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deviations from the average behaviour.  We answer this
question in the negative by showing that, given n pairs of
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I. INTRODUCTION

A. Background

Non-locality of entangled states as in the Einstein-Podolsky-Rosen paradox [1], discov-

ered by J. Bell [2] in 1964, is a hallmark of quantum mechanics. The last two years however

witnessed a dramatic change in the approach to entanglement, with the advent of the idea

of manipulating entanglement. This paper concerns mainly pure states. It has previously

been realized that entangled pure states can be transformed from one into another via local

actions and classical communication, procedures which do not a�ect the genuinely nonlocal

properties of the di�erent states. In e�ect entanglement is now viewed as a resource which

can be transfered from a system to another, and cast into di�erent forms while obeying

certain conservation laws|very much like energy or entropy.

For example, suppose that two remote observers, Alice and Bob, share n pairs of spin

1/2 particles, each pair in a non-maximally entangled pure state j	i = �j1ij1i + �j2ij2i.

Then, by local actions (which may include local unitary transformations, measurements and

attachment of ancillary quantum systems) and classical communications Alice and Bob can

convert these pairs into a (smaller) number m of perfect singlets. It has been shown [3] that

in the limit of large n, Alice and Bob can perform a reversible conversion of the n pairs 	 into

singlets, obtaining, on average a number �m = nE(	) of singlets, with E(	) the \entropy

of entanglement" [4]. Furthermore, as a consequence of this reversibility property, together

with the fact that on average entanglement cannot increase via local actions and classical

communications [3,5], it has been shown [6] that this particular entanglement manipulation

method yields the maximal possible average number of singlets, and that E(	), the maximal

average number of singlets which can be extracted per original pair 	, is the unique measure

of entanglement for 	.

However, until now the study of entanglement manipulation was focused only on average

values, such as on the question \What is the average number of singlets which can be
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extracted from n pairs 	?" Indeed, the whole idea of reversibility is valid only on average.

Here we want to go beyond average values and ask about the actual distributions. For

example, the same average number of singlets, �m = nE(	) might, in principle, be obtained

from very di�erent distributions: In the reversible procedure described in Ref. [3], out of n

pairs 	 a number m of singlets is obtained with some probability Pm, and the distribution

is essentially Gaussian, peaked around �m = nE(	). In particular, via this procedure the

probability to obtain a large number of singlets, m � n is exponential small. However, one

could envisage a distribution which yields the same average �m = nE(	) while having a non-

negligible probability for obtaining a large number of singlets|for example, a distribution

in which the probability of obtaining m = n singlets is E(	) while in all other cases zero

singlets are obtained. The question is \Does there exist any entanglement manipulation

procedure which realizes the later distribution?"

A main point of our investigation is to gain a better understanding of the collective

properties involved in entanglement manipulation. Indeed, if Alice and Bob would extract

singlets by processing each of the n pairs 	 separately, the law of large numbers tells that

the probability distribution of the number of singlets will (asymptotically) be Gaussian.

Deviations from this distribution can be obtained (if at all) only if Alice and Bob process

all the n pairs together. But are such deviations possible? And if so, how big can they be?

[To put things in the right perspective, we would like to mention that the reversible

procedure [3] discussed above, is not a procedure in which each pair is processed separately

but a collective one|yet, the distribution it yields is essentially Gaussian.]

It is useful to note, however, that in fact all entanglement manipulation methods, both

\single-pair" and \collective" ones can be reformulated as \single-pair" methods, by rede�n-

ing the \particles". Indeed, suppose Alice and Bob share n pairs of particles, and intend to

process them by some collective method. We can now regard all n particles in each side as

a single \particle", living in a higher dimensional Hilbert space (equal to the product of the

Hilbert spaces of the original n particles). The n original pairs can thus be regarded a single

pair of two (more complex) quantum particles, and the original \collective" manipulation
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can be regarded as a \single-pair" type manipulation of this new pair. Consequently, all the

questions raised in this introduction can be answered by studying \single-pair" manipula-

tions of a generic state of two arbitrary particles. This is the path that we will follow in the

present paper.

Another focus of our investigation is the role of symmetry in entanglement manipulations.

The symmetry of the Schmidt decomposition is exploited in a crucial manner in deriving

the main result 1) below. Our work also underscores the importance of classical commu-

nications in entanglement manipulations. In our opinion, in the context of entanglement

manipulations (including quantum error correction) the subtle interplay of the concepts of

probability, coherent manipulations, symmetry and classical communications deserves fur-

ther investigations. Our work is a step in this direction.

B. Main Results

Our key results on entanglement manipulations can be summarized as follows:

1) Naively, the most general strategy of entanglement manipulation involves Alice and

Bob taking turns in performing all sorts of local actions (local unitary transformations, mea-

surements and attachment of ancillary quantum systems), and exchanging back and forth

classical messages. However, we show that in the case of pure states, any strategy of entan-

glement manipulation is equivalent to one involving only a single (generalized) measurement

by Alice followed by the one-way communications of the result from Alice to Bob (and �nally

local unitary transformations by Alice and Bob).

The key reason is that the Schmidt decomposition is symmetric under the interchange

of Alice and Bob. We prove that this symmetry can be promoted to a symmetry between

the actions of Alice and Bob on manipulating a pure state. Unfortunately, such a symmetry

does not exist for density matrices.

We will also show in Sec. VI that one-way communications generally give strategies

that are more powerful that those without communications. Combining this result with
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the above reduction from two-way to one-way communications, we conclude that one-way

communications is necessary and su�cient for implementing the most general strategy of

entanglement manipulations.

Notations and De�nitions. To state our next results, we need to introduce some notations

and de�nitions. An arbitrary pure state 	 can be written in Schmidt decomposition [7]

	 =
NX
i

q
�ijaiijbii; (1)

where haijaji = hbijbji = �ij. Here we order the Schmidt coe�cients �i decreasingly, i.e.,

�1 � �2 � � � � � �N .

We shall denote by �m a standard m-dimensional maximally entangled state

j�mi =
1p
m

mX
i=1

jiijii: (2)

In particular, �1 is a direct-product, �2 is (equivalent to) a singlet and �2
r is equivalent

to r singlet pairs. In what follows, we shall call �m an m-state. All our following results

center around entanglement manipulation schemes which aim to convert an arbitrary pure

initial state 	, known to Alice and Bob, into an m-state:

2)For any positive integer m, we de�ne pMAX
m [8] to be the supremum over all manipu-

lation strategies of the probability pm of getting an m-state �m from a pair initially in the

state 	.

We determine pMAX
m and formulate an explicit strategy which can realize it. In general,

for a given initial state 	, each m requires a di�erent optimal strategy.

i) If m > N (N being the number of terms in the Schmidt decomposition of 	), then

pMAX
m = 0.

This follows from the fact that the number of terms in the Schmidt decomposition never

increases under local actions and classical communication [9].

ii) If m � N , then

pMAX
m = min1�r�m

m

r
(�m�r+1 + �m�r+2 + � � �+ �N): (3)
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3) Consider a �xed strategy which transforms 	 into di�erent maximally entangled states

�m with corresponding probabilities pm. A way to describe the probability distribution is

by the cumulative probability distribution, i.e., by the total probability ptotm to obtain some

maximally entangled state �k with k � m

ptotm =
X
k�m

pk: (4)

We prove that for an arbitrary initial state 	,

ptotm � pMAX
m : (5)

That is, we prove that for any given strategy, ptotm , the total probability to obtain maxi-

mally entangled states of dimensionm and larger, is upper bounded by pMAX
m , the maximum

over all strategies of the probability of getting an m-state.

