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ABSTRACT

Designing and managing distributed systems with predictable reliability and availability is generally difficult.
Whenever components are specified, used, and managed it is often unclear what reliability requirements different
components are expected to satisfy. The problem of specifying and satisfying reliability requirements needs to be
addressed for many different situations and contexts. We need languages and tools that allow design time and run
time specification of reliability requirements and offerings. We need quality of service (QoS) contracts that can be
negotiated and monitored dynamically. From a management view, we need the ability to define reliability contracts
between system components so that they can be effectively managed and charged for in heterogeneous and federated
systems.

Common to all these situations is the need for a vocabulary for the specification of reliability characteristics. Such a
vocabulary should be complete in the sense that it captures the important aspects of service reliability without
getting too complicated. In addition, it should be independent of any implementation techniques and mechanisms.
This paper proposes such a vocabulary as a set of dimensions that can be used to characterize the reliability of
distributed services. The dimensions are focused on distributed object systems but can easily be abstracted to cover
other architectures for distributed systems.
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1. Introduction

1.1 Background
The work presented in this document is primarily concerned with three related aspects of reliability in distributed
systems: (1) how do you formulate reliability requirements between parties during the design, implementation, and
execution of distributed object systems? (2) how do you describe reliability agreements in federated and
heterogeneous environments? and (3) how do you describe reliability contracts so that systems can evolve and still
satisfy their quality-of-service (QoS) requirements? More specifically, we are interested in finding a set of
dimensions that are practical, useful, and adequate for describing the reliability of services in distributed object
systems.

Traditionally, different solutions for reliable systems are characterized in terms of their implementations. Such
characterizations focus on the types of components in a system: how they fail, how their failures affect the system,
and how they recover. In our view, such characterizations are generally not adequate as the basis for the design of
reliable distributed systems, characterization of reliable services, or as the basis for the search of new reliability
solutions. The reason is that they tend to focus on specific mechanisms too early and do not allow the reliability
characteristics of the system and its components to be understood before implementations are considered. We argue
that a vocabulary for formulating reliability contracts is necessary for the successful design of reliable distributed
systems.

The maintenance of large distributed business systems is increasingly being out-sourced to external organizations. In
addition, large business systems are often heterogeneous, and their management is often federated [SLO94]. To
identify and correct a failure it is necessary to have well-defined and understood service level agreements that are not
implementation specific. Again, we argue that we need a vocabulary for expressing quality-of-service contracts and in
this document we are concerned with such a vocabulary for reliability.

The explicit definition of interfaces is considered to improve the modularity and therefore the evolvability of software
systems. OMG IDL[CORBA] is one example such an interface definition language. IDL allows designers to define
the syntactic interface between clients and servers. The clients and servers can evolve independently as long as no
change in the interface is needed.  Work is going on to establish similar stability with respect to the semantics of
interfaces. We would like to add quality of service contracts. Such contracts would allow servers to evolve as long as
they maintain their quality of service obligations. In this paper we are particularly interested in how such contracts
can be formulated for distributed services.

The terms reliability, availability, and fault-tolerance are used in many different ways. Sometimes they are used
interchangeably and other times they are used generally to capture various concepts.  In yet other cases they have
been used for very specific concepts and are some times represented by well-defined metrics. We will use the term
reliability to denote a set of characteristics (dimensions) that we believe characterizes what is intuitively and in
practice meant by service reliability. We consider fault-tolerance as an even wider concept encompassing techniques
and tools that allow us to build reliable systems.

We are interested in how the reliability of a service (implemented by for example a CORBA[CORBA] or
DCOM[DCOM] server) can be characterized without revealing or asserting internal details of the service. The benefit
of having such a characterization is that clients can understand the reliability of services and adapt their behavior
accordingly. Such characterizations are useful both during the design and implementation phases as well as during
the deployment of clients and services. They can also be used in service level agreements and consequently enable
more effective management of various kinds of systems. Syntactical interface definitions and semantic
descriptionsuch as pre and post conditionsenable simplified evolution and replacement of components. We argue
that QoS characterizations are equally important in this respect and should be specified for many services. As
illustrated by the figure below, we therefore argue that QoS characterizations should be treated on an equal footing
with syntax and semantic specifications. The challenge is to find a set of dimensions that are complete and valid in
the sense that they represent a valid and useful characterization of service reliability.

Client
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Server

Figure 1 Quality of Service in Client/Server Contracts
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Such a set of dimensions will also represent the vocabulary for languages that allow the specification of Quality of
Service characteristics. QML [FRKO] is an example of such a language.

This report proposes a dimensionality for reliability based on a survey of techniques for the development of reliable
distributed object systems. We believe that understanding how reliability can be characterized will allow us to specify
services and more abstractly compare the reliability provided by different technical solutions.  An understanding of
reliability dimensions is also necessary to develop software-engineering support, middleware quality of service
mechanisms, and fault-tolerant systems in a systematic way [AVI97].

