
Mkpkg: A Software Packaging Tool

Carl Staelin
Strategic Planning and Communications
HPL-97-125 (R.1)
August, 1998

software packaging,
software distribution,
software publishing

Mkpkg is a tool that helps software publishers create
installation packages. Given software that is ready for
distribution, mkpkg helps the publisher develop a
description of the software package, including manifests,
dependencies, and post-install customizations. Mkpkg
automates many of the painstaking tasks required of the
publisher, such as determining the complete package
manifest and dependencies of the executables on shared
libraries. Using mkpkg, a publisher can generate
software packages for complex software such as TeX with
only three minutes effort.
Mkpkg has been implemented on HP-UX using Tcl/Tk
and provides both a graphical and command line
interface. It builds product-level packages for Software
Distributor (SD-UX).

 Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

1

Mkpkg: A software packaging tool

Carl Staelin

January 14, 1997

Abstract
Mkpkg is a tool that helps software publishers create
installation packages. Given software that is ready
for distribution, mkpkg helps the publisher develop a
description of the software package, including
manifests, dependencies, and post-install
customizations. Mkpkg automates many of the
painstaking tasks required of the publisher, such as
determining the complete package manifest and
dependencies of the executables on shared libraries.
Using mkpkg, a publisher can generate software
packages for complex software such as TeX with only
three minutes effort.

Mkpkg has been implemented on HP-UX using
Tcl/Tk and provides both a graphical and command
line interface. It builds product-level packages for
Software Distributor (SD-UX).

1 Introduction
Most end-users do not build programs from source
code, but install software using binary installation
packages. Mkpkg helps software publishers develop
those installation packages.

Mkpkg addresses a part of the software distribution
channel that has been largely ignored. Most software
distribution systems have focussed on defining the
binary package format and the protocols for installing
and de-installing software. Most software installation
suites have made it very easy for end-users and
system administrators to distribute and install
software, but they have not addressed the problems of
the software packager who is creating binary
installation packages.

The software publishing process includes several
actors and steps: the software developer, the software
publisher, the distributor, (sometimes the system
administrator), and the end-user. The software
developer creates the software. The packager is
responsible for configuring, compiling, and
packaging the software to create the binary
installation package that the distributor delivers to the
end-user. In some environments system

administrators install and manage the software for
end-users.

Mkpkg helps software packagers create installation
packages. Typically, the packager starts with source
code that needs to be compiled and installed on the
packager’s computer. The packager tries to create an
installation package that re-creates the installation on
each end-user’s computer.

Developing a binary software installation package,
that is, creating a package that can be installed easily
on a computers and have it work properly, is an
important and difficult task. Most vendors have
developed tools that can accept the descriptions of a
software package and create an installation package,
but developing those package descriptions is difficult.
Package descriptions typically contain the following
elements:

Each software installation tool has its own
idiosyncrasies and requirements, but they all share
these common elements. Many software installation
tools also provide other elements, such as system
specifications that define which hardware/OS types
or versions may install the software.

Package

Developer

Packager

 .h, .c
Makefile

Distributor

Package

Configure
Compile
Install

Package

Install

Package

Install

Figure 1

2

1.1 Software Distributor
Software Distributor (SD-UX) is a suite of software
installation programs that satisfy the POSIX draft
1387.2 specification. It is the software distribution
mechanism for all Hewlett-Packard software for HP-
UX and has versions that run on at least WindowsNT
and Solaris.

Software Distributor has four levels of software
grouping: bundle, product, subproduct, and fileset. A
bundle is a collection of products and/or filesets that
may be installed as a unit. Bundles were designed to
provide customers with one single installation unit for
purchased software products, such as the ANSI/C

compiler. Bundles may be used to provide a logical
grouping by function, such as “web server”.

The basic unit of software distribution is the product.
A product may contain both subproducts and filesets.
Subproducts contain filesets and are used to manage
logical subsets of a single product.

Filesets are the atomic units of software distribution
and contain a set of files and control scripts. SD-UX
installs and configures individual filesets; filesets
cannot be partially installed or configured.

Software Distributor has two levels of software
distribution: bundle and product. The basic unit of
distribution is the product. Software Distributor has
several levels of software installation. The basic unit
of installation is the fileset, but customers usually
install software at the bundle or subproduct level.

Mkpkg creates product packages, while mkbdl
creates bundles. Since all filesets and subproducts
are created as part of a product, we do not provide a
separate tool for creating them.

1.2 Installation tools
There are many methods for distributing binary
installations. Each method has various strengths and
weaknesses, but most commercial systems provide a
similar level of basic operation. The largest UNIX
vendors have each developed their own systems for
distributing binary software: HP’s HP-UX uses
Software Distributor, Sun’s Solaris uses pkgadd,
Digital’s OSF/1 uses setld, SGI’s IRIX uses inst, and
Linux uses RPM. Windows has two standards,
InstallShield packages and self-extracting programs.