4) We de�ne a natural notion of a \universal" strategy for entanglement manipulation

for all m's and prove that quantum mechanics forbids the existence of such a strategy.

5) We show that collective manipulations cannot yield large deviations from the law of

large numbers. More concretely, suppose Alice and Bob share n pairs of particles with each

pair in a state j	i. We show that the probability of getting nK singlets with K > E(j	i)

tends to zero as n ! 1. In particular this means that any strategy which can transform

n pairs 	 into an average of nE singlets (the maximal allowed average) yields a singlet

number probability distribution very similar to that of the reversible strategy by Bennett et

al. [3]: Any such strategy yields a cumulative probability distribution roughly equal to 1 (0

respectively) when K < E(j	i) (K > E(j	i) respectively). It can be shown that the jump

from 0 to 1 occurs in a region of width O(n�1=2) around E(j	i) in both cases.

C. Outline of the Paper

Except for Section 9, we will focus on the case where initially Alice and Bob share a

known entangled state that is pure. In Section 2, we prove that only a single (generalized)
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measurement and one-way communications are needed for entanglement manipulations of a

pure state. A function pMAX
m is introduced in Section 3. We show, in Section 4, that the

number of terms in a Schmidt decomposition never increases under entanglement manipu-

lations. In Section 5, we derive an upper bound on pMAX
m . For any given m, we devise in

Section 6 an explicit strategy which saturates the bound. One might wonder about the ex-

istence of a \universal" strategy which (in some sense) saturates the bounds for all m's. We

show in Section 7 that such a strategy generally does not exist. In Section 8, we show that

collective manipulations cannot defeat the law of large numbers. In Section 9, the di�culty

in attempts to generalize our results to the case where Alice and Bob initially share a mixed

state is noted. Open questions on the case of pure states are discussed in Section 10.

II. REDUCTION FROM TWO-WAY TO ONE-WAY COMMUNICATIONS

The most general scheme of entanglement manipulations involves two-way communica-

tions between Alice and Bob. It goes as follows: Alice performs a measurement and tells

Bob the outcome. Bob then performs a measurement (the type of measurement that Bob

performs can depend on Alice's measurement outcome) and tells Alice the outcome, etc,

etc. In this Section, however, we prove that any strategy of entanglement manipulation of a

pure state is equivalent to a strategy involving only a single (generalized) measurement by

Alice followed by the one-way communications of the result from Alice to Bob (and �nally

local unitary transformations by Alice and Bob).

First of all, since it is more convenient to deal with projection operators than positive

operator valued measures (POVMs), we include any ancilla (measuring apparatus) in Alice

and Bob's quantum machines as well. Therefore, without loss of generality, we regard Alice

and Bob as sharing a pair of particles with an in�nite (or an arbitrarily large) dimensional

Hilbert space but initially only N of the coe�cients of the Schmidt decomposition [7] are

non-zero, i.e., j	i = PN
i=1

p
�ijaiijbii where haijaji = �ij and hbijbji = �ij. We further assume

that the above form of the Schmidt decomposition of j	i is known to Alice and Bob.
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Second, we consider only the most advantageous gambling [10] scheme in each step of

which Alice keeps track of the results of all her measurements and tells Bob about them

and vice versa. Alice and Bob then update their information on the state they share in

each step. Since it is a pure state j	i that Alice and Bob start with, they always deal with

a pure state in each step. Notice that any scheme in which Alice and Bob choose to be

sloppy or ignorant can be re-casted as a situation in which they fail to make full use of their

information. Therefore, there is no loss in generality in our consideration.

We now argue that any two-way entanglement manipulation strategy for the state j	i

can be re-casted into an equivalent strategy which involves only one-way communications

from Alice to Bob|that is to say a strategy in which Alice performs all the measurements

and informs Bob of the outcomes afterwards. This is so because (1) in entanglement ma-

nipulations we are mainly concerned with the coe�cients of the Schmidt decomposition and

(2) in each step of entanglement manipulation, the Schmidt decomposition of the pure state

involved is always symmetric under the interchange of Alice and Bob. With such symmetry,

there is no advantage in having Bob perform the measurement instead of Alice [11].

More concretely, consider a round of communications in a two-way scheme of entangle-

ment manipulation. Suppose Alice has performed a measurement on j	0i = Pk

q
�0kja0kijb0ki

and obtained an outcome o1. She can work out the Schmidt decomposition Po1j	0i =

P
k

q
�00kja00kijb00ki of the state that she now shares with Bob. Now Alice is supposed to tell

Bob the outcome o1 of her measurement and Bob then will perform a measurement with

a set of local projection operators say fPBob
l g. Using the isomorphism jb00ki ! ja00ki in the

Schmidt decomposition [16], Alice can map the set fPBob
l g into fPAlice

l g which is a set of

local projection operators by Alice instead. Therefore, Alice can perform the measurement

herself and obtain mathematically equivalent outcomes. The two experimental procedures

(Bob measures with fPBob
l g vs Alice measures with fPAlice

l g) are isomorphic: They give the

same set of probabilities for the corresponding outcomes. Moreover, for each outcome l, the

resulting states in both cases have the same coe�cients in Schmidt decomposition. If they

like, Alice and Bob can apply a direct product of local unitary transformations to change
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one state into the other.

If the above is still unclear, let us discuss our reasoning in more detail. For simplicity,

let us abuse our notation by writing Po1 j	0i simply as j	i and by dropping the \primes"

in �00k's, ja00ki and jb00ki. Suppose Alice obtains an outcome o1 for her measurement, her state

becomes

j	i =
X
k

q
�kjakijbki (6)

in Schmidt decomposition. Consider any of Bob's projection operator

PBob

l =
X
i;j

ml
ijjbiihbjj: (7)

After the projection, the state he shared with Alice becomes

j	Bi =
�
I 
 PBob

l

�
j	i

=
X
i;k

q
�km

l
ikjakijbii: (8)

On the other hand, if, instead of Bob, Alice performs a measurement using the corresponding

operator

PAlice

l =
X
i;j

ml
ijjaiihajj; (9)

an outcome l will give the state

j	Ai =
�
PAlice

l 
 I
�
j	i

=
X
i;k

q
�km

l
ikjaiijbki (10)

Notice that the two resulting states corresponding to the outcomes in the two experimental

situations (i.e., Alice measures and gets the result l vs Bob measures and gets the result

l) are related to each other by the mapping jakijbii to jaiijbki. We now argue that this

mapping is an isomorphism which preserves Schmidt coe�cients. Our point is: this exchange

operation can be physically (and also mathematically) realized by interchanging systems HA

and HB and relabeling the state jaki's by jbki's and vice versa. Being a simple exchange and
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relabeling, this operation must, therefore, correspond to a symmetry operation which leaves

physics invariant [17]. What we mean by physics here includes the probability amplitude of a

state and the ordered set of coe�cients of the Schmidt decomposition �i's. [If one were able

to change the probability amplitude of a state or the coe�cients of its Schmidt decomposition

by interchanging the two systems and labeling their states, then the probability amplitude

and Schmidt coe�cients could not carry much physical meaning.] This fact can be veri�ed

mathematically: If j	Bi can be put into a Schmidt basis by applying a direct product of

local unitary transformations U1 
 U2, then j	Ai can be put into a Schmidt basis with the

same set of coe�cients by applying U2 
 U1.