It is generally impossible to only consider reliability without taking other aspects such as performance into account.
Furthermore, the borderlines between various qualities of service categories such as reliability and performance are
quite vague. Nevertheless, we believe it is an advantage to demarcate and understand one quality of service category
well before we combine and weight characteristics from different categories. Therefore, this paper will therefore
focus only on dimensions for what we consider unique for reliability.

1.2 Reliability
Reliability of software system is becoming increasingly important as the cost of downtime increases [CHOU]. We
believe that reliability must taken into account systematically for any system, and not onlyin contrast to common
practice systems where crashes has catastrophic consequences. Commonly, the development of reliable systems can
be characterized by two different approaches: fault prevention and fault-tolerance [SHRIV, SOMA97]. Prevention
deals with methodologies, testing and other techniques that help us avoid introducing faults into a system. Fault-
tolerance acknowledges the existence of faults and provides techniques for dealing with failures. In this section we
will set a context for our discussion by providing some common terms and definitions in the reliability realm.

Fault-tolerance is commonly characterized by the following metrics: reliability, availability, mean-time-to-failure,
and expected number of failures [REIB91]. According to Reibman and Veeraraghavan [REIB91] reliability can be
described as:

the probability of a system performing its purpose adequately for the period of time intended under the
operation conditions encountered.

Availability can be characterized as the probability that a service will be available when clients attempt to use it. The
availability of a service can be high even if it has relatively frequent failures. On other aspect of availability is
whether a service will be available every time a client accesses a service during a limited time period. We call this
aspect continuous availability1. An aircraft control system requires high continuous availability during a flight while
a telecommunications system can accept short failures if the overall availability remains high.

Mean-time-to-failure (MTTF) is the expected time until the system fails [FENTON92, GRAY] and the expected
number of failures is the number of failures expected during a certain period of time. The time it takes to repair a
system is commonly named as mean-time-to-repair (MTTR).  These all represent commonly used reliability measures.
Ideally, it would be useful to provide distributions for mean-time-to-failure, mean-time-to-repair, and number of
failures.

Improving reliability and availability involves avoiding introducing errors in hardware as well as in software. It also
involves making hardware and software less sensitive to failures. In hardware we often replicate resources, such as
processors and storage, so that if one unit fails there are other units that can continue.  Hardware solutions usually
have the advantage that they are highly transparent to software applications. This means that services based on
software that has not been designed with reliability in mind can be made more reliable by introducing reliable
hardware. Unfortunately, hardware solutions are usually more expensive and often require specialized hardware.  In
addition, they don’t protect against software errors. This means that if an application is running on replicated
hardware a software error is likely to occur in all replicated instances simultaneously.

An alternativeand complementto hardware replication is to introduce reliability in software. Such solutions are
usually less expensive to produce since production costs (as opposed to development costs) are lower. In addition,
such solutions can take advantage of pre-existing communication and computer infrastructures. There are many
different software solutions for reliable systems and they differ greatly in these characteristics. Some of them impose
high performance overhead while others have significant recovery times and so forth. Thus, selecting the right
solutions is a major design decision in distributed systems development.
                                                            
1 We use of the term continuous availability differently that many other authors. We use if for uninterrupted availability for a limited time.
Other uses it as a term for systems with very high-availability involving aspects such as runtime maintenance and upgrade.
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Our question is what set of dimensionsuch as MTTF etc. is appropriate for describing the reliability of a variety
of services independently of how they have been implemented and what mechanisms they use.

1.3 Services, Servers, etc.
To describe reliability mechanisms we will distinguish between service specifications, services, and servers. A
service specification describes the functionality that service implementations of it are expected to provide. A service
specification typically consists of an interface definition and associated semantic specifications.

A service represents a particular realization of a service specification and has a well-defined service reference, or
reference for short. Concretely, a service reference could be a reference to a distributed object as defined by CORBA
[CORBA] or DCOM.  In our view, services conforming to a common service specification should provide the same
syntactic and semantic interface but may differ in their quality of service characteristics2. Finally, a server is a
collection of objects that provide a service. A server can for example be implemented by replicated objects. This
would, however, be transparent to clients.

To give an example, a CORBA IDL[CORBA] interface T would represent a service specification. An implementation
of T and any other help objects needed to realize the service specified in T would represent a T server. The reference
used by clients to call the server would represent the service reference.

A server S1 providing a service Q may in turn use another service W realized by a server S2. From the view of a Q
client S1 and S2 together can be seen as the server implementing Q.  We will, however, still consider S1 and S2 as
distinct servers if they can be distributed with respect to each other.

Client
Q

S1
W

S2

Figure 2 Services and Servers

We will use the term software system (or system for short) for structures of clients and services that perform some
useful function.

1.4 Error, Failure, Failfast, etc.
For the continued discussion it is essential that we establish common terms for errors, failures etc. The following
description is mainly drawn from [GRAY] with some adaptations and changes. A service has a specified and observed
behavior. As mentioned in the previous section, a service is specified by a service specification and implemented by
one or more servers. There may exist differences between the observed behavior of a service and the individual
servers. There can for example be differences in the failures that are masked by individual servers and the failures
that a client of the service will actually see.  We take a client view; therefore we say a failure occurs when the
observed behavior of a service is different from its specified behavior.