Each of the commercial systems offers basic services,
such as installing and deinstalling packages
atomically, tracking and managing inter-package
dependencies, and executing scripts during software
installation and deinstallation. Most of them also
support a variety of more advanced features, such as
versions, operating system and hardware
dependencies, and interactive installation. For the
most part these systems try to make it as easy as
possible for system administrators to install software.

1.2.1 Tar
The simplest binary installation package is simply a
tar file containing the software. Often such packages
include a README file that includes installation
instructions. For simple programs and packages, tar
files are often sufficient. For more complex
packages, much of the burden of correctly installing

Product

Bundle

Product

Fileset

Subproduct

Fileset Fileset

Subproduct

Fileset

Figure 2

Element Description

title Software package name

description A text description of the package
and its capabilities

manifest A list of all the files contained in
the package

dependencies A list of all the other packages
required for this package to
operate correctly

customization
scripts

A set of scripts that are executed
on the user’s machine during
installation or de-installation of
the software

Table 1

3

and configuring the software falls on the end user
because the installation process for tar files is
completely manual.

Occasionally, software publishers will include
installation scripts as part of the tar file and the
installation script will automatically install and
configure the software for the user. One of the few
publishers who uses this approach is Netscape, who
includes an “ns-install” script as part of their
Netscape Communicator tar-file distribution.

1.2.2 RPM
The RedHat Package Manager (RPM) [2,3] was
developed for the Linux environment and provides a
very nice environment for installing and distributing
software. Functionally, it is very similar to Software
Distributor; it includes support for inter-package
dependencies and control scripts that are executed
during software installation.

Users may install software from a local depot or they
may install from a remote server over the network.
RPM is able to contain binaries for multiple
platforms within a single package, and it can
automatically install the correct binaries. Using RPM
customers may determine which package installed a
particular file, and what software is installed on the
machine. Users may also uninstall packages.

RPM has some support for the packager, but it is
missing some important features. RPM does not help
the publisher develop the package manifest. The
RPM documentation [3] states: “RPM has no way to
know what binaries get installed as part of make
install. There is NO way to do this. Some have
suggested doing a find before and after the package
install. With a multi-user system, this is unacceptable
as other files may be created during a package
building process that have nothing to do with the
package itself.”

1.3 Software configuration
Software configuration is one of the dirty little secrets
of system administration. Software that is well
configured works well in a broad variety of system
configurations and causes few problems for system
administrators. Poorly configured software can cause
system administrators a great deal of aggravation.

Sometimes the difference between well-configured
software and poorly configured software is a matter
of tiny details, but there are a few general guidelines.

• Never compile paths into binaries.

• Separate executables, configuration files, and
data or log files.

• Use human readable ASCII files for
configuration information.

• Follow standard conventions for file and path
names as much as possible.

System administrators frequently share file systems
between systems, so executables and libraries will
often be shared by many systems. However,
administrators usually want each computer to have its
own version of configuration files, but these may be
on a read-only file system. In addition, data and log
files are usually not shared between systems and
usually must be mounted with read-write permissions.
Software configurations must anticipate these kinds
of configuration issues.

A fairly detailed set of configuration guidelines is
published by the HP-UX Porting and Archive Centre
[4].

2 Software packaging process
During software packaging, the publisher must
prepare all the elements needed by the installation
package. For many small packages, this is a very
simple process, but for larger packages it can be quite
difficult. Mkpkg provides five services during the
packaging process:

• Creates the manifest, the list of files to be
installed

• Determines the dependencies of this package on
other packages

• Develops the install/de-install scripts

• Gathers all the components, as listed in the
manifest

• Assembles and produces the completed
installation package

2.1 Create manifest
The manifest is a list of all the files to be installed by
the package. Mkpkg can automatically determine
which files were installed by the package on the
publisher’s machine. For small packages it is easy to
determine which files belong to a given package, but
manual techniques often miss files and make
mistakes. For larger packages, such as X11R6 or
TeX, it is usually difficult to identify all the files

4

installed by the package and it is critical to include all
the files that belong to the package.

2.2 Determine dependencies
Many packages require the presence of other
software in order to operate correctly. For example,
if cvs uses rcs, then cvs depends on rcs. Packages
can depend on other packages for many reasons, but
the two most common dependencies are caused by
executing programs and linking with shared libraries
from other packages. Publishers are usually aware of
the dependencies caused by executing programs, but
often overlook shared library dependencies.

2.3 Develop scripts
Typically, installation tools allow the publisher to
add both scripts that are executed by the installation
tool during software installation and scripts that can
be executed during de-installation to undo actions
and erase all trace of the software. Also, some
software packages require customized scripts to
handle special configuration during the installation
process. For example, many database systems
require a special userid to be added to the system.