Mathematically, we are claiming that, given any pure state j	i, for each outcome l, there

exists a direct product of local unitary transformations UA
l 
 UB

l such that

�
I 
 PBob

l

�
j	i =

�
UA
l 
 UB

l

� �
PAlice

l 
 I
�
j	i: (11)

In conclusion, the mathematical symmetry of the Schmidt decomposition can be promoted

into a physical symmetry between the actions of Alice and Bob. Consequently, Alice can

perform the measurement in each step herself and inform Bob of the result afterwards.

One can repeat the above argument and prove that all the rounds of measurements can be

performed by Alice alone and Alice only needs to tell Bob her outcomes after the completion

of all her measurements. Mathematically, we can understand this result as follows: Suppose

Alice and Bob go through 2r rounds of communications. Up to uninteresting local unitary

transformations [18], a branch of history is described by

�
I 
 P

B;2r
i2r

� �
P

A;2r�1
i2r�1


 I
�
� � �

� � �
�
P

A;3
i3


 I
� �

I 
 P
B;2
i2

� �
P

A;1
i1


 I
�
j	i; (12)

where ij denotes the particular outcome of the measurement in the j-th step of the entangle-

ment manipulation. Applying Eq. (11) to each round of communication from Bob to Alice,

we obtain

�
U

A;2r
i2r


 U
B;2r
i2r

� �
P

A;2r
i2r


 I
� �

P
A;2r�1
i2r�1


 I
�
� � �
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�
P

A;3
i3


 I
� �

U
A;2
i2


 U
B;2
i2

� �
P

A;2
i2


 I
� �

P
A;1
i1


 I
�
j	i

=
�
U

A;2r
i2r

P
A;2r
i2r

P
A;2r�1
i2r�1

U
A;2(r�1)
i2(r�1)

� � �PA;3
i3

U
A;2
i2

P
A;2
i2

P
A;1
i1

�



�
U

B;2r
i2r

U
B;2(r�1)
i2(r�1)

� � �UB;2
i2

�
j	i: (13)

Therefore, we conclude that, for Alice and Bob manipulating with entanglement and start-

ing with a pure state, one can, without loss of generality, restrict oneself to schemes of

entanglement manipulations using only one-way communications from Alice to Bob.

Finally, it is a well-known consequence of measurement theory that the entire sequence

of Alice's measurements can be described as a single generalized measurement. One may

argue this well-known result as follows. Every measurement consists of two steps|the

interaction of a measuring devise with a system, and the \reading" of the measuring device,

i.e. a unitary transformation and a projection. Now, any arbitrary sequence of independent

measurements can be replaced by an equivalent single measurement, by simply letting all

the interactions to be performed �rst, and reading all the measuring devices simultaneously

at the end. In this case one can view all the independent measuring devices as a (more

complicated) single measuring device, performing a single interaction with the measured

system (the unitary transformation describing this interaction being simply the product of

the unitary transformations describing the individual measuring devices) and followed by a

single reading stage.

Furthermore, even if the measurements are not independent from each other, i.e., some

measurements depend on the results of previous measurements, we can still replace the

sequence by a single measurement: In this case too the human observer can postpone \read-

ing" the results obtained by the di�erent measuring devices until the end. Indeed, there

is no need for the observer to read the results of the measurements in order to tune the

subsequent measurements accordingly. The entire process can be realized by the measuring

devices interacting with each other as well as with the system under observation. Then,

once again, we have a single measuring device, performing a single interaction, (only that

the interactions between the measuring device and the system contain also some internal
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interactions between the di�erent parts of the measuring device|corresponding to one part

reading the result of the other), and a single reading stage.

Mathematically, this means that Eq. (13) can be further simpli�ed as

�
U

A;2r
i2r

P
A;2r
i2r

P
A;2r�1
i2r�1

U
A;2(r�1)
i2(r�1)

� � �

P
A;3
i3

U
A;2
i2

P
A;2
i2

P
A;1
i1

�



�
U

B;2r
i2r U

B;2(r�1)
i2(r�1)

� � �UB;2
i2

�
j	i

=
�
UA
I PI 
 UB

I

�
j	i

=
�
UA
I 
 UB

I

�
(PI 
 I) j	i; (14)

where PI is a projection operator and the index I is a shorthand for the multi-index

i2r; i2r�1; � � � ; i2; i1. The �rst equality in the above equation holds because (1) for any pro-

jection operator P and unitary transformation U , P 0 = UPU y is also a projection operator

and consequently (2) unitary transformations can be permuted to the left of projection

operators.

In summary, the most general strategy of entanglement manipulation of a pure state

is equivalent to a strategy involving only a single (generalized) measurement performed by

Alice followed by the one-way communications of the result from Alice to Bob (and �nally

local unitary transformations by Alice and Bob). The upshot of the whole analysis is the

following: In the case of a known initial pure state, an arbitrary but �xed entanglement

manipulation strategy is equivalent to a set of local projection operators fPAlice
l g of Alice.

This is so because as can be seen from Eq. (14) all we have ignored is just a direct product of

local unitary transformations, which in no way a�ect the interesting physics|the coe�cients

of the Schmidt decomposition. This projection operator formulation greatly simpli�es our

following analysis.
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III. CUMULATIVE PROBABILITIES

Suppose Alice and Bob share a pair of particles in some arbitrary state 	, and that by

using some particular strategy S they convert it into di�erent maximally entangled states of

dimension m (m=1,2,...) with corresponding probabilities pm(S). As mentioned in Sec. I.B,

a convenient way to describe this probability distribution is to use instead of the probabilities

pm(S) the \cumulative probability" ptotm (S),

ptotm (S) =
X
k�m

pk(S): (15)

In the present section we �nd an upper bound on the cumulative property for an arbitrary

strategy S.

ptotm (S) � pMAX
m (16)

where pMAX
m is the supremum probability over all possible strategies to convert 	 into an m-

dimensional maximally entangled state (an m-state). Since pm(S) represents the probability

to convert 	 into an m-state by using the particular strategy S while pMAX
m represents the

supremum probability (over all possible strategies) to convert 	 into an m-state, it is obvious

that pm(S) � pMAX
m . But why should the sum pm(S)+ pm+1(S)+ ::: be smaller than pMAX

m ?

The reason is that, as we show bellow, a maximally entangled state of dimension k can

always be converted with certainty, into a maximally entangled state of smaller dimension

m (m < k). Then, suppose that Alice and Bob, by using the strategy S convert 	 into

a maximally entangled state of dimension k larger than m. They can then convert, with

certainty, this state into a maximally entangled state of dimension equal tom. Consequently,

by appending this reduction strategy to the strategy S, we obtain a new strategy S 0 which

converts 	 into an m-state with probability pm(S 0) =
P

k�m pm(S) = ptotm (S), (while having

zero probability to convert 	 into maximally entangled states of dimension larger than m).