A failure is the result of a fault, and the fault occurred because of an error. The time between fault and a failure is
called the error latency.  The figure below illustrates the relation between the three concepts. As an example, a
programmer can make an error that introduces a fault. When the server executes the fault can cause a failure.

Fault Failure

Introduces Causes

Error

time

                                                            
2 We define quality of service broadly to cover performance, reliability, security and other aspects commonly not captured by syntactic and
semantic descriptions.
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Figure 3 Errors, Faults, and Failures

Different implementations of a service mask different failures. Some services mask failures when servers crash, other
services might even mask failures when one or more servers return incorrect values. Then again, there are services
that do not mask any failures; thus any failure in the server is visible to the client. The failures that a service
implementation exposes to its clients define its failure masking characteristics.

There are different kinds of failures, such as omission and response failures. An omission failure occurs when a
service fails to respond to a request. A response failure occurs when a service responds with a corrupted value or state
transfer. We say that a fault is detected or effective when it actually causes a failure. A server is said to be failfast if
the failure causes the server to stop and the time between the detection of the fault and the failure is short.

We sometime distinguish between Heisenbugs and Bohrbugs. A Heisenbug is an error that only occurs occasionally
for example depending on the execution environment. The term Heisenbug has also been used for failures that
disappear when a failing application is run in a debugging environment. In contrast to Hiesenbugs the occurrence of a
Bohrbug is deterministic.

2. Introduction to Reliability Contracts

2.1 Introduction
The two main contributions of this paper are the client/implementation distinction in reliability contracts and
dimensions for characterizing reliability from a client’s perspective. In the following two sections we will summarize
these results. The results will be motivated and further explored in sections 2, 3 and 4.

2.2 Client and Server Distinction
Encapsulation and interfaces are well known concepts in software engineering. An entity exposes an interface that
mandates what operations clients can perform on the entity. Everything except what is exposed through the interface
is hidden from clients and can consequently be changed without affecting them. We want to make the same
distinction for reliability contracts by distinguishing between client perspective and a design/implementation
perspective. This distinction is usually not made in literature on reliable systems. Rather reliability discussions tend
to encompass whole systems. We believe it is important to distinguish the two views for several reasons.

Firstly, a QoS contract can only include dimensions that a client can relate to. Implementation independent contracts
enable different implementations for services even if they are supposed to provide the same level of reliability. Client
perspective characterizations also allow registration and search of services with certain characteristics in for example
trader services [OMGTRAD].

Secondly, we do not want to expose the internal structures of services as parts of QoS contracts. To achieve for
example a specific level of availability we can use many different implementation strategies. Thus, we do not want to
describe provided reliability in terms that are specific to the technique used to implement a service. As an example,
some of the dimensions can be decomposed into sub-components when a particular implementation is considered. For
primary-backup solutions the mean-time-to-repair could be related to failover time and state recovery time, but from
a client perspective generally only mean-time-to-repair is of interest.

As illustrated by the figure below the client view QoS contract should only include the dimensions that are relevant to
clients. A QoS characterization from an implementation view would typically include additional dimensions such as
how components are assembled and how failures in one component affect other components. For clients, however,
these details will be irrelevant since regardless of how the system fails it will become unavailable to clients.
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Server impl.

Server interface

Client

Client view of QoS

Implementation View of QoS dimensions

Figure 4 Scope of Client and Implementation QoS Characterizations.

2.3 Contract Dimensions
We are proposing a set of dimensions for characterizing reliability contracts from the client view.  These will be
presented briefly in this section while more detailed descriptions and motivations are deferred to section 4.

To define an adequate set of dimensions we considered the following criteria as essential: (1) the dimensions should
involve generally used characterizations of reliability; (2) they should not expose implementation decisions; (3) they
should allow clients to understand how to meet their reliability requirements; (4) they should enable clients to take
appropriate actions when a service fails; (5) and it should be possible to determine if a reliability contract is satisfied
or not.

The first criteria implies that we should search in the literature and technology for appropriate ways of characterizing
reliability. The second criteria states that we should be able to use the dimensions regardless of how a service is
implemented. Thus, dimensions should not be applicable only in situations where specific technologies are used. The
next criteria states that a client (programmer), by considering the characteristics of services that is uses, should be
able to understand what techniques it needs to use in order to satisfy the reliability requirements imposed on it. The
fourth criteria requires that the set of dimensions is such that a client (programmer) can understand the failures a
service can expose and what actions the client needs to take to recover or mask such failures. The last criteria
requires that we can in some way determine whether a contract expressed in these dimensions is in fact satisfied. We
do not require that it can be determined statically, rather we expect to need run-time monitoring. The following table
summarizes our proposed dimensions.

Description Definition

MTTR = Mean time to repair Time in for example milliseconds.