Writing these scripts is very difficult, but many
actions can be specified in a general fashion. In
order to simplify the development of scripts, the
publisher simply specifies the desired results of
executing the script, and mkpkg generates all the
scripts needed for the package.

2.4 Gather components
Once the package is specified, mkpkg gathers all the
components, such as the customization scripts and
installed files, and saves them in a temporary
location. In the case for which multiple versions of a
single package may be built (e.g. one version for
statically linked binaries and another for dynamically
linked binaries), the system may generate multiple
copies of the system and save them in different
locations.

If the user has added files to the package manifest,
then the user may modify the package configuration
after the components have been gathered.

2.5 Assemble package
The last step is to assemble the installation package
from the package configuration, customization
scripts, and saved installation. Mkpkg creates a
Product Specification File (PSF) and all the

automatically generated customization scripts and
then uses swpackage to assemble and generate the
completed package.

The PSF describes all the elements, options, and
content of the installation package and is used by
Software Distributor during package creation. Before
mkpkg the PSF was nearly always generated
manually.

3 Automation
Since many of the tasks associated with building
binary installation packages are structured and are
common across packages, it is possible to automate
most tasks. Accurate automation has the benefit of
increasing the uniformity of package configuration
and operation across packages.

Mkpkg has automated or partially automated the
following tasks:

• package manifest generation

• shared library dependency detection

• fileset and subproduct generation

• assigning files to filesets

• control script generation

• error checking

3.1 Package manifest generation
The first task faced by most package creators is
creating a manifest or list of all the files installed as
part of the package. It is critical that all files be
included in the package, so it is important to reduce
human error. For some packages, creating a manifest
is a trivial task that can be accomplished easily by
visual inspection of the software. However, packages
often include dozens of files, and some packages
include thousands of files. In these cases, it is very
difficult to manually generate a complete and
accurate manifest.

Mkpkg can automatically generate a package
manifest that includes all files installed as part of the
software and may include some files not belonging to
the package.

3.2 Shared library dependency
detection

Mkpkg automatically detects all shared library
dependencies. It checks every file in the product to

5

discover which shared libraries are used by the
product. It has a list of all shared libraries on the
system and the name of the fileset that contains each
library. Mkpkg then automatically marks as a co-
dependency each fileset containing a shared library
needed by an executable.

When I first developed mkpkg, the vast majority of
bugs were caused by shared library dependencies that
I had overlooked. Once I added this module to
mkpkg the number of bug reports diminished
dramatically.

3.3 Fileset and subproduct creation
Software Distributor allows a given product to
contain filesets and subproducts (groups of filesets).

Hewlett-Packard has extensive standards for fileset
and subproduct naming and semantics. For example,
English-language manual pages should be contained
in the XXX-MAN fileset, while foreign-language
manual pages should have a fileset per language (e.g.
XXX-SPA-I-MAN for Spanish with an ISO character
set). Fortunately, it is possible to use simple regular
expression patterns to recognize when particular
filesets are needed. Similarly, there is an extensive
set of standards for subproduct naming based on the
filesets in a product (e.g. the subproduct
ManualsByLanguage always includes all filesets with
non-English manual pages).

Mkpkg has two ordered sets of rules for determining
when to create filesets and subproducts. Each rule
contains a regular expression, a threshold value, and
a pattern. During fileset creation, the system iterates
through the rules. It first creates a list of all files that
match the regular expression. If the number of files
is greater than the threshold value, then a fileset is
created using the pattern (if necessary), and all the
matching files are assigned to the fileset. The
threshold value is used because some of the
conventions are of the form “if there are enough
XXX files, then put them in –YYY fileset”. For
example, “if there are enough manual pages, put them
in a –MAN fileset”.

3.4 Assigning files to filesets
The same rules that determine when to create filesets
are used to assign files to filesets. This is particularly
useful for large packages for which manual
assignment of files to filesets would be tedious.

Mkpkg uses the same pattern matching to decide how
to assign each file to a fileset. Each file is assigned to
the first fileset whose pattern matches the file name.

By default all files that do not match any fileset are
assigned to the –RUN fileset.

3.5 Control script generation
One of the most difficult tasks is developing all the
control scripts that customize the remote system.
Fortunately, most control scripts execute a handful of
common tasks, and in many cases it is possible to
automatically detect the need for these tasks.

Control scripts may be used at both the product and
the fileset levels. Mkpkg currently knows how to
automate ten common tasks and allows the user to
specify customization actions at either the product or
the fileset level. The user specifies high-level actions
that mkpkg maps into low-level script fragments for
each of the ten possible control scripts. Mkpkg only
generates control scripts when necessary; it doesn’t
generate empty control files.

3.6 Error checking
In general, it is very difficult to perform error
checking for binary packages. However, there are a
number of common errors that can be detected.
Mkpkg flags as many errors as possible, but there is
still room for “pilot error.”