Now, as pMAX
m is the supremum probability (over all possible strategies) of converting 	 into

an m-state, we must have in particular pMAX
m � pm(S 0) = ptotm (S) which proves the bound

in Eq. (16). All that remains to prove is the following.

14



Lemma 1: There is a way of transforming with probability 1 any maximally entangled

state into a maximally entangled state of lower dimension. Consequently, pMAX
r � pMAX

s if

r � s � 1.

Proof: First, consider the case r = 3 and s = 2. (Here we omit the obvious normalization

factors.) A maximally three-dimensionally entangled state has the Schmidt decomposition

juiAB = j1iAj1iB+j2iAj2iB+j3iAj3iB. We now show that it can be reduced with certainty to

a standard singlet j1iAj1iB+j2iAj2iB. Suppose Alice prepares an ancilla in the state j0ia and

evolves the system in such a way that j0iaj1iA ! (j2ia+j3ia)j1iA, j0iaj2iA ! (j1ia+j3ia)j2iA,

and j0iaj3iA ! (j1ia + j2ia)j3iA. The entire state will evolve as follows:

j0iajuiAB

= j0ia(j1iAj1iB + j2iAj2iB + j3iAj3iB)

! j211iaAB + j311iaAB + j122iaAB + j322iaAB

+j133iaAB + j233iaAB

= j1ia(j22iAB + j33iAB) + j2ia(j11iAB + j33iAB)

+j3ia(j11iAB + j22iAB): (17)

Now Alice measures the state of her ancilla and obtains a singlet shared with Bob. The

exact singlet which is obtained depends on the result of Alice's measurement, but it can

always be transformed into the standard one 1p
2
(j11iAB + j22iAB). This can be realized by

Alice communicating to Bob the result of her measurement, such that both of them know

which singlet has been obtained and then having both of them perform the appropriate

unitary rotations.

A similar proof can be constructed to show that, starting with a k-state (a maximally

entangled pair of k-state particles), Alice and Bob can with probability 1 convert it to a

(k� 1)-state (maximally entangled pair of (k� 1)-state particles). As before Alice attaches

an ancilla to her system A and the evolution needed now is

j0iajjiA ! (
1p
k � 1

kX
i=1;i6=j

jiia)jjiA: (18)
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That is, the state jjiA of the particle remains unchanged, but the ancilla is brought to an

equal superposition of all states j1ia; � � � ; jkia, with the exception of jjia. The evolution of

the state of the ancilla and the pair can, therefore, be summarized as

j0iaj�ki = j0ia(
1p
k

kX
j=1

jjiAjjiB)

! 1p
k

kX
i=1

jiia(
1p
k � 1

kX
j=1;j 6=i

jjiAjjiB): (19)

i.e., each state jiia of the ancilla is correlated with a di�erent k-1 dimensional maximally

entangled state.

Next, Alice measures the state of her ancilla. No matter what result she obtains, the

pair of particles is left in a (k-1)-dimensional maximally entangled state. Which particular

state is obtained will depend on Alice's result. Suppose Alice �nds the ancilla in the state

ji0ia. Then the pair is in the state 1p
k�1

Pk
j=1;j 6=i0 jjiAjjiB. If they wish, Alice and Bob

can now convert this state into the standard (k-1)-dimensional maximally entangled state

1p
k�1

Pk�1
j=1

jjiAjjiB. This can be realized by Alice communicating to Bob the result of her

measurement, such that both of them know which (k-1)-dimensional maximally entangled

state has been obtained and then having both of them perform appropriate local unitary

transformations of their particles.

Now starting with a maximally entangled r-dimensional state, one can repeat our argu-

ment to reduce it to a maximally entangled (r � 1)-dimensional state, (r � 2)-dimensional

state, etc until we obtain an s-dimensional state. This shows that any maximally entangled

state can be reduced to one with a lower dimension. QED.

We remark that using Lemma 1 one can convert with probability 1 a maximally entangled

state of dimension i into r standard singlets provided that i � 2r. Just note that, as

mentioned before, r standard singlets are equivalent to a single 2r-dimensional maximally

entangled state, and use the above lemma. This simpli�es a related discussion made in Ref.

[3] and raises the probability of success from about 1� � to 1.
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IV. NON-INCREASING PROPERTIES

Consider the following question. Suppose Alice and Bob share s standard singlets. What

is the probability that they can gamble successfully and get S (> s) singlets? Naively, one

might expect the probability to be non-zero: One may use quantum data dilution [3] to

dilute s standard singlets into say S pairs of j�i each of entanglement E(j�i) = s=S and

then apply the Procrustean (i.e., local �ltering) method [3] of entanglement gambling to

each of S pairs of j�i. For each j�i, the Procrustean method gives a non-zero probability

say, p0, of getting a maximally entangled pair out of it. So, it looks as if there would be

a non-zero probability (p0)S of getting S singlets from s singlets. As we will see below,

this argument is erroneous because quantum data dilution is an inexact process which is

valid only on average. In contrast, in gambling with entanglement, we are interested in

the deviation from average. We will prove that the probability of getting S singlets out of

gambling with s singlets is strictly zero. In fact, we can prove a stronger result:

Lemma 2 : The number of terms in a Schmidt decomposition can never increase under

local measurements and classical communications [9].

Proof: Let us suppose that the initial state j�i =
PN

i=1

p
�ijaiijbii has only N non-

vanishing terms in its Schmidt decomposition. For each measurement outcome l on j�i, the

resulting state PAlice
l j�i = PN

i=1

p
�ijaliijbii [where jalii is the projected state PAlice

l jaii] can

be expressed as a sum of N terms. Consequently, its Schmidt decomposition must have at

most N terms. QED.

As a corollary, for an initial state j�i =
PN

i=1

p
�ijaiijbii with only N non-vanishing

terms in its Schmidt decomposition, pMAX
m = 0, if m > N . Consequently, the probability

that Alice and Bob get S singlets out of gambling with s(< S) singlets (via local operations

and classical communications) is exactly zero.
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V. CONSTRAINTS ON P
MAX
M

Theorem 1: Given a state j	i = PN
i=1

p
�ijaiijbii (where �1 � �2 � � � � � �N) with

only N non-vanishing terms in its Schmidt decomposition. The supremum probability

pMAX
m of obtaining an m-dimensional maximally entangled state satis�es a set of constraints

rpMAX
m =m � �m�r+1 + �m�r+2 + � � �+ �N for 1 � r � m.

Idea of the proof: For a �xed r, if the right hand side, �m�r+1 + �m�r+2 + � � � + �N , is

zero, then there are only m � r terms in the Schmidt decomposition of j	i. From Lemma

2, Alice will de�nitely fail to get an m-dimensional maximally entangled pair state because

there will be at most m � r terms in the Schmidt decomposition of the resulting state.

Turning this argument around, if Alice does succeed, the remaining r (i.e., from m�r+1-th

to m-th) terms in the maximally entangled state must have come from the remaining (i.e.,

from m � r + 1-th to N -th) terms of the Schmidt decomposition of the original state j�i.

Now the left hand side of the inequality is simply the probability that Alice's state gets

projected into the remaining r terms. [There is a supremum probability pMAX
m of gambling

successfully (i.e., getting an m-dimensional maximally entangled state ) and a conditional

probability r=m of getting projected in an r-dimensional subspace of the m-dimensional

space in the support of Alice's system.] It must therefore be constrained by the probability

of Bob's system getting projected into the space spanned by the m� r+1-th to N -th terms

in j�i, which is given by the right hand side.