V(MTTR) = Variance of MTTR Statistically2   defined as the mean value of  the variable defined as (R-MTTR)
where R is a stochastic variable for time to repair and MTTR is mean-time-to-repair

Max (MTTR)) = Maximum value allowed for MTTR. Time in for example milliseconds

MTTF = Mean time to failure Time in for example milliseconds. The mean value of the stochastic variable time
to failure (denoted by the variable F).

V (MTTF) = The coefficient of variance3 when we
consider mean time to failure a stochastic variable.

Statistically2   defined as the mean value of the variable defined as  (F-MTTF)
where F is a stochastic variable for time to failure and MTTF is mean-time-to-
failure.

Number of Service Failures  = The expected number of
service failures N within a certain time period T.

N per T
N is an integer
T is time, in for example hours.

Continuous Availability/T = The probability that a service
will be functioning during a time interval T.

Probability ={0….1}
Time period = T

Availability/t  = The probability that a service will be
available at a point in time.

Probability  = ={0….1}

Failure Masking  = The types of failures masked by
service.

set {omission, lost_response, no_execution, response,
response_value, state transition }

                                                            
3 See your favorite statistics book for details.
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Service Failure  = The way in which the service fails. Does
it recover state, start up an initial state, etc.

enum {halt, initial_state, rolled_back, no_guarantees}.

Operation Semantics  = The semantics of pending request
when a service fails

enum  { no_guarantees , least_once, most_once, once}

Rebinding Policy  = Does the client need to rebind to the
service after the service failed.

enum { no_guarantees , rebind, norebind}

Data Policy  = Will data provided by the service be valid
after the service has failed.

enum { no_guarantees , valid , invalidated}

Table 1

We propose availability and continuous availability as two of the dimensions used to characterize the reliability of
services. Availability is the probability that a service is accessible by clients at any point in time. Continuous
availability is the probability that a service available to a client that makes multiple calls during a period of time
every time the client attempts to use the service. For continuous availability we also require that the client can rely on
preservation of state between subsequent calls. Availability and continuous availability are usually useful for different
types of services and express quite different reliability requirements. To improve the accuracy of availability
characterizationsand other dimensions that we proposewe could introduce distributions of for example
availability over time. It is, however, unclear how practical the usage of such distributions is. One problem is the
validity of distributions and the other is simply to understand which one is applicable in a particular situation. We
therefore do not include such distributions in our current proposal for dimensions.

In our view a service should be considered available as long as it performs according to its specification. Thus, if a
service specification allows degradation, we consider it to be available as long as the specification is meet.
Alternatively, if we wish to make distinctions between different modes of operation availability needs to be defined
separately for each such mode.

We have also included mean-time-to-failure and mean-time-to-repair. Mean values do not take variation into account.
To cover variation we have also included the coefficient of variance for MTTF and MTTR. Using a distribution would
be even more precise, and as for availability we do not exclude such extensions in the future. We also include the
number of service failures during a specified time interval.

Failure masking is a dimension that characterizes what types of failures a client can be exposed to. A characterization
can use zero or more of the values in the failures masking domain. A client that is exposed to a failure of a service
has the choice of either propagating the failure to its clients, or to mask the failure.

The service failure dimension describes how the server behaves in case of a failure. More precisely we are interested
in whether we should expect it to restart and if so in what state it will be in.

Operation semantics describes what happens to pending requests when a service fails. The question is whether the
requests will be executed exactly once, possibly more than once, or zero or one time.

Rebinding policy describes whether clients need to rebind (to obtain a new service reference) to a service after a
failure or if it can use the reference it had before the failure occurred.

Finally, data policy describes whether data that we have obtained from the service will be valid or invalid after a
failure.

No guarantees is a value used in dimensions as an indication that the service in question can not guarantee any
specific quality of service with respect to that particular dimension. Using this value is different from leaving the
quality of service unspecified.

The following section will describe work and implementation techniques for reliable systems. The dimensions that
we propose are selected to be suitable in describing and distinguishing between the reliability that these different
techniques provide. It is therefore valuable to understand what characteristics common techniques have.
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3. Related Work

3.1 Overview
Fault-tolerance is an active research area which focuses mostly on new technologies and techniques for reliable
systems, reliability modeling and other related areas. The following sections will discuss related works, each of
which focus on some specific type of reliability mechanism or aspect of reliability. The purpose of this discussion is
to provide a background and motivation for the dimensions we have selected to characterize reliability solutions.

We first look at some definitions and characterizations that are used for reliability and availability. After that we
study some work on how failures can be classified and characterized. In the following section we look at various
implementation techniques, such as active replication and primary-backup. Finally, we study some common frequency
and time measures used for various characterizations of reliability solutions.

3.2 Characterizing Reliability and Availability
To recapitulate, we use the term reliability to denote a set of dimensions that collectively describes an intuitive
notion of service reliability. We also introduce two different flavors of availability. Continuous availability is defined
as the probability that a service is performing adequately during a specific period of time. Availability on the other
hand is defined as the probability that a service is available at a certain time. Sometimes availability is calculated
from mean-time-to-failure, mean-time-to-repair etc.

