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ELLIPTIC CURVES OVER SMALL FIELDS OF ODD

CHARACTERISTIC

N.P. SMART

In recent years attention has focused on the use of elliptic curves in public key
cryptography, starting with the work of Koblitz, [3], and Miller, [11]. This is because
there is no known sub-exponential type algorithm to solve the discrete logarithm
problem on an elliptic curve. The standard protocols in cryptography which make
use of the discrete logarithm problem in �nite �elds, such as Di�e-Hellman key
exchange, El Gamal and Massey-Omura, can all be made to work in the elliptic
curve case.

However elliptic curves come with some disadvantages; for example addition on
the curve is more expensive than multiplication in a �nite �eld and determining a
suitable curve to use is a rather cumbersome procedure. In this short note we pro-
pose using elliptic curves de�ned over small �nite �elds of odd characteristic. Such
a proposal has been made many times before but over �elds of even characteristic.

In the �rst section we show how one can perform a Frobenius expansion method
to speed up the multiplication step over �elds of odd characteristic. This procedure
is almost identical to the procedure described in M�uller, [12], for characteristic two,
which is itself based on ideas in [4] and [9]. In the second section we shall describe
how easy it is to determine suitable curves. Finally in the last section we shall
discuss the advantages and disadvantages of using odd characteristic �elds.

We shall assume that an elliptic curve is given by an equation of the form

E : Y 2 = X3 + aX + b

where a; b 2 Fq , with q = pr. To simplify our discussion we shall assume that p � 5.
Our curve will be non-singular, so we shall assume that 4a3+27b2 6= 0. In addition,
due to the results in [10], we shall assume that the curve is not supersingular. So in
particular we have that p does not divide the trace of Frobenius, t = q+1�jE(Fq )j.
By Hasse's Theorem we know that jtj � 2

p
q, a fact which we shall be using

throughout.
The qth-power Frobenius endomorphism we shall denote by

� :
E ! E

(x; y) ! (xq ; yq):

The map � satis�es the following equation

�2 � t�+ q = 0:

We shall be mainly interested in the group of points on E over some �nite extension
of Fq , say Fqn .

1. Frobenius Expansions

In this section we shall show how to expand the multiplication by m map on
E(Fqn ) in terms of a polynomial in �. This allows us to replace the usual binary
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method of computing the multiplication by m map by a Frobenius expansion. The
method is just a small generalization of the method in [12].

Lemma 1. Let S 2 Z[�]. Then there exists a unique integer, R 2 f�(q �
1)=2; : : : ; (q � 1)=2g and a unique element Q 2 Z[�] such that

S = Q�+R:

Proof. Easy.

Lemma 2. Let S 2 Z[�] such that

NZ[�]=Z(S) � (
p
q + 2)2=4;

then we can write

S =

3X
i=0

ai�
i

with ai 2 f�(q � 1)=2; : : : ; (q � 1)=2g.
Proof. Write S = a+ b� with a; b 2 Z then we have

NZ[�]=Z(S) = a2 + abt+ bq =

�
a+

tb

2

�2

+
1

4

�
4q � t2

�
b2:

As E is not supersingular and jtj � 2
p
q we must have b2 � �4q � t2

�
b2 � (

p
q+2)2.

So in particular jbj � p
q + 2, and if q � 11 then jbj � (q � 1)=2.

Suppose jaj = (q � 1)=2 then

(q � 1)2

4
+ abt+ b2q � (

p
q + 2)2=4;

which means gq;t(b) = 4qb2+4atb+(q2�3q�3�4
p
q) � 0. If this has any integral

solutions for b then the discriminant of gq;t, with respect to b, must be non-negative.
So 16a2t2 � 16q(q2 � 3q � 3 � 4

p
q) � 0, but as jaj = (q � 1)=2 and jtj � 2

p
q we

have �16q(5q � 4) + 64q
p
q � 0. But this means q � 1:904 and so jaj < (q � 1)=2.

Hence we have the upper bounds on a and b given by

jaj < (q � 1)=2 ; jbj � p
q + 2:

If q � 11 then we have jaj; jbj � (q � 1)=2 and we are done, so we can assume that
q = 5 or 7. First, assume that (q � 1)=2 < b � p

q + 2, then we can write

S = a+ b� = a+ (b� q)� + q� = a+ (b� q)� + t�2 ��3:

But then 0 > b� q > (q � 1)=2� q = �(q+1)=2 and jb� qj � (q� 1)=2. A similar
argument holds when �(pq + 2) � b < �(q � 1)=2. So we are left with trying to

show that jtj � (q � 1)=2, in the above situation. As NZ[�]=Z(S) � (
p
q + 2)2=4 we

must also have
NZ[�]=Z(t��) � (

p
q + 2)2=4:

If we assume that (q+1)=2 � jtj � 2
p
q and q = 5 or 7 then we �nd that there are

eight cases to check given by q = 5 (resp. q = 7) and t = �3;�4 (resp. t = �4;�5).
None of these satisfy our inequality so we can deduce that jtj � (q � 1)=2, as
required.