Proof of Theorem 1: Given an initial state j�i, for 1 � r � m, we decompose j�i = j�r
1
i+

j�r
2
i where j�r

1
i = Pm�r

i=1

p
�ijaiijbii [De�ne j�m

1
i = 0.] and j�r

2
i = PN

i=m�r+1

p
�ijaiijbii.

[De�ne j�r
2
i = 0 whenever N < m � r + 1.] Alice and Bob now gamble with j�i to get

an m-state. Alice can divide up the outcomes into two sets: fs1; s2; � � � ; spg (success) and

ff1; f2; � � � ; fqg (failure). Let us consider a successful outcome sl. Then Pslj�i = Pslj�r
1
i +

Pslj�r
2
i is an m-state. Denoting by �slA (similarly �

r;sl
A;i where i = 1 or 2) the un-normalized

density matrix TrBPslj�ih�jP y
sl
(similarly TrBPslj�r

i ih�r
i jP y

sl
where i = 1 or 2 respectively),

we have �slA = �
r;sl
A;1+�

r;sl
A;2 and their supports satisfy supp(�

r;sl
A;1) � supp(�slA). Since supp(�

r;sl
A;1)
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has dimension at most m � r and yet supp(�slA) has dimension m (Pslj�i is an m-state.),

we can pick r orthonormal vectors jusl1 i; jusl2 i; � � � ; juslr i in supp(�slA) such that husli jvi = 0 for

all jvi 2 supp(�
r;sl
A;1). Let us de�ne the projection operator P r

usl =
Pr

i=1
jusli ihusli j. From its

de�nition, it is clear that P r
usl�

r;sl
A;1P

yr
usl = 0. For a �xed but arbitrary strategy of entanglement

concentration (gambling), let us denote by parbm the probability of successfully getting an m-

state. Therefore,

rparbm =m

= TrA

 X
sl

P r
usl�

sl
AP

yr
usl

!

= TrA

 X
sl

P r
usl�

r;sl
A;1P

yr
usl

!
+ TrA

 X
sl

P r
usl�

r;sl
A;2P

yr
usl

!

= TrA

 X
sl

P r
usl�

r;sl
A;2P

yr
usl

!

= TrA TrB

 X
sl

P r
uslPslj�r

2
ih�r

2
jP y

sl
P
yr
usl

!

� TrA TrBj�r
2
ih�r

2
j

= �m�r+1 + �m�r+2 + � � �+ �N ; (20)

for 1 � r � m. The equality sign in the second line holds because �slA is proportional to

the identity matrix in a m-dimensional space and its trace is proportional to its probability

of occurring. Since the total probability of success is parbm and P r
usl projects an m-state into

an r-dimensional subspace of the m-dimensional space, the probability of this occurring is

clearly rparbm =m.

Now, one takes the supremum over all gambling strategies in Eq. (20) to �nd that

rpMAX
m =m � �m�r+1 + �m�r+2 + � � �+ �N for 1 � r � m. QED.
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VI. OPTIMAL STRATEGY

A. Theorem 2

Theorem 1 gives an upper bound to the probability pMAX
m . We now prove that an optimal

strategy saturates the bound. In other words, we have:

Theorem 2: Given a state j	i = PN
i=1

p
�ijaiijbii (where �1 � �2 � � � � � �N) with

only N non-vanishing terms in its Schmidt decomposition. There exists a way to convert 	

into an m-dimensional maximally entangled state with probability minr2f1;2;���;mg
m
r
(�m�r+1+

�m�r+2 + � � �+ �N).

Proof of Theorem 2: We simplify our notation by denoting the r-th bound in Theorem

1, m
r
(�m�r+1 + �m�r+2 + � � � + �N ), by Bm

r . Let us separate the proof into two cases: (a)

minrB
m
r = 1 and (b) minrB

m
r < 1.

B. Proof of Case (a) of Theorem 2

Case (a): Let minrB
m
r = 1. We shall prove that for an optimal strategy, the probability

of getting an m-state is 1.

Obviously, if all Schmidt coe�cients of 	 are equal to each other, then 	 is an N-

dimensional maximally entangled state, and by Lemma 1, one can convert it with certainty

into an m-dimensional maximally entangled state (m < N). As a generalization of lemma

1, we now consider a state of the form

j	m;p;q
pre

i = 1p
m

0
@ m�pX

j=1

jjijji+
m+qX

j=m�p+1

(
p

p+ q
)1=2jjijji

1
A (21)

where p > 0 and q � 0. Let us call it a \precursor" of an m-state. Note that the case

q = 0 corresponds to an m-state. For q > 0, a precursor is a coherent sum of an m � p-

state and an (p+ q)-state. The factor ( p
p+q

)1=2 in the de�nition of j	m;p;q
pre

i is needed for the

following important result: A precursor can be converted with certainty into an m-state.

Since j	m;p;0
pre

i is an m-state, all we need to show is the reduction with certainty from j	m;p;q
pre

i
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to j	m;p;q�1
pre

i whenever q � 1. Our proof here is analogous to the proof of Lemma 1. Suppose

Alice attaches an ancilla to her system and evolves them in the following manner:

j0iajjiA ! (
1p
p+ q

p+qX
i=1

jiia)jjiA;

for 1 � j � m� p

j0iajjiA ! (
1p

p+ q � 1

p+qX
i=1;i6=j�(m�p)

jiia)jjiA;

for m� p+ 1 � j � m+ q: (22)

In words, the ancilla is brought to an equal superposition of all states j1ia; � � � ; jp + qia if

the state of Alice's system is jjiA where 1 � j � m � p. However, when Alice's system is

in jjiA where m � p + 1 � j � m + q, the ancilla is brought to an equal superpositon of

all states j1ia; � � � ; jp+ qia with the exception of jj � (m� p)ia. Upon measuring the state

of the ancilla and applying local unitary transformations to their respective systems, Alice

and Bob end up in a new precursor j	m;p;q�1
pre

i. This proves the reduction from j	m;p;q
pre

i to

j	m;p;q�1
pre

i. By repeating this reduction process, one can, with certainty, reach j	m;p;0
pre

i which

is an m-state.

Let us return to the entanglement manipulation of a general state j	i = PN
i=1

p
�ijiijii

satisfying minrB
m
r = 1. The number of coe�cients in the Schmidt decomposition that are

degenerate with the m-th largest one (i.e., the number of �i's such that �i = �m) will play

a pivotal role in the following discussion. Let us call this number the (m-th) \degeneracy

number". The idea of our proof of case (a) of theorem 2 is to construct a multi-step procedure

such that in each step Alice and Bob either:

i) obtain a precursor which can readily be reduced with probability 1 to an m-dimensional

maximally entangled state; or

ii) obtain a residual state whose (m-th) degeneracy number is increased by 1, while still

obeying the relation minrB
m
r = 1 when properly normalized.

If Alice and Bob obtain an m-state, they have accomplished their task. If they get a

residual state, they repeat the procedure. Since with each step the residual state increases its

degeneracy number by 1, we are certain that in a �nite number of steps (� N) either Alice
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and Bob obtain an m-state, or end up with a residual state which is maximally entangled

(with dimension larger than or equal to m), which can subsequently be converted with

certainty to an m-state.