In a draft document ISO/IEC[ISO/IEC] presents availability as the “portion of time in service” and reliability as the
mean time between failures. Resnick[RESNICK] couples availability and masking, and describes them as follows:

Manual masking: Following a failure some manual action must be taken to make the service available again.

Cold Standby: Following a failure, users of the component are disconnected and lose any work in progress.
An automatic fault detection and recovery mechanism detects the fault and brings in a redundant server. Once
the redundant server is initialized, it can start accepting requests. Clients need to reconnect to the server to
issue new requests.

Warm Standby: This works as cold standby, except that the redundant server is partially initialized. Thus,
recovery times are shorter than for cold standby.

Hot Standby/Active replication: In this solution there are several servers with updated states. Thus, the
recovery time is minimal, although not necessarily zero.

Resnick’s[RESNICK] definitions of cold standby, warm standby, and hot stand by, etc. are oriented towards
implementation, rather than characterization, of  reliability. The standby techniques mentioned focus on different
levels for recovery support and masking, and will thus provide different recovery times.

Resnick also distinguishes between high and continuous availability. The difference is that continuous availability
encompasses both planned as well as unplanned outages, while planned outages are purposely initiated due to, e.g.,
maintenance.  Resnick argues that, in general, availability is only concerned with unplanned outages. We do not fully
agree with Resnick’s definitions. What is especially bothersome is the intermixing of failure masking and
availability. In addition, his characterizations are very implementation-oriented and consequently not suitable as the
basis for reliability contracts.

We prefer to decouple the availability dimension and the failure masking. Availability is only concerned with how
often a client would experience failures using the service. This view is also taken by Gray and Reuter [GRAY]. They
define system availability as:

The fraction of the offered load that is processed with acceptable response time.

This definition also takes performance problems into account. In addition, they suggest that system availability should
be expressed as a percentage. If a service is unavailable one day out of a year the availability could be expressed as
364/365 = 0.997, i.e., 99.7% of the time. In addition, they present a table in which systems are grouped in
availability classes. The table looks as follows:

System Type
(Availability class)

Unavailability (min./year) Availability

Unmanaged 52,560 90%
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Managed 5,256 99%

Well-managed 526 99.9%

Fault-tolerant 53 99.99%

High-availability 5 99.999%

Very-high-availability 0.5 99.9999%

Ultra-availability 0.05 99.99999%

Table 2

A common formalization of availability is to define it as the relation between mean-time-to-failure and mean-time-to-
repair. The assumption is basically that a system is either up or is being repaired and therefore the total elapsed time
is the sum of MTTF and MTTR. Availability can then be defined as:

Availability
MTTF

MTTF MTTR
≡

+

In a sophisticated model we could take client usage patterns into account. Assume that one client accesses a service
during normal hours and another client accesses the service after hours. The availability for these clients could be
different because of different loads, planned outages, etc. We currently do not consider such variations as part of our
proposed reliability dimensions.

Reliability is sometimes used to denote the probability for fault free operation during a specific time interval. We
could express a probability 0.999 of failure within a two-hour operation period as 0.999/2h. This kind of
reliability can not be measured simply as the time between failures. Even if MTTF for a service is longer than the
time period specified as a reliability requirement, this does not mean the component is reliable enough. The
variability of MTTF could be such that the probability of a failure before the allotted time has elapsed is more likely.
We will use the term continuous availability to denote that a service must provide fault-free operation for a specific
time interval. This means that during this time interval a client should be able to successfully use the service every
time it attempts to do so.

A limitation of the availability definitions above is that these do not reflect the number of failures that occur, and that
they do not reflect the variability or distributions of MTTF or MTTR. In addition, it could be interesting to allow
different levels of distribution over time.

It is common to introduce an attribute defined as the expected number of failures within a certain time period. This
metric is useful from both a client and an implementor’s perspective, although it should be noted that the two values
are different. From the client’s perspective we include only failures that are visible to the client and therefore must be
handled by the client. From the implementation perspective we also use the measure to determine how many
replicates, back-ups, etc. are needed. We propose that reliability contracts include the number of failures from a
client’s perspective.

We have chosen to introduce the expected number of failures as well as the variances for MTTF and MTTR from the
client’s view. In fact, even more elaborate statistical measures such as percentiles and distributions can be used as
well. We propose that such be used based on the need and the knowledge that we have about the characterized
dimension.

3.3 Failure Classification and Service Failure Semantics
The failures exposed by a service represent an important dimension both from the view of a client of a service as well
as the designer of the service. For a discussion on the relationship between specified behavior, error, failure, etc. see
section 1.4.