Each attribute of a product, subproduct, or fileset can
be marked as “required”. Before assembling the
package, mkpkg can check that every required
attribute has an associated value. For example, the
attribute “description” is required and mkpkg will
generate an error if this attribute has been left blank.

Mkpkg can also check that hard links do not cross
fileset boundaries. In other words, if two files are
joined by a hard link, then they must be in the same
fileset. Optionally, mkpkg can ensure that symbolic
links do not cross fileset boundaries.

4 Manifest generation
Mkpkg can automatically determine the product’s
manifest. In practice it is very accurate, but there are
some occasional errors. There are two types of
errors: excluding necessary files and including
unrelated files. The most common problem is
including unrelated files, and I have only had one
package that did not include a necessary file.

Mkpkg creates the manifest using file timestamps to
detect files that were installed by the install process
included with the software source. Mkpkg creates a
new file that it will use as a timestamp, then it builds

6

and installs the software (on the publisher’s machine
using the install process included with the software
source). It then searches (part of) the file system for
files with modification or creation times that are
newer than the saved timestamp.

There are two types of errors that occur during
manifest generation: missing files, and including
extra files. In practice, mkpkg makes very few
mistakes, but it cannot guarantee perfect accuracy, so
the publisher must still verify the manifest’s
accuracy.

Since the manifest generation process uses file
timestamps, it reliably detects all modified or
installed files in the search region. There are two
ways that mkpkg can miss files that should be
included: directories missing from the search list, and
files are that aren’t installed. Sometimes, software
installation tools are “too smart” and don’t re-install
files that have already been installed. In this case,
some files will not be installed by the tool and will
not appear on the manifest. I do not have a solution
to this problem.

More commonly, extra files will appear in the
manifest because the files have been modified
independent of the installation process. Usually,
these files are log files for system events or daemon
processes. In general, the list of such files is fairly
static for any given machine, so we can create a list
of all such files, although Mkpkg automatically
eliminates most of those files by automatically
removing “spurious” files from the manifest. Mkpkg
has a global list of “spurious” files that can be
modified by publishers to match the active log files
on their machines.

Mkpkg has a default list of directories to search for
new software. Currently this list includes paths from
the Software Configuration Guide [4]. Mkpkg will

only search this part of the file system for newly
installed files both to reduce the probability of
independent user activity generating spurious file
listings and to minimize the time required to search
the file system for new files.

5 Control script generation
One of the most difficult tasks when developing
installation packages is developing the customization
scripts. These scripts are not interactive, may only
rely on a restricted subset of system functionality and
have to work correctly every time or they may leave
the customer’s system in an inconsistent state. The
guidelines for writing control scripts are extensive
and arcane.

There are ten different control scripts that may be
used by Software Distributor. Each control script is
used during different phases of software installation,
and there are many subtle issues regarding the roles
of each script. In particular, there are some very
subtle issues when software is installed on a disk
shared by several computers, since, in this case, some
scripts are executed only on the machine that copies
the bits, while other scripts are executed on every
machine that uses the software.

Mkpkg provides a mechanism for automatically
generating the control scripts for several
customization actions, including PATH file updates,
configuration file installation, removing obsolete
files, adding a kernel driver or parameter, adding new
users and groups, appending a fragment to a
(configuration) file, and starting a daemon process.
In addition, Mkpkg can automatically detect when
some of these actions are required and will
automatically create the necessary customization
actions.

7

Each customization task has a “work ticket” that
specifies the type of task and any parameters. Each
product and fileset has a list of these “work tickets”
containing all its customization tasks.

5.1 Control files
There are nine control files that are used by Software
Distributor to customize software installations.
These control files fall into three basic categories:
installation, verification, and de-installation. The

installation scripts are used when the software is
installed on the computer, and they should install and
configure the software so that it may be removed
safely in the future. The de-installation scripts are
designed to remove most of the customizations added
by the installation phase. This is an exceptionally
difficult process to perfect, especially since some
customizations should not be removed because the
system may now depend upon them. For example, it
might be a bad idea to remove a user since the
customer may have created files using that user-id.

5.2 Control file generation
When mkpkg is creating a product or fileset, it
iterates through the work tickets to create a sequence
of control fragments in each control script. If a work
ticket specifies a control action in that script, then it
generates and returns the fragment. Otherwise, it
returns an empty string.

5.3 Control actions
The basic customization actions include: adding
directories to the PATH files, adding new users or
groups to the system, installing configuration files,
inserting fragments to system files, removing obsolete
files, adding a kernel driver or parameter, starting a
daemon process and adding cron actions.

I have built over three hundred software installation
packages for a wide variety of public domain
applications, such as database systems, editors,
compilers, and games. These software packages vary
widely in many ways, but they have needed only a
few types of customization. I believe that the entire
body of software that I have managed needs only
those customizations that have already been
automated by mkpkg.