We now describe each step in more detail. Suppose the initial state is

j	i =
NX
i=1

q
�ijiiAjiiB (23)

with the Schmidt coe�cients ordered decreasingly. Suppose further that �m is (p + q)-fold

degenerate such that

�m�p+1 = ::: = �m = ::: = �m+q: (24)

The decomposition of j	i into a precursor and a residual state is done by the attachment

of an ancilla prepared in the state j0ia and a subsequent measurement by Alice. For 1 �

i � m� p, the evolution goes as:

q
�ij0iajiiA

!
r
a

m
j1iajiiA +

r
�i �

a

m
j0iajiiA; (25)

where j0ia and j1ia are orthonormal. For m� p+ 1 � i � m+ q, it goes as:

q
�ij0iajiiA

!
s
(
a

m
)(

p

p+ q
)j1iajiiA +

s
�i � (

a

m
)(

p

p+ q
)j0iajiiA: (26)

For m+ q + 1 � i � N , the state is unchanged, i.e.,

j0iajiiA ! j0iajiiA: (27)

Hence, we �nd that

j0iaj	i

!
p
aj1iaj	m;p;q

pre
i+

p
1� aj0iaj	resi (28)

where
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j	m;p;q
pre

i = 1p
m

0
@ m�pX

i=1

jiijii+
m+qX

i=m�p+1

(
p

p+ q
)1=2jiijii

1
A (29)

is the precursor and

j	resi = (1� a)�1=2
"
m�pX
i=1

r
�i �

a

m
jiijii

+
m+qX

i=m�p+1

s
�i � (

a

m
)(

p

p+ q
)jiijii

+
NX

i=m+q+1

q
�ijiijii

3
5 (30)

is the residual state and a is the minimal value needed for a new degener-

acy to occur in Schmidt coe�cients of the residual state j	resi. i.e., a =

min
�
m(p+q)

q
(�m�p � �m�p+1);

m(p+q)

p
(�m+q � �m+q+1)

�
, thus achieving either (1) �0m�p =

�0m�p+1
or (2) �0m+q = �0m+q+1

.

Now Alice measures the state of the ancilla. If the outcome is \1", she gets a precursor

state which can be converted with certainty to an m-state. If the outcome is \0", she gets

a residual state with its degeneracy number increased by 1. Also it is easy to see that, just

like the original state 	, the residual state j	resi also has the property that minrB
m
r = 1.

Indeed, minrB
m
r = 1 is completely equivalent with the constraint that the largest normalized

Schmidt coe�cient is smaller or equal to 1=m which is satis�ed by the residual state. This

multi-step method establishes our proof. QED.

C. Lemma 3

Before moving to Case (b), let us prove a lemma. For any initial state j	i, the bounds

in theorem 1, Bm
r = m

r
(�m�r+1 + �m�r+2 + � � �+ �N), obey the following.

Lemma 3: If Bm
r+1

> Bm
r , then Bm

r+2
> Bm

r+1
.

In other words, for a �xed m, consider Bm
r as a function of r. Once it starts to increase,

it will continue to do so.

Proof of Lemma 3: Let s0 =
PN

i=m�r+1
�i.
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Bm
r+1

> Bm
r

m

r + 1
[s0 + �m�r] >

m

r
s0

rs0 + r�m�r > (r + 1)s0

r�m�r > s0: (31)

Now,

Bm
r+2

=
m

(r + 2)
[s0 + �m�r + �m�r�1]

� m

(r + 2)
[s0 + 2�m�r]

=
m

(r + 2)(r + 1)
[(r + 1)s0 + 2(r + 1)�m�r]

=
m

(r + 2)(r + 1)
[(r + 1)s0 + r�m�r + (r + 2)�m�r]

>
m

(r + 2)(r + 1)
[(r + 1)s0 + s0 + (r + 2)�m�r]

=
m

(r + 2)(r + 1)
[(r + 2)s0 + (r + 2)�m�r]

=
m

(r + 1)
[s0 + �m�r]

= Bm
r+1

; (32)

where Eq. (31) is used in obtaining the �fth line. QED.

With lemma 3 proven, we now return to the proof of case (b) of theorem 2.

D. Proof of Case (b) of theorem 2

Case (b): minrB
m
r < 1.

Idea of our proof: We construct an explicit strategy which saturates the bound pm =

minrB
m
r as follows. By attaching an ancilla prepared in the state j0ia to the system j	i, Alice

divides up j	i into two pieces|successful and failing pieces|by the following evolution:

j0iaj	i = j1iaj	si+ j0iaj	fi (33)

where j0ia and j1ia are orthonormal states of the ancilla, j	si (when properly normalized

belongs to case (a), i.e., minrB
m
r = 1 and hence) gives a probability 1 of success and j	fi
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(has less than m terms in its Schmidt decomposition and hence) gives a probability 0 of

success. Alice now reads o� the state of the ancilla. A state j1ia indicates a success and j0ia

a failure. One can then read o� the probability of success of this explicit strategy from the

norm of j	si. It turns out to be equal to minrB
m
r .

Proof of case (b) of Theorem 2: It can be shown that the opposite statement Bm
r � 1

is equivalent to the following (redundant) recursive constraints on the individual Schmidt

coe�cients.

�m�1 � �m + �m+1 + � � �+ �N

�m�2 �
1

2
(�m�1 + �m + � � �+ �N)

�m�3 �
1

3
(�m�2 + �m�1 + � � �+ �N)

� � �

�1 �
1

(m� 1)
(�2 + �3 + � � �+ �N) (34)

and the normalization condition
P

i �i = 1. Notice that this representation decouples the

relations between the Schmidt coe�cients and their overall normalization.

Consider the `last minimal point' of the function Bm
r . i.e., r0 such that

Bm
r0
= minrB

m
r < Bm

r0+1
: (35)

Its existence is guaranteed by the fact that minrB
m
r < 1 = Bm

m . Lemma 3 shows that r0

is unique. Moreover, it is straightforward to see that r0 is the smallest number such that

�m�r0 >
1

r0
(�m�r0+1 + �m�r0+2 + � � �+ �N ), which violates the r0-th equation in Eqs. (34).

This implies that when we look at �'s in reversed order. i.e., �N ; � � � ; �m; �m�1; �1, we �nd

that �N ; � � � ; �m�r0+1 are �ne (in the sense that they do not violate Eqs. (34) yet), but �m�r0

(when placed in the left hand side, violates Eqs. (34) and) is too big to be useful. Moreover,

it follows from Lemma 3 that �m�r0�1; �m�r0�2; � � � ; �1 all violate Eqs. (34) when they are

placed in the left hand side of the equations.

Let us de�ne
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�max

m�r0 �
1

r0
(�m�r0+1 + �m�r0+2 + � � �+ �N) =

Bm
r0

m
; (36)

which is the maximal acceptable value of the (m � r0)-th Schmidt coe�cient. Now the

successful piece j	si in Eq. (33) is obtained by trimming the redundant contribution to

�1; �2; � � � ; �m�r0 from j	i. As discussed earlier, this is done by the attachment of an ancilla

prepared in the state j0ia. The evolution goes as follows:

q
�ij0iajiiA !

q
�max
m�r0 j1iajiiA

+
q
�i � �max

m�r0 j0iajiiA (37)

for 1 � i � m� r0. For m� r0 + 1 � i � N , the evolution is

q
�ij0iajiiA !

q
�ij1iajiiA: (38)

Alice now reads o� the state of her ancilla. We now argue that an outcome \0" means

that Alice has failed in getting an m-state whereas an outcome \1" means that she has

succeeded in obtaining a state satisfying minrB
m
r = 1, which by Sec. VI B can be reduced

with certainty to an m-state.