A service failure occurs when the service does not behave in the specified manner. To describe the types of failures
seen by the client we need a classification and description of the types of failures that services may expose to their
clients. A service is said to mask a failure if it can handle internal failures or failures exposed by services it depends
on without exposing any failures to its clients. A description of masked and exposed failures represents a
specification of failures the service is expected to detect and handle internally. It is also describes to the client what
failures the client should be able to handle or propagate.
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Failure semantics define what the implications of a failure will be. We are particularly interested in what happens to
the server and its state. This section will present some failure types and failure semantics as they are described in the
literature.

Cristian[CRIS91] identifies a number of different failure types. As an example, he describes an omission failure as
the failure of a server to respond to a request. He also identifies timing failures as a separate type although it is not
always clear how clients differentiate timing and omission. He identified late and early timing failures as sub-types of
timing failures. According to Cristian, a response failure occurs when the server either returns an incorrect (or
corrupt) value or makes an incorrect state transition in response to a request.  The table below summarizes the types
of failures that he proposes.

Failure Type Description

Omission failure The server fails to respond to a request.

Timing failure The server response is functionally correct, but untimely. Thus, the server fails to fulfill real-time
requirements.

Early timing failure Sub-type of timing failure. Occurs when the server responds too early.

Late timing failure Sub-type of timing failure. Occurs when the server responds too late.

Response failure The server responds incorrectly.

Response state failure A sub-type of response failure. The state transition that took place in the server is incorrect.

Response value failure A sub-type of response failure. The output value of the response is incorrect.

Table 3

The Figure 5 illustrates a hierarchy of failure types. As an example, early and late timing failures are sub-types of the
more general notion of timing failures. It is preferable to get as specific as possible when failure masking and
contracts are specified.

failure

omission
timing

reponse

value
state

late early

.

Figure 5 Failure Types

Gray et al. [GRAY] divide the set of possible failures into expected and unexpected failures. Expected failures are the
ones that the system can handle and detect, while unexpected failures can not be recognized or effectively handled.
Unexpected failures can be divided into dense and Byzantine failures. A dense failure means that there are a larger
number of expected failures than the system can handle. A Byzantine failure includes all failures that are not masked.
For example, if a service only masks omission failures it will not be able to mask response failures. In this
situationand according to the above definitionresponse failures are considered Byzantine failures.

We also want to characterize the behavior of the server after the failure occurs. Cristian[CRIS91] describes a set of
distinct failure semantics, which he calls crash, amnesia, partial amnesia, pause-crash, and halting-crash. As an
example, a server is said to have crash failure semantics if it fails to respond to any request after an initial omission
failure. Another failure semantics example is amnesia crash semantics in which the server fails to remember the state
it had before the failure. The following table describes the failure semantics as defined by Cristian[CRIS91]:

Service failure Semantics Description

Crash  failure The server fails to respond to any requests after an initial omission failure.



11

Amnesia  failure After a failure the server restarts in a state independent of the state before the failure.

Partial amnesia  failure After a failure the server restarts in a state that is partially the same as the one before the
failure and partially an initial state that is independent of the state it had before the failure.

Pause-crash  failure The server restarts, in the state it had immediately before the failure.

Halting-crash  failure The server never restarts.

Table 4

In our view the service failure semantics proposed by Cristian cover in an abstract and sufficient way different kinds
of behavior. As an example, transactional systems can be viewed, as partial amnesia-failure where the state loss
depends on to what point the system is rolled-back. In other cases, services truly lose their state, which obviously is a
property clients want to know about. It can, however, be beneficial to add information to the characterization so that
clients more fully understand how the server fails. Such characteristics are usually application specific and are
therefore not included as part of our proposed dimensionality.

Like Cristian[CRIS91] we believe that the failure semantics of a service is important and worth specifying, thus
making part of the service specification. Cristian states that if the specification of a service s prescribes that the
failure behaviors (likely to be observed by clients of s) are of type F, we say that s has F failure semantics. As an
example a service that is likely to delay requests is said to have performance failure semantics. We describe a service
that has performance failure semantics and that also might lose requests as having omission/performance failure
semantics. Generally, if a service may exhibit failures in the union of the types F1,F2…Fi, we say that it has F1/F2/../Fi

failure semantics. The larger the set of failures expose, the weaker the failure semantics. When a service may expose
any failure we say that it has arbitrary (or Byzantine) failure semantics. This is also the weakest possible failure
semantics.

Failstopalso called failfast is a commonly assumed failure semantic in various theoretical models. Failstop
services expose omission failures but with some additional characteristics. Schneider[SCHN84] states that a process
(or processor) is failstop, if it fulfills the following properties:

Halt on Failure: In response to a failure, the process halts rather than perform an erroneous state
transformation that will be visible to other processes.

Failure Status: Any process can detect when any other process has failed and therefore halted.

Stable Storage: The storage is partitioned into stable and volatile storage. The contents of the stable storage
are unaffected by any failure and can always be read by any processor.

If we can assume that a process is failstop, the construction of fault-tolerant computing systems will be significantly
easier. Unfortunately failstop, is quite unrealistic in real computing environments. Therefore, we will not include
failstop as in the possible failure semantics.