I was able to obtain a copy of all the control scripts
written for all the software shipped by Hewlett-
Packard for HP-UX using Software Distributor. I
examined nearly all of the control scripts, and I think
that most of the customization actions needed by
Hewlett-Packard are already included in this list.

5.3.1 Custom scripts
Since mkpkg only contains built-in customization
detection and handling for a few common actions,
mkpkg provides a mechanism for publishers to
execute their own custom scripts. “Custom” scripts
allow the user to specify that a given script be
executed as part of a given control script phase. The
given script is included in the package as a control

Control File Meaning

checkinstall executed before bits are installed
to check that the software can be
installed; no side-effects

preinstall executed before bits are copied
to system in preparation for
installation and customization,
e.g. save original versions of
configuration files

postinstall executed after bits are copied to
system. Completes
customizations that are shared by
all systems using network bits.

configure may be executed independently
and should be executed on every
system using the software. Does
system-specific customizations,
e.g., add a user.

verify verifies that the software is
properly installed and
configured. No side-effects.

checkremove executed before the bits are
removed. Checks that a fileset
or product may be removed.

preremove executed before the bits are
deleted. Prepares the system and
the software for removal.

postremove executed after the bits are
removed. Cleans up and
removes any leftover mess.

unconfigure executed after the bits are
removed. Removes (some)
system-specific customizations.
Not all customizations should be
undone.

Table 2

8

script. Mkpkg creates a control script fragment that
executes the given script and retains the exit code.

5.3.2 PATH file components
In HP-UX 10.x, there are three files /etc/PATH,
/etc/MANPATH, and /etc/SHLIB_PATH that provide
each user with default values for login shell
environment variables. Any package that has its own
directory tree would probably need to modify these
files. For example, the new standard for independent
software packages recommends that packages be
installed under /opt/package/{bin,lib,etc,man,…}, so
each package would require adding path elements to
each of the path files. Fortunately, it is possible to
automatically recognize that a fileset requires control
script actions using filename pattern matching and
file type checks.

5.3.3 Configuration file installation
In HP-UX 10.x, configuration files should not be
installed directly into place because end-user’s may
modify configuration files. In addition, in a network
file system environment, a package may be installed
on one machine into a shared directory, and then run
by each of the other machines after “configuration”.
Consequently, the configure scripts need to copy
configuration files into an unshared location. By
convention, configuration files are contained under
the /etc/ tree, but they may be located elsewhere.
Although, the system only automatically detects
configuration files in some cases, mkpkg users may
packages may specify additional configuration files.

Since configuration files must be installed into a
staging location, mkpkg searches for configuration
files that are slated for installation directly into the
configuration area, modifies their installation location
to the staging area, and creates a customization work
item. For files that have been slated for installation
in the configuration staging area, mkpkg creates the
customization work item to move the configuration
file into place.

5.3.4 New users and groups
Some packages require that files be owned by a
particular user or group. If it is not in the standard
set of users and groups for HP-UX machines, then it
must be installed on the system. For example, many
database systems need to run as a specific user-id,
and all of the database’s files are owned by that user-
id.

Mkpkg can generate the control script fragments that
create and remove user-ids and group-ids.

In many cases, mkpkg can automatically detect that
software requires a new user-id or group-id by
examining the ownership of all the files in the
product or fileset. If the software has user or group
ownership by any user-id or group-id that is not in the
basic set of users and groups shipped with every
system, then mkpkg needs to create a new user-id or
group-id.

5.3.5 System file modification
Some packages need to modify existing system files.
There is a class of system files that contains system
configuration information and that is relatively
insensitive to the ordering or location of entries. For
example, /etc/inetd.conf contains a list of processes
that should be started or stopped on entry and exit
from various run-levels. Each entry is a single line,
and the lines are position-insensitive.

Mkpkg generates the control scripts that can add or
remove a line (or lines) to such files. Mkpkg needs
to know the file name and line (or lines) to insert.
During customization, the generated control scripts
check the file for the specified lines. If they are not
present, then they are appended to the system file.
Decustomization may need to remove these lines
from the file.

5.3.6 Crontab entries
The cron system is used to execute scheduled and
repetitive actions. Each user may have an individual
cron schedule. Cron uses a structured configuration
file, called a crontab, to control its actions. The
standard system file modification action would be
sufficient for cron, except for the fact that the crontab
should not be modified directly. One gets a copy of
the current crontab file by executing “crontab -l” and
then updates the crontab by executing “crontab
<crontab>” as the user whose cron schedule is being
updated.

5.3.7 Removing obsolete files
Often machines are used for years, so customers
install upgraded versions of software on top of old
versions. If files belonging to an old version of the
software are no longer needed, the control scripts
must remove them.

9

5.3.8 Update kernel driver or parameter
Some packages need to add a kernel driver or
parameter to the kernel configuration. This is rare,
but very difficult to get right and very costly if
something goes wrong.