That the required Frobenius Expansions exist and are not arbitrarily long follows
from the following theorem.
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Theorem 3. Let S 2 Z[�] then we can write

S =

kX
i=0

ri�
i

where ri 2 f�(q � 1)=2; : : : ; (q � 1)=2g and k � d2 logq 2
p
NZ[�]=Z(S)e+ 3.

Proof. From Lemma 1 we can obtain an expansion of the form

S = S0 = S1�+ r0 = (S2�+ r1)� + r0

=

jX
i=0

ri�
i + Sj+1�

j+1

Using the triangle inequality we see, putting k:k =pNZ[�]=Z(:),

kSj+1k � kSjk+ krik
k�k � kSjk+ (q � 1)=2p

q

=
kS0k

q(j+1)=2
+

(q � 1)

2

j+1X
i=1

q�i=2

=
kS0k

q(j+1)=2
+

(q � 1)

2

�
1� q�(j+1)=2

p
q � 1

�

� kS0k
q(j+1)=2

+

p
q + 1

2
:

Now if j � d2 logq 2kS0ke � 1 then

kS0k
q(j+1)=2

� 1=2:

Hence

NZ[�]=Z(Sj+1) �
(
p
q + 2)2

4
and so by Lemma 2 we know that Sj+1 has a Frobenius expansion of length at most
4.

We can then implement the multiplication by m map on the elliptic curve using
Frobenius expansions. We �rst consider m as an element of Z[�] and compute its
Frobenius expansion,

m =

kX
i=0

ri�
i;

where k � d2 logq 2me+3. We can then computemP for P 2 E(Fqn ) using Horner's
method;

mP =

kX
i=0

ri�
i(P )

= � (: : :� (rk�(P ) + rk�1P ) + : : :+ r1P ) + r0P:

Note at each stage of the expansion we add on an element of the form rP where jrj �
(q�1)=2. To speed up this step we could precompute a table of such multiplications,
this would be particularly useful if we wanted to perform many multiplications of
the same point.
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What Frobenius expansions have allowed us to do is replace many expensive
elliptic curve doublings and additions with fewer elliptic curve additions and some
power evaluations in a �nite �eld. Just as in [12] one can also derive block versions
of the Frobenius expansion method.

As an example, suppose we have an elliptic curve E de�ned over F23 with trace
of Frobenius, t = �1. Let P denote a point on E(F23n and suppose we wish
to compute [m]P where m = 106. Using the standard binary method we would
compute

[m]P = [26]
�
P + [23]

�
P + [25]

�
P + [22] (P + [2] (P + [2] (P + [2]P )))

���
:

So we require 6 elliptic curve additions and 19 elliptic curve doublings. The worst
case situation for a six digit multiplier would require 19 additions and 19 doublings.

Now look at the Frobenius expansion of [m]P for this curve,

[m]P = �(�(�(�(�(�(�(�(��(P ) + [2]P )) + [7]P )� [3]P )� [9]P )� [5]P )

�[4]P )� [8]P ) + [6]P:

Assuming we have a precomuted table of values of [l]P for l 2 f1; : : : ; 11g and
noting that negation on an elliptic curve takes negligible time, we see that the
Frobenius expansion method requires 9 elliptic curve additions, 9 table look ups,
9 applications of the Frobenius morphism and a single multiplication by a small
integer. Each action of the Frobenius morphism requires only two powering oper-
ations in the �eld F23n . The worst case situation of the Frobenius method for a
six digit multiplier would require 12 elliptic curve additions and applications of the
Frobenius morphism.

As in the case considered by Solinas, [14], we can reduce the length of the
Frobenius expansion by nearly �fty percent. To show this we need to consider a
small generalization of Euclidean domains:

De�nition 1. Let � be a positive real number, let A denote a commutative ring

and suppose that there is exists a multiplication function

	 : A n f0g ! N:

The ring will be called �-Euclidean if for all a; b 2 A, with b 6= 0, we can �nd

q; r 2 A with

a = bq + r

such that either r = 0 or 	(r) < �	(b).