If the outcome is \0", the resulting (failing) state j	fi has unnormalized Schmidt

coe�cients �1 � �max

m�r0 ; �2 � �max

m�r0 ; � � � ; �m�r0 � �max

m�r0 ; 0; � � � ; 0. Since it has at most

m � r0 terms in its Schmidt decomposition, it follows from Lemma 2 that it gives a

zero probability of getting a m-state. On the other hand, if the outcome is \1", the

un-normalized Schmidt coe�cients of the resulting (successful) state j	si are given by

�max

m�r0 ; � � � ; �max

m�r0 ; �m�r0+1; �m�r0+2; � � � ; �N . i.e., the �rst m� r0-th Schmidt coe�cients are

all replaced by �max

m�r0 . By construction j	si belongs to Case (a) of Theorem 2. Therefore,

it always succeeds to give an m-state. Moreover, it has a norm

(m� r0)�
max

m�r0 + �m�r0+1 + � � �+ �N

=
m

r0
(�m�r0+1 + �m�r0+2 + � � �+ �N)

= Bm
r0

= minrB
m
r (39)
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where the second and third lines come from Eq. (36) and the last from Eq. (35). This proves

that our explicit strategy saturates the bound and completes our proof for the case (b) of

Theorem 2. QED.

E. One-way communications are provably better than no communications

Unlike the Schmidt projection method (as used in the reversible strategy) in [3], the

above optimal gambling strategy does require one-way communications. It is tempting to

conclude that one-way communications give strategies that are intrinsically more powerful

than those without. However, even for �xed m and 	, optimal strategies have not been

proven to be unique. Hence, one could still imagine devising an optimal strategy that does

not require one-way communications. But is this really possible?

We now show that one-way communications do generally give more powerful strategies

that those without communications: When pmax
m is strictly less than 1, Bob generally needs

Alice's help to �gure out whether the gambling is successful is not. Consider the example

of j	i = aj11i + bj22i where a > b > 0 and m = 2. Consider any optimal strategy, which

gives p2 = 2b2. Let us divide up its outcome into two classes: fs1; s2; � � � ; spg (success) and

ff1; f2; � � � ; fqg (failure) and denote the un-normalized reduced density matrix of Bob for an

outcome si (fj) by �
Bob
si

(�Bobfj
). Clearly, Bob needs to determine the outcome of the gambling

by distinguishing with certainty between the two density matrices �Bobsuccess =
P

i �
Bob
si

and

�Bobfailure =
P

j �
Bob
fj

. Now the distinguishability of two density matrices can be described by

the �delity [19] F (�Bobsuccess; �
Bob
failure). The detailed de�nition and properties of the �delity

are irrelevant for our discussion. It su�ces to note the following fact: In order to show

that it is impossible for Bob to distinguish with certainty between the two density matrices

without communications from Alice, all we need to prove is that F (�Bobsuccess; �
Bob
failure) 6= 0

or equivalently the supports of �Bobsuccess and �Bobfailure are not orthogonal to each other. The

proof of this claim is simple: Owing to causality, the density matrix of Bob is conserved

throughout Alice's measurement, i.e.,
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�Bobsuccess + �Bobfailure = �Bobinitial

= a2j1ih1j+ b2j2ih2j: (40)

Since �Bobinitial has a two-dimensional support, �Bobsuccess must have a support of at most two

dimensions. On the other hand, as �Bobsi
is a singlet, �Bobsuccess, being the sum of �Bobsi

's, must

have a support of at least two dimensions. Combining these two statements, �Bobsuccess has a

support of exactly two dimensions. Now that both �Bobinitial and �Bobsuccess have two-dimensional

supports, the support of �Bobfailure must be a subspace of the support of �Bobsuccess. Therefore,

we conclude that �Bobsuccess and �Bobfailure do not have orthogonal supports and hence the �delity

F (�Bobsuccess; �
Bob
failure) 6= 0. QED

In conclusion, one-way communications generally give more powerful strategies than

those without communications. On the other hand, we proved in Sec. II that one-way

communications is su�cient for any strategy. Combining these two results, we conclude

that one-way communications is necessary and su�cient for implementing any strategy of

entanglement manipulations of pure states.

VII. NON-EXISTENCE OF UNIVERSAL STRATEGY

As shown in Section III, for any strategy S which transforms an arbitrary state 	 into

di�erent maximally entangled states �m, the cumulative probability p
tot
m of obtaining some

maximally entangled state of dimension m or larger is bounded by

ptotm � pMAX
m : (41)

We have also seen in the previous section that for any particular m there exists a strategy

which saturates this bound (the strategy which yields �m with probability equal to pMAX
m

and �k, k > m with zero probability). The question is whether there exists a \universal"

strategy Suniv whose cumulative distribution saturates this bound for all m's. The reason

we call such a strategy \universal" is that such a strategy, followed by the reduction of some

of the �nal maximally entangled states into maximally entangled states of lower dimension
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could generate any possible distribution consistent with the bound (41). We shall show

however that such a universal strategy does not exist.

Proof: We show that a universal strategy generally cannot exist for the case N = 3 and

m = 2 or 3. Consider

j	i =
q
�1j11i+

q
�2j22i+

q
�3j33i (42)

with pMAX
2

= 1 and �2 + �3 � �1 � 0. Assume, by means of contradiction, that a universal

strategy does exist. We shall use projection operators rather than positive operator valued

measures (POVMs) in our discussion. As noted in Sec. 2, there is no loss of generality.

Let P1; P2; � � � ; Pr be the set of all projection operators by Alice that give some 3-state in a

particular universal gambling strategy. By de�nition, (P1 + P2 + � � � + Pr)j	i has a norm

pMAX
3

. Note that it follows from Theorem 2 that pMAX
3

= 3�3. Since pMAX
2

= 1, it is

necessary for a universal strategy that the residual state j	ri = (1� P1 � P2� � � � � Pr)j	i

has pMAX
2

= 1. But this requires the squared eigenvalues of the reduced density matrix

of j	ri to satisfy the constraint �0
2
+ �0

3
� �0

1
� 0. We shall show that this is generally

impossible. The point of our argument, as to be discussed in the next paragraph, is that

the extraction of a 3-state will lead to an equal decrease in all three squared eigenvalues (of

the reduced density matrix of j	ri). i.e., �0i = �i � pMAX
3

=3 = �i � �3. Therefore, unless

�1 = �2, the residual state j	ri has �02 + �0
3
� �0

1
= �2 � �1 < 0, thus contradicting the

requirement that pMAX
2

(j	ri) = 1.