5.3.9 Starting a daemon process
Some software contains daemon processes. In many
cases, the packages modify one or more system files
so the daemons will be restarted automatically after a
reboot. However, it is often useful to start these
daemon processes immediately, without requiring a
reboot. This task ensures that the daemon is started
automatically on the end-user’s machine during
package customization.

6 Architecture
Mkpkg has a very modular design that provides a
framework for adding new modules and functionality.
The user requests that mkpkg execute actions, such as
“create the product manifest”. Actions are composed
of sequences of operations. The operation is the basic
unit of functionality.

Mkpkg executes each operation within an action in
sequence. The operations may return an error code
(in which case mkpkg may ask the packager if they
would like to abort) and mkpkg adds text to the
operation log. Operations have a uniform function
interface. Operations are intended to function
without user interaction, since mkpkg can be used by
either a command-line interface or a GUI.

New functionality is added to the system by
developing new operations, and then adding them to
the appropriate action list or creating a new action.

Most of the internal structure of the system, its
interaction, and user interface are all defined by data
structures that specify how various pieces interact. In
this way the basic code is often very simple and many
pieces of the system can be reused easily and often.
Sometimes the data structures are code fragments that
get dynamically executed by the Tcl interpreter.

6.1 Data structures
Mkpkg’s greatest weakness is its data structures for
storing package configuration information; Mkpkg
uses Tcl arrays as the basic data structure container.
There are two global arrays: database() and
product(). Database() contains the system
information that is used by all packages created on

that system, while product() contains the information
relevant to a particular product.

The array index is a comma-separated list of defining
attributes of the data value. All the context for a
given piece of information is encoded in the index.
For example, the list of prerequisites for mkpkg’s
fileset mkpkg-BIN is in the array element:

 product(mkpkg,fileset,mkpkg-BIN,prerequisite)

This system is cumbersome but effective for most of
mkpkg’s needs. As I have been developing the
control script generation, its weaknesses for general
hierarchical data have become more pronounced.

6.2 Operations
Operations are the basic building blocks of mkpkg.
Each operation is atomic and may be used in many
actions. Operations often modify the package or
mkpkg state, but not always. For example, one action
creates the timestamp file used during manifest
generation, while another action builds the
application. Not all actions modify mkpkg’s state;
some are used to provide error checking.

6.3 Backends
The backends provide installation system-specific
code. The backends provide two functions:
dumpPSF, and package. DumpPSF creates the PSF
file for the package using all the state and information
available. Package executes the backend-specific
packaging program to create an installation package.

Mkpkg is structured so that it can easily produce
packages for a variety of software installation tools.
In the past it has been able to create installation
packages for several other installation tools.

6.4 Interfaces
There are two user interfaces for mkpkg: a command-
line interface and a graphical user interface. The
command-line interface provides access to most of
the actions and functionality of mkpkg, but it does
not have any facilities for browsing or modifying
specific data fields.

The graphical interface provides access to all of the
actions and functionality provided by mkpkg. In
addition, it provides the ability to browse and edit all
of the product configuration information, such as
fileset manifests. Users may use the GUI to create,
delete, or rename filesets and subproducts; to add or
delete files from manifests; to specify customization

10

actions; or to edit any one of the other myriad
configuration items.

7 Developing a package
We will walk through the whole process of
developing a simple package using mkpkg. This
simple package does not utilize or require all of
mkpkg’s functionality, but it does demonstrate
features common to most packages.

Our first step is to prepare the software for
packaging. We should be able to automatically
compile and install the software correctly on our
machine without human intervention. Of course, if
we are building a package for pre-compiled software,
we can skip compilation. In our case, we have a
Makefile with three targets: all, install, and clean.

Our software sources are in less-1.0, and our package
contains the following files:

/usr/local/bin/less

/usr/local/bin/X11/xless

/usr/local/lib/X11/app-defaults/Xless

/usr/local/man/man1/less.1

/usr/local/man/man1/xless.1

Table 3

Since the package is small, and since it has only a few
man pages, we will ship the entire product in a single
fileset less-RUN.

We need to decide if we will distribute code that has
been statically linked or dynamically linked. In
general, software that is released as part of HP-UX
will be dynamically linked, while software that is
shipped by third parties or is shipped independently
of HP-UX may be statically linked. The advantage of
static linking is that the executables do not depend on
specific shared libraries and are more likely to work
correctly on a wider range of platforms, but at the
cost of additional disk space consumption. Our
package will be shipped with dynamically linked
executables. We are now ready to begin building our
Software Distributor (SD-UX) product.

Secondly, we start mkpkg within our project
directory less-1.0, and provide mkpkg with enough
information to be able to build, install, and locate the
software in our product. The mkpkg interface has a
menu bar across the top. Under the ‘View’ menu, we
can see all of the ‘pages’ that contain information that
we may need to provide, verify, or modify. Under

the ‘Action’ menu are all the actions that we need to
produce an installation package.