Such an idea is not new as one can see by looking at the survey article [8].
Suppose A has �eld of fractions K then we can extend 	 to K n f0g in the obvious
way. We then have

Lemma 4. The ring A will be �-Euclidean if for all x 2 K we can �nd a y 2 A
such that

	(x� y) < �:

Proof. Let a; b 2 A with b 6= 0 then set x = a=b 2 K. So by the condition there
exists a y 2 A such that 	(a=b� y) < �. But as 	 is multiplicative we see that, if
a 6= by,

	(a� by) < �	(b):

The result follows on setting r = a� by.

The main result we shall use on �-Euclidean rings is the following;
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Theorem 5. Suppose �2 � t� + q = 0 then Z[�] is �-Euclidean for some � such

that 0 < � � (9 + 4q)=4.

Proof. Let 	 denote the standard norm function on Z[�] and set D = t2 � 4q < 0.
We have two cases to consider:
Case 1 t � 0 (mod 2).

In this casse a basis of Z[�] is given by 1;
p
d, where 4d = D. If x = r + s

p
d 2

Q[�] then we set y = m+n
p
d with m being the nearest integer to r and n being the

nearest integer to s, with some �xed convention for numbers of the form (2i+1)=2.
Then, as �d = q � t2=4 � q, we have,

	(x� y) = NQ[�]=Q(x� y) = (r �m)2 � d(s� n)2

� 1� d

4
� 4 + q

4

� 9 + 4q

4
:

Case 2 t � 1 (mod 2).

In this case a basis of Z[�] is given by 1; (1+
p
D)=2. Let x = r+s(1+

p
D)=2 2

Q[�]. As before we set m to be the nearest integer to r, n to be the nearest integer

to s, and let y = m+ n(1 +
p
D)=2. Then

	(x� y) = NQ[�]=Q(x� y) = ((r �m) + (n� s)=2)
2
+ (n� s)2D=4

� (1
1

2
)2 �D=4 =

1

4
(9�D)

� 9 + 4q

4
:

We can now apply this result to reduce the length of our Frobenius expansion.
Consider the integer, m, we wish to multiply P by as being an element of Z[�]. As
m � qn then the norm of m will be equal to m2 � q2n. However we note that if we
are considering points P 2 E(Fqn ) then we have the identity

�nP = P:

So we can \divide" m by �n � 1 to obtain a remainder r with

NQ[�]=Q(r) < �NQ[�]=Q(�
n � 1) � 9 + q

4
NQ[�]=Q(�

n � 1) � qn+1

4
:

Hence we can replace multiplication by m by multiplication by r. As r has norm
roughly qn+1 its Frobenius expansion will be nearly half the length of the Frobenius
expansion ofm. This should provide a �fty percent improvement in the performance
of our algorithm.

For completeness we give the formulae to compute r from m; t; n and q; First
de�ne a1; a2 2 Z by

a1 + a2� = �n � 1 (mod �2 � t� + q):

Let � = a21 + ta1a2 + qa22 and de�ne x1; x2 2 Q by

x1 = m(a1 + ta2)=� ; x2 = �a2m=�:

We can then let r = r1 + r2� with r1; r2 2 Z given by the following formulae
5



Case 1 t � 0 (mod 2). Let h = [x1 +
x2t
2
], where [:] denotes the function which

returns the nearest integer, then

r1 = h� [x2]t ; r2 = 2[x2]:

Case 2 t � 1 (mod 2). Now let t = 2v + 1 and set h = [x1 + x2v] then

r1 = h� [x2]v ; r2 = [x2]:

We end this section with some timings we have obtained. The Frobenius expan-
sion method was implemented in software using two methods: The �rst used the
LiDIA, [6], C++ library. To represent the �nite �elds we used the standard LiDIA
data type gf base. In particular this meant that we did not use a normal basis
presentation, instead we used the more standard polynomial representation. The
LiDIA library does not use special code for characteristics which �t into a single
word, so some e�ciency was lost in this implementation. The elliptic curve routines
were implemented using an a�ne representation, so more divisions were carried out
than would be strictly necessary.

Our second implementation used a normal basis representation of the �eld. This
made the implementation of the Frobenius map rather simple as it then becomes
a cyclic shift of the coe�cients of the representation of the �eld elements. This
�eld arithmetic was implemented in a way which allowed us to make use of the fact
that the characteristic �tted into a single word. Again arithmetic on the curve was
implemented in a�ne representation.