The following proves our claim that �0i = �i � pMAX
3

=3. Suppose P gives a three-state

with a probability �.

j	i = P j	i+ (1� P )j	i (43)

with

P j	i =
�q

�1P j1i
�
j1i

+

�q
�2P j2i

�
j2i

+

�q
�3P j3i

�
j3i: (44)
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Since P j	i is 3-state with a norm �, its reduced density matrix for B,

�B =
3X

i=1

�

3
jiihij: (45)

Equating this with the partial trace of P j	ih	jP over HA, we �nd that the
p
�ip
�
3

P jii's form

an orthonormal set. The residual state

(1� P )j	i =
r
�1 �

�

3
j1001i

+

r
�2 �

�

3
j2002i

+

r
�3 �

�

3
j3003i: (46)

Notice that the ji00i's are orthonormal because

hjj(1� P )(1� P )jii

= hjj(1� 2P + PP )jii

= hjj(1� 2PP + PP )jii

= hjj(1� PP )jii

= 0: (47)

Here the last equality follows from the fact that P jii's are orthogonal to one another. This

shows that an extraction of a 3-state of probability � leads to a decrease of each �'s by

�=3. The same argument can be applied to each of P = P1; P2; � � � ; Pr. This shows that

�0i = �i � pMAX
3

=3 and completes our proof of the non-existence of a universal strategy.

QED.

VIII. LAW OF LARGE NUMBERS

Consider the question raised in the abstract and the introduction: Can coherent mea-

surements defeat the law of large numbers? We now show that the answer is no. That is,

suppose Alice and Bob share n pairs of particles, each pair in a state j	i with an entropy
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of entanglement E(j	i). We shall show in Theorem 3 below that the maximal probability

of obtaining nK singlets, with K > E(j	i), goes to zero as n goes to in�nity.

Once again, we want to emphasize that this result does not follow automatically from

the fact that on average we cannot obtain more than nE singlets. Indeed, an average of nE

singlets could conceivably be obtained if with a non-negligible probability p = E=K we get

nK singlets while with probability 1� E=K we get no singlets at all.

In particular our result shows that any strategy that transforms n pairs 	 into an average

of nE singlets (the maximal allowed average) yields a singlet number probability distribution

very similar to that of the reversible strategy of Bennett et al. [3]: Any such strategy yields

a cumulative probability distribution roughly equal to 1 (0 respectively) when K < E(	)

(K > E(	) respectively). Besides, the jump from 0 to 1 occurs in a region of width O(n�1=2)

around E(	).

Theorem 3. In the entanglement manipulation of n pairs 	, the optimal probability

(over all possible strategies) of getting nK singlets, pMAX
2nK

, tends to 1 (0 respectively) when

K < E(j	i) (K > E(j	i) respectively) in the limit n!1.

Remark: It can also be shown that, as a function of K, the jump from 0 to 1 in the value

of pMAX
2nK

occurs in a region of width O(n�1=2) around E(j	i). We shall skip the proof here.

Proof of Theorem 3: That pMAX
2nK

tends 1 in the large n limit when K < E(j	i) follows

trivially from Bennett et al.'s reversible strategy [3] and Lemma 1. Let us now consider the

case K > E(j	i). As explained in the Introduction, we could view the n pairs 	 as a single

pair in state ~	, by considering all n Alice's (Bob's) particles to form a single (more complex)

quantum system. Similarly, the �nal nK singlet pairs can be viewed as a single pair in a

2nK-dimensionally maximally entangled state. Then the problem of extracting nK singlets

from the n pairs 	 can be rephrased as the problem of extracting an 2nK-dimensionally

maximally entangled state from ~	. The maximal probability for success is pMAX
2nK

which can

be bounded by using Theorem 1.

Let ~�i's represent the Schmidt coe�cients of ~	; they are also the eigenvalues of Alice's

reduced density matrix. Since Alice's reduced density matrix has a product form, (originat-
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ing from the n pairs j	i) its weight must be concentrated on a `typical' space of dimension

roughly 2nE. [Here we simply our notation and use E to denote E(j	i). This is essentially

the law of large numbers in classical probability theory. See also quantum noiseless source

coding theorem [20].] Let us pick a K0 such that K > K0 > E. Since K0 > E, given any

� > 0, for a su�ciently large n, we have that
Ptn

i=2nK0
~�i < � where t is the number of terms

in the Schmidt decomposition of j	i. [An `atypical' space has a small weight.] Let us apply

theorem 1 to the case N = tn, m = 2nK and m� r+1 = 2nK0. Notice that r=m > 1=2 for a

su�ciently large n. Hence, pMAX
m =2 < rpMAX

m =m � Ptn

i=m�r+1
~�i < �. Substituting m = 2nK

back, we get pMAX
2nK

! 0 as n!1. QED.

The fact that any particular strategy which transforms n states 	 into an average of

nE singlets gives a singlet number probability distribution similar to that of the reversible

strategy [3] follows immediately from Theorem 3 and Eq. (16).

IX. MIXED STATES

Let us now consider the case when Alice and Bob share a mixed initial state �ini. Since

�ini is impure, one generally cannot write it in terms of Schmidt decomposition. More

importantly, even if �ini happens to be symmetric under the interchange of Alice and Bob,

there is no guarantee that the intermediate states that they get during the gambling process

will respect such a symmetry [21]. Therefore, the symmetry argument much emphasized in

the earlier part of this paper will no longer be valid. Gambling with a mixed state using

two-way communications is generally more advantageous than a one-way strategy. Indeed,

Bennett et al. have shown that one-way capacity and two-way capacity for puri�cation are

provably di�erent [5].

We also proved in Sec. VI that in gambling with entanglement one-way communica-

tions are provably better than no communications. Notice that one-way communications

is useful for gambling but not for (deterministic) quantum error correction [5]. The role of

communications in a general entanglement manipulation (i.e., gambling plus quantum error
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correction) deserves future investigations.

For a mixed state, there are generally four distinct supremum probabilities to consider:

p2m, p
A!B
m , pB!A

m and p0m corresponding to gambling schemes with two-way communications,

one-way communications from Alice to Bob, one-way communications from Bob to Alice

and no communications respectively. While simple bounds on the success probability for

gambling with mixed states may be derived, many interesting questions remain unanswered.

For example, we do not know the value of p2nA in the asymptotic limit n!1 in the region

D0(�) � A � E(�) where D0(�) is the entanglement of distillation (without any classical

communications between Alice and Bob).

To conclude, we expect the subtle interplay of the concepts of probability, classical

communications, coherent manipulations and symmetry in the case of mixed states to be

even more challenging than the pure state case considered in this paper.

X. OPEN QUESTIONS ON PURE STATES

Even for the case of a pure initial state, many interesting questions remain unsolved.

For instance, what is the supremum probability p0m of getting an m-state without any clas-

sical communications? Notice that Bennett et al.'s reversible strategy [3] (but not the local

�ltering strategy [3]) is an example of a strategy which does not require any classical com-

munications. It is an open question whether one can do better than Bennett et al.'s strategy

without any classical communications.

Another important open question is whether a central limit theorem holds for entangle-

ment manipulations [22].

It cannot be over-emphasized that the symmetry that we have found here applies not

only to entanglement concentration, but also to all types of entanglement manipulations

including entanglement dilution [3] and quantum data compression [20]. For instance, the

usual procedure of entanglement dilution via teleportation falls inside our general framework

of using a single generalized measurement by Alice followed by one-way communications of
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its result to Bob and a subsequent unitary transformation by Bob. A more systematic

investigation of our formalism in applications beside entanglement concentration may prove

rewarding.
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