We are currently viewing the ‘configuration’ page for
the product. Notice that mkpkg has already provided
default values for many of the attributes. Some of the
defaults come from the default values on the ‘system’
pages, but others have been computed. For example,
the product name (less) and version (1.0) have been
computed from the current directory name.

On the configuration page, we need to fill in the
‘directory’ attribute with /usr/local. This attribute is
used in the PSF file, but it is also used by mkpkg
during manifest generation to locate the files installed
as part of the package. In some cases, we may not
know where every file will be installed. Mkpkg has a
(long) list of directories in order to catch these
wayward files.

We have told mkpkg where to look for installed files,
now we need to tell it how to build and install our
software. Go to the ‘build’ page under the ‘View’
menu and check the attributes ‘build’, ‘install’, and
‘clean’. Their defaults ‘make’, ‘make install’, and
‘make clean’ are correct because they are the targets
used by our Makefile.

We need to create the manifest, so select the menu
option ‘Create file list’ on the ‘Action’ menu. This
action may take a long time, since it compiles and
installs the software, and then it searches your system
for newly installed files. For large packages, just
compiling the software may take hours, while for
large systems it may take hours to just search the file
system for installed files. Once this action is
complete, you should see a fileset ‘less-RUN’ and a
subproduct ‘Runtime’ under the ‘View’ menu.

You should now check every attribute on each page,
correcting or providing information as necessary.
You should also check that the fileset ‘less-RUN’
contains all the files from our package (and no
more!), and that the subproduct ‘Runtime’ contains
just one fileset. Also, ‘less-RUN’ should have
dependencies on various filesets from OS-CORE and
X111.

Thirdly, we create the installation package with the
‘Create dynamic package’ action. This action
compiles and installs the software. It then copies the
software to some ‘safe’ place (in the parent directory

1 Actually, mkpkg will only find these shared library
dependencies if you have run the action ‘Search
system for shared libraries’ prior to running ‘Create
file list’.

11

of less-1.0, there should be a directory named
something like less-1.0__10.20__dynamic). It then
generates a PSF file (in the ‘safe’ place), and uses
that PSF to create an installation package. The
installation package is left in the parent directory.

8 Experiences
I started developing software installation packages in
1993 because I wanted to provide binary installation
for public domain software within Hewlett-Packard.
There is a network installation tool, called ninstall,
which has been in widespread use within Hewlett-
Packard for a long time. I wanted to build ninstall
packages for common public domain software, such
as emacs, so other people inside Hewlett-Packard
could install the packages and not duplicate my
porting, configuration, and compilation effort.

It took me a week to generate my first ninstall
package, both because I had to learn how to package
software and because I had to manually create the
package manifest and all the PSFs. It only took a
week to write the first version of mkpkg, which
included the automatic manifest generation and PSF
generation.

I used the initial version to develop binary
installation packages for about 50 packages. At this
point it would take me about three minutes of effort
per-package to build a complete binary installation
package once the software had been ported and
configured. Since mkpkg builds the package several
times during the course of the process, the actual
elapsed time can be far longer.

At this point I was supporting a library of about 50
public domain software packages which could be
installed by HP employees over the HP intranet. This
library was very popular and I soon had thousands of
internal “customers”; I also started getting bug
reports. I discovered that my customers were having
a lot of problems running programs that depended on
a shared library that was missing on their machine.
Usually the library was included in another package,
but I had not marked the package dependency so the
requisite libraries were not getting installed
automatically. I then extended mkpkg to detect and
manage shared library dependencies and the
problems disappeared.

Using this version of mkpkg, I have been supporting
over 250 packages. Once the software is ported,
debugged, and configured, I can usually generate a
binary installation package with about three minutes
of effort. The biggest difficulty at this stage was

developing customize/decustomize scripts for
extraordinary packages. In addition, I found a few
packages (e.g. TeX 3.1415) whose “make
install” processes were so intelligent that the
processes would only install certain files if they did
not already exist. Since these files invariably existed
on my machine, they were not installed during the
“make install” phase of manifest generation and so
they were not included in the manifest. There is no
substitute for testing software packaging on a “clean”
machine.

Mkpkg was then extended so that it could generate
both ninstall and update packages. This version of
mkpkg was shared with the HP-UX Porting and
Archive Centre so they could easily generate update
packages of public domain software.

With the advent of HP-UX 10.0, update was replaced
with SD-UX, the HP-UX version of Software
Distributor, as the standard software installation tool.
Since SD-UX added hierarchical structure on top of
the simple fileset model used by update, mkpkg was
rewritten to manage the product/subproduct/fileset
structure. This hierarchy added a lot of complexity to
mkpkg. For example, mkpkg now knows how to
create filesets and subproducts based on standard
naming conventions and other guidelines, and during
manifest generation it automatically assigns files to
the proper fileset. Internally, Hewlett-Packard has a
variety of guidelines governing subproduct and fileset
naming, assignment of files to filesets, and a myriad
of other topics, and mkpkg tries to automate those
guidelines whenever possible.