For comparison we also implemented the standard binary method of multipli-
cation. As the binary method does not make use of exponentiation by q in the
�nite �eld we only implemented this using the polynomial representation of the
�eld elements.

The timings in Table 1 do illustrate the speed up one achieves by using Frobenius
expansions. All times are in hundreths of a second and are averages taken over a
number of multiplications by random numbers of size the order of qn. For larger
base �elds the time to perform the initial precomputation step will start to dominate
the time to perform a multiplication, hence the average timings for the Frobenius
expansion method do not include the time for the precomputation step, which is
why we list this time separately.

For large degree �nite �elds we found the polynomial representation superior as
multiplication of �eld elements in this representation is an O(n2) algorithm, for
multiplication in a normal basis representation we used a O(n3) algorithm.

2. Finding Suitable Curves

There are three standard techniques that one uses to determine elliptic curves
which are suitable for use in cryptography. The problem is that we need to deter-
mine non-supersingular curves which have a large cyclic subgroup. In particular
this cyclic subgroup should have order larger than 1040.

If we choose a �eld of de�nition of the elliptic curve of order around 1040 then we
encounter two problems. Firstly we cannot use a Frobenius expansion method to
perform multiplications and secondly determining the group order of a given curve
is in general complicated as we need to apply Schoof's algorithm, see [13], [2] and
[5]. We can choose curves at random, compute their orders and then factor their
orders to see if we can �nd one with a large prime factor but this is a lot of work,
especially if we wish to produce suitable elliptic curves \on line". For example,
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Table 1. Comparison of the Binary and Frobenius methods

Normal Basis Polynomial Basis
Frobenius Table Frobenius Table

p n log2 jE(Fpn )j Binary Expansion Creation Expansion Creation

5 32 74 447 167 10 186 5
5 53 123 1040 1212 44 398 6
5 75 174 2567 4771 125 975 11

11 22 76 249 48 10 92 10
11 36 124 799 318 42 278 18
11 51 176 1542 1241 119 497 25

23 17 76 178 20 12 59 19
23 28 126 625 135 48 214 36
23 39 176 1216 458 126 372 50

41 14 75 121 11 13 35 24
41 23 123 456 63 51 129 53
41 33 177 1232 254 145 354 96

127 11 76 87 4 23 26 53
127 18 125 338 26 84 97 121
127 25 175 750 89 211 227 196

Lercier, [5], gives a time of 86 seconds to compute the order of group of points
on an elliptic curve de�ned over F2155 . Whilst his program takes 235 minutes to
determine 5 suitable curves for cryptographic purposes over F2155 .

Another way of proceeding is to decide on a prime base �eld of large order and
then using the theory of curves with complex multiplication to produce curves with
a cyclic subgroup of large prime order, [7]. Again this is possible but it involves
extracting roots of large degree polynomials over large �nite �elds so this may be
far too slow for the generation of suitable curves.

Although Schoof's algorithm and root extraction in �nite �elds both run in
polynomial time they are non-trivial algorithms which require careful coding. It is
not surprising that although they are asymptotically e�cient they are not particular
quick at �nding suitable curves than more naive methods.

One way around these problems, which has often been proposed, is to use elliptic
curves de�ned over very small �nite �elds of characteristic two, [9], [12] and [14].
The reason is that it is easy to compute the number of points over a small �eld,
Fq , and computing the number of points over extension �elds is then simple due to
the following result.

Theorem 6. Let Fq denote any �nite �eld and let E denote an elliptic curve de-

�ned over Fq . Write E(Fq ) = q + 1� c1 and E(Fqn ) = qn + 1� cn then

cn = c1cn�1 � qcn�2

where c0 = 2.

The trouble with restricting attention to characteristic two is that there are not
many curves de�ned over small �nite �elds with the required subgroup of large
prime order, unless one uses a very large extension �eld. Table 2 demonstrates this
by listing those values of t; q and n with q = 2r � 32 and qn � 2200 which give rise
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to curves de�ned over Fq with group orders over Fqn divisible by a prime, l, with
more than forty decimal digits in it.