3.4 Some Implementations

3.4.1 Introduction

Classifying the implementations of fault-tolerant systems is an extensive survey in itself. This paper is therefore
restricted to the description of some common architectures for fault-tolerant systems. Our purpose is to present
different software-based solutions to fault-tolerance. Most current implementations of fault-tolerant software systems
adhere closely to one of these architectures. We do not cover hardware solutions at all.

A software system supporting fault-tolerant computing usually has the following components: a failure detection
function, a recovery function, and a coordinator function. The failure detection function detects when a server has
failed. It is often difficult to detect a failure because of the difficulties in distinguishing omission failures and
performance problems. In advanced systems, failure detection functions detect if one in a set of replicated servers
provides incorrect answers.  The recovery function helps the service recover from a failure. In a transaction system
this means reading logs and updating the state of a newly created server. In a replicated system it means updating the
state of a newly started replica. The coordination function may, for example, coordinate the answers received from
different replicas. The importance and exact roles of these functions vary in the techniques used for reliable software
systems.
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3.4.2 Transaction Based Systems

In a transaction system we may treat a series of actions as one atomic unit, called a transaction.  If all the actions are
successful, the transaction is committed. The requested changes are guaranteed when the commit has been completed
successfully. If the transaction fails, none of the actions within the transaction will be visible outside the transaction.
Thus, it is fault-tolerant in the sense that the system can expose failures without going to an inconsistent state. The
transaction model assumes we can restart the system after a failure, expect it to function correctly, and be in a
consistent state. Database systems the classic examples of transaction-based systems [GRAY].

The usage of transactions is based on the assumption that most failures are Heisenbugs—a term used for transient,
non-deterministic failures. A Heisenbug failure is one that is not likely to occur again. If we reinitiate the transaction
that failed it is likely to succeed. These failures are usually not hidden from a client; rather the client needs to
explicitly reinitiate the failed transaction or take some other action.

Most transaction-based systems use databases, and databases have a significant recovery time. One reason for this is
that databases must recover by reading logs etc. In addition, transaction-based systems do not mask failures very well;
even single failures are usually not masked to clients. Rather, clients must reissue those requests that were not
committed when the failure occurred.

The table below characterizes database transaction services according to the dimensions proposed in section 2.3.
Observe that many dimensions are application dependent (A/D), although we can recognize certain patterns. As an
example, we claim that the recovery time usually is long, although it ultimately is application-dependent.

In terms of service failure semantics the databases usually are expected to have roll-back semantics. Since databases
are used as persistent storage we expect data to be valid even after failures. Thus, commonly, the value of data policy
is valid.

Dimension Typical value

MTTR =Mean-time-to-repair A/D, but usually long for databases systems
because of elaborate recovery procedures.

V(MTTR) A/D

Max(MTTR)) A/D

MTTF = Mean-time-to-failure A/D

V(MTTF) A/D

Expected Number of Service Failures A/D

Continuous Availability/T A/D

Availability/t A/D

Failure Masking omission

Service Failure rolled_back

Operation Semantics most_once

Rebinding Policy A/D

Data Policy Commonly valid, since all retrieved data is
already committed.

Table 5

3.4.3 Message Store

Message store[COU94] systems deal with the problem of reliably delivering messages from one process to another.
The basic principle is that a local message queue handler that can store messages on non-volatile storage. Once the
client delivers the message to the message queue handler, the client is relieved from any additional concerns of
delivering the message. The message queue handler delivers the message to the server. If the server is down at the
time the client sends the message, the message queue handler simply waits until the server comes up. If the message-
queue handler crashes, the message remains in the storage. The message will be delivered to the final (or next)
destination when the message queue has recovered.



13

Client
Server

Store

Figure 6  Message Store

Although this approach provides reliable delivery of messages it does not guarantee any availability or fast recovery.
We believe a system can be classified as a message store system if it has the following properties:

• When a client gets an acknowledgment from the message queue, it can rely on the message queue to eventually
forward the request to the server.

• Any requests received by the message queue will be stored until they are delivered to the server.

The advantage of message store systems is that they are reasonably simple to implement and are useful for
asynchronous store and forward communication is acceptable. Message store does not facilitate highly available
services and provides only one-way communication.

The table below gives a rough idea of what characterizes message store services. For most dimensions we can not
assign concrete values until we have a specific instantiation of the service in mind. But we can notice that they
usually provide an exactly once operation semantics, they provide data validity, they use persistent storage, and can
recovery state.

Dimension Typical value

MTTR =Mean-time-to-repair A/D

V(MTTR) A/D

Max(MTTR)) A/D

MTTF = Mean-time-to-failure A/D

V(MTTF) A/D

Expected Number of Service Failures A/D

Continuous Availability/T A/D, usually no guarantees.

Availability/t A/D, usually no guarantees.

