the
discrete logarithm problem on supersingular elliptic curves to the discrete logarithm
problem in a �nite �eld. They hence reduce the problem to one which is known to
have sub-exponential complexity. In this paper we shall show that one must also
avoid the use of curves for which the group order is equal to the order of the �nite
�eld, in other words curves for which the trace of Frobenius is equal to one. In
addition our method runs for solving the discrete logarithm problem on this curve
runs in linear time when time is measured in terms of the number of basic group
operations that one must perform.

The method of attack has more the just academic interest as elliptic curves of
trace one have been proposed as curves to be used in practical systems, [4]. At
�rst sight this seems a good idea as if a curve is de�ned over a prime base �eld of
p elements and the curve has order p then clearly the standard square root attacks
on the discrete logarithm problem will not be e�ective, at least if p is large enough.
However such curves have addition structure which renders the systems very weak
as we shall now show.

We shall assume that our elliptic curve, E, is de�ned over a prime �nite �eld,
Fp , and that the number of points on E is equal to p. Hence the trace of Frobenius

is equal to one. Suppose we have two points on the curve, P and Q, and we want
to solve the following discrete logarithm problem on E(Fp ),

Q = [m]P ;

for some integer m. We �rst compute an arbitrary lift of P and Q to points, P and
Q, on the same elliptic curve but considered as a curve over Qp . This is trivial in
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practice as, because neither P nor Q are points of order two, we can write P = (x; y)

where x is the x-coordinate of P and y is computed via Hensel's Lemma.
We then have

P � [m]Q = R 2 E1(Qp );

where the groups En(Qp ) are as de�ned in [5][Chapter VII]. We note

E0(Qp )=E1(Qp ) �= E(Fp ) and E1(Qp )=E2(Qp ) �= F+
p
:

But the groups E(Fp ) and F+
p

have the same order by assumption, namely p. So
we have

[p]P � [m]([p]Q) = [p]R 2 E2(Qp ):

If we then take the p-adic elliptic logarithm,  p, of every term in the previous
equation we obtain

 p([p]P )�m p([p]Q) =  p([p]R) � 0 (mod p2):

This is possible as for any point P 2 E(Qp ) we have [p]P 2 E1(Qp ), as p = jE(Fp )j,
and the p-adic elliptic logarithm is de�ned on all points in E1(Qp ). Computing the
p-adic elliptic logarithm is an easy matter, see for instance [5][Chapter IV] or [6].
So hence

m �
 p([p]P )

 p([p]Q)
(mod p):

Clearly, on the assumption that one knows the group order, the above observation
will solve the discrete logarithm problem in linear time. To see this notice that the
only non-trivial computation which needs to be performed is to compute [p]P and
[p]Q, both of which take log p group operations on E.

1. Example

To explain the method I will use a curve over a small �eld, namely F43 . We shall
take the curve

E : Y 2 = X3
� 4X2

� 128X � 432:

The group E(F43 ) can be readily veri�ed to have 43 elements. On this curve we
would like to solve the discrete logarithm problem given by

Q = [m]P

where P = (0; 16) and Q = (12; 1). We �nd the following \lifts" of these points to
elements of E(Qp ) using Hensel's Lemma,

P = (0; 16 + 21:43 + 22:432 + 20:433 + 26:434 + 8:435 + 35:436 + 36:437 +O(438);

Q = (12; 1 + 12:43 + 35:432 + 29:433 + 18:434 + 36:435 + 14:436 + 14:437 +O(438):

We then need to compute [43]P and [43]Q, which we �nd to be equal to

[43]P = (10:43�2 + 10:43�1 + 16 + 31:43+ 34:432 +O(433);

21:43�3 + 40:43�2 + 17:43�1 + 29 + 22:43 + 37:432 +O(433));

[43]Q = (13:43�2 + 41:43�1 + 9 + 9:43 + 24:432 +O(433);

41:43�3 + 14:43�2 + 42:43�1 + 15 + 30:43 + 28:432 +O(433)):

We then �nd that

 43([43]P ) = 20:43 + 6:432 + 32:433 +O(434);

 43([43]Q) = 28:43 + 15:432 + 22:433 +O(434):
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Hence

m =
 43([43]Q)

 43([43]P )
= 10 +O(43):

And we conclude thatm is equal to 10, which can be easily veri�ed to be the correct
solution.
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