Table 2. Curves over even prime �elds with a large prime divisor
in the group order over an extension �eld

r n t log10 l r n t log10 l r n t log10 l
1 163 1 49 1 181 1 44
2 79 1 47 2 97 1 53
3 47 �1 41 3 59 �1 52 3 47 3 41
3 59 3 52
4 37 �5 43 4 37 �3 43 4 37 �1 43
4 41 �1 44 4 47 �1 49 4 37 3 43
4 47 3 45 4 47 7 55
5 31 �9 40 5 37 �5 49 5 31 �3 45
5 29 9 40

However if we allow �nite �elds of characteristic larger than three then we can
�nd a lot more suitable curves. Table 3 lists the curves we found over prime �elds,
Fq , of order less than twenty four. We looked at extensions, Fqn , of these prime
�elds with qn � 2200. We tried to �nd curves with a prime, l, dividing the group
order of at least forty decimal digits. To reduce the number of curves with a
\smooth" group order we restricted our attention to prime values of n. In addition
for very large group orders we did not try to produce a complete factorization so
some suitable curves we may have missed. The whole computation took only 7
minutes or around 5 seconds per suitable curve found.

One could extend this table further. We found 11 examples of suitable curves
de�ned over F41 with groups of points de�ned over F41n with n � 37, and 8 examples
of suitable curves de�ned over F127 with groups of points de�ned over F127n with
n � 23.

3. Advantages and Disadvantages

Using elliptic curves de�ned over small �nite �elds but with the group of points
de�ned over a prime extension allows us to easily compute the order of the group of
points. This in turn allows us to determine suitable elliptic curves for cryptographic
purposes in a fast and e�cient manner. In addition for such curves we can replace
the standard binary multiplication method with a Frobenius expansion method. If
we are computing a multiple of a �xed point then the use of look-up tables will
greatly speed up the multiplication step in such a system.

If the base �eld has characteristic two then we can use e�cient algorithms for
the �eld arithmetic which are more suitable for a practical system. Our very rough
timings seem to indicate, compared to [12], that using �elds of odd characteristic
is between ten and one hundred times slower than using even characteristic base
�elds of the same order. On the other hand with small �elds of odd characteristic
we have far more suitable elliptic curves at our disposal.

So why do some practical systems make use of elliptic curves de�ned over Fp ,
where p is a large prime, or F2n ? This is because it is not beyond the realms of
possibility that the extra structure obtained in having the curve de�ned over a small
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Table 3. Curves over odd prime �elds with a large prime divisor
in the group order over an extension �eld

q n t log10 l q n t log10 l q n t log10 l
5 61 �4 41 5 83 �2 45 5 79 �1 50
5 83 �1 52 5 71 1 44 5 73 1 50
5 79 1 54 5 73 4 45
7 53 �4 43 7 59 �4 49 7 61 �2 46
7 53 �1 43 7 59 �1 41 7 59 2 49
7 67 3 52 7 47 4 39 7 61 5 51
7 67 5 51
11 53 �5 54 11 47 �3 42 11 41 �2 41
11 47 �2 44 11 53 �2 54 11 53 �1 50
11 47 2 43 11 53 4 50 11 53 6 50
13 47 �6 47 13 53 �6 51 13 37 �5 40
13 47 �5 51 13 47 �4 47 13 47 �3 48
13 53 1 54 13 41 2 40 13 47 4 45
13 43 5 46 13 41 6 40
17 43 �8 51 17 37 �7 44 17 41 �7 46
17 43 �6 51 17 47 �6 54 17 37 �4 44
17 43 �3 51 17 43 �2 48 17 47 �1 53
17 41 2 41 17 37 3 41 17 47 4 52
17 47 5 51 17 43 6 42 17 47 7 56
19 37 �8 46 19 37 �7 43 19 41 �7 44
19 41 �5 42 19 37 �4 46 19 37 �3 42
19 43 �1 49 19 37 2 42 19 41 2 49
19 37 4 41 19 37 5 43 19 41 7 40
19 37 8 46 19 41 8 51
23 37 �7 45 23 41 �7 51 23 37 �6 45
23 43 �5 49 23 31 �4 40 23 37 �4 42
23 41 �4 51 23 31 �3 40 23 43 �3 57
23 41 �1 50 23 43 1 57 23 37 3 49
23 43 3 52 23 37 5 46 23 31 8 41
23 41 8 48 23 43 8 57

�nite �eld will render the system less secure. After all the group E(Fqn ) contains
a subgroup E(Fq ) which is stable under the action of the Frobenius morphism.
However nobody has yet used such a structure to show that the proposed curves
are any weaker than general curves over Fp or F2n .

Our timings of the multiplication routines show that some research still needs to
be done as to what size the base �eld should be. A larger value for the base �eld
implies that the degree of the �eld extension needed can be smaller. This in turn
means that arithmetic will be much faster. A large value for the size of the base
�eld also means that the length of the Frobenius expansion will be short. However
the larger the base �eld then the greater the size of the look up table required to
perform the multiplication step.
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