Failure Masking omission

Service Failure rolled_back

Operation Semantics once

Rebinding Policy A/D

Data Policy valid

Table 6

3.4.4 Active Replication

Transaction-based systems often have relatively long recovery times and lack processing redundancy. A long recovery
time means they fail to provide a high degree of availability even though they provide fault-tolerance. The lack of
processing redundancy means that database server crashes will not be masked to clients and thus decrease the
availability of the service. Highly available services can be achieved by replicating the servers and thereby
introducing redundancy. If one server fails, the service is still available since there are other servers that are able to
process incoming requests. There are two main techniques for achieving such software-based redundancy: active
replication and primary-backup [GUE]. The principal difference is that in primary-backup, there is one process that
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receives and responds to all messages. In addition, there are backup processes that receive state updates from the
primary and are thus kept up-to-date and ready to takeover. In active replication a group of processes all receive and
all respond to the same messages. The distribution of messages and responses is handled by another abstraction
commonly called process group. One goal of both techniques is to make the redundancy as transparent to clients as
possible.  Replication and primary-backup represent two ends of the replication spectrum, but there are technologies
that are hybrids of the two. The Somersault protocol [HARRY95] developed at Hewlett-Packard Laboratories is an
example of such a hybrid. This and the following sections describe the active replication and primary-backup
techniques respectively.

Active replication is also called process replication or the state-machine approach [SCHN90, MULL93]. The
principle is that one abstraction represents a set of replicated processes. All the processes within the set provide the
same service and are therefore interchangeable. In addition, they all have the same state or can be synchronized so
that they do. Thus, at any given time it is likely that there is at least one process that can accept requests and thus
provide the service. The set of replicated processes is commonly called a process or object groups [LANDIS].

In order to make such a system function correctly we must manage the ordering of messages, detection of server
crashes, and reliable multi-cast to all servers in the group.

Ordering of messages means that all processes within the group must receive the requests in the same order. The
ordering can be defined in many different ways. Total and casual ordering are two common kinds of message
ordering within object groups [BIRMAN96, MAFF95B]

Processes within a group must be able to detect that other processes within the group have failed. It can sometimes be
hard to distinguish between real failures and network delays and other problems. A wrong diagnosis may lead to
increased overhead and performance penalties. Often in active replication, detection is part of the communication
protocol but it could also be performed an external monitoring system such as the Piranha[MAFF97B] prototype.

Finally, we must guarantee that all or none of the processes within a group receive a request. This is usually called
request atomicity. Request atomicity is necessary to keep the states of processes within a group consistent.

Processes in a process group sometimes have different roles. Commonly, there is a primary process and one or more
secondary processes. The primary process can actually provide the response. Sometimes the primary does other things
like indeterministic choices. The division of functionality and responsibility among primary and secondary processes
is system- and replication-protocol dependent. The figure below illustrates the object group concept and shows that
all requests to the group are distributed to all processes that are members of the group. The picture also shows that
from a client perspective, the group is accessed from a single service reference.

Client

Object group

Primary

Secondary

Secondary

Secondary

Figure 7 Replication Using Group Communication.

Virtual synchrony [BIRMAN89, BIRMAN96, MAFF97] is probably the best-known execution model for active
replication. Virtual synchrony makes all significant events appear to happen at the same time in all replicated servers.
The set of significant events includes delivery of requests, failures, group membership changes, etc. It is easy to see
that the coordination and synchronization needed in replicated systems commonly implies communication overhead
and consequently, a performance penalty. There are alternative solutions that trade the benefits of active replication
for better performance and less delay. One tradeoff is to allow inconsistency among the states of the replicas. By
doing so, some of the communication and synchronization among replicated servers can be omitted, and the
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performance will therefore improve. The down side is that recovery times will be longer and some states might get
lost in case of a failure, since the states of replicas are not up-to-date.

Active replication with virtual synchrony is generally best suited for systems with volatile states. Services
implemented with active replication can fail transparently to a client since messages are not lost if one server fails. In
addition, active replication can provide very high availability with recovery times around seconds or even less. The
delays that occur in case of failures often have to do with failure detection. As an example, a detection mechanism
must be confident that a delayed response or heartbeat is caused by a failure rather than a network delay. To
determine this with acceptable probability the detection mechanism needs to wait for a while to see if the heartbeats
was just delayed.

Degrees of replication range from active replication (also called hot standby) to cold standby. The difference lies in
how well synchronized the states of the primary and the secondary processes are. If they are totally synchronized the
system can be considered hot standby since we can fall over to a secondary process momentarily. In other cases, the
primary logs the state changes and secondary omits updating their respective states. This decreases the
communication overhead since the protocol does not need to worry about request atomicity. The down side is that the
failover takes longer and thus decreases availability. These kinds of solutions is called cold or warm standby
depending on when the state of the secondary was last updated. For a cold standby system the main part of the
recovery time will be spent recovering the process state. There are, however, other activities that take time as well.
One such activity is called  failover. The failover involves detecting that a replicated server has failed and taking the
appropriate action. The figure below gives an idealized picture of the relationship between state replication and
recovery time, where recovery time includes state recovery, fail-over etc. In practice there is no linear relationship;
rather it all depends on additional aspects such as what implementation techniques are used, etc.

ColdHot