This hierarchical version of mkpkg was also shared
with the HP-UX Porting and Archive Centre so they
could start generating SD-UX packages. They have
since used it to generate thousands of packages.

My final task was developing customize/decustomize
scripts. While developing hundreds of ninstall
packages I discovered that most packages require
only a few, basic customization actions, so mkpkg
was extended to automatically detect and generate
customize/decustomize scripts for a variety of
common actions.

9 Acknowledgements
I would like to thank Colin Charlton, Richard Lloyd,
Rik Turnbull, and all of the dedicated people of the
HP-UX Porting and Archive Centre who have put up
with pre-release versions of mkpkg and provided
valuable feedback.

12

I would also like to thank Shahryar Shahsavari of
Hewlett-Packard Software Integration and
Distribution Organization who gave me a great deal
of advice and information while I was designing the
automated customization script generation.

Finally, I should like to thank David Mullaney,
George Williams, Mark Mayotte, Debbie Ogden and
the rest of the Software Distributor team for their
support and encouragement.

10 Conclusions
Mkpkg dramatically simplifies the process of creating
installation packages, by automating most parts of the
software package creation process. Using mkpkg a
skilled user can create complex binary installation
packages for Software Distributor in a few minutes of
effort, a process which used to take hours or days.

Binary installation packages are very useful, but they
have primarily developed and distributed by large
software and operating system vendors because they
are so difficult to develop. By dramatically reducing
the effort and complexity associated with developing
binary installation packages, it should now be
possible for harried system administrators and MIS
support staff to develop their own binary installation
packages for software that they support and
redistribute with their organization.

11 Bibliography
[1] Managing HP-UX Software with SD-UX.

Hewlett-Packard. Part Number B2355-90080.
1995.

[2] Edward Bailey, Maximum RPM: Taking the Red
Hat Package Manager to the Limit, Red Hat
Software, Durham, North Carolina, 1997.

[3] RPM HOW-TO,
http://www.rpm.org/support/RPM-HOWTO.html

[4] Software Distribution Standard, The HP-UX
Porting and Archive Centre,
http://hpux.csc.liv.ac.uk/hppd/standard.html

[5] Standard for Information Technology – Portable
Operating System Interface (POSIX) System
Administration. IEEE POSIX draft P1387.2/D13,
April 1994.

[6] Scott Hazen Mueller, Good programs, lousy
installation. ;login: (21)3:36-38, USENIX. June
1996.

Glossary

Bundle
A collection of products and filesets that are
installed as a unit by Software Distributor.

Control script
A script that is contained in a product or fileset
and which is used by Software Distributor to
check or modify the system state during software
installation or de-installation.

Cron
A UNIX service that executes system and user-
defined actions periodically. Its configuration
file is crontab.

Crontab
The configuration file used to control cron. It
may not be edited in place; rather, one must
extract the current crontab using the command
‘crontab -l’ and then install a new crontab using
the command ‘crontab’.

Customization Actions
Actions that are not standard and that occur
during software installation and de-installation.
Mkpkg customization typically modifies the
system configuration so that the software runs
correctly. These actions occur without user
interaction.

Dependencies
An attribute of a package that indicates whether
the package requires another package to work
properly. Dependencies may be either
‘prerequisite’ (if the package must be installed
before the current package is installed) or
‘corequisite’ (if the package must be installed
before the current package is executed).

Dynamic linking
In UNIX, executables can be linked to shared
libraries using ‘dynamic linking’, which means
that the executable does not contain a copy of the
library, but only a reference to the library. If the
library changes, then the executable may no
longer work properly.

See also Static linking

Fileset
The atomic unit of installation. Contains files
and customization scripts (if applicable). May
also have additional requirements, such as
dependencies.

Man page
Manual page for UNIX’s online documentation
system.

13

Manifest
The list of all files to be installed.

Product
The primary unit of software installation in
Software Distributor. It contains both
subproducts and filesets and may have
installation dependencies and customization
actions.

Product Specification File (PSF)
The file that describes the entire product or
bundle.

SD-UX
The HP-UX version of Software Distributor,
which is the standard software installation tool
provided for HP-UX. All Hewlett-Packard
software for HP-UX is distributed in this format.

Software Distributor
A POSIX-1003.7.2-compliant software
installation toolset developed by Hewlett-
Packard.

Static linking
With static linking, executables contain a copy of
the various library routines rather than references
to shared libraries. These executables are often
significantly larger that dynamically linked
executables, but they are more likely to work on
a variety of platforms and are less fragile in the
face of operating system upgrades.

See also Dynamic linking

Subproduct
A collection of filesets that are installed as a unit
by Software Distributor. Subproducts are
contained in products, and a product can have
several subproducts. Filesets may be contained
in more than one subproduct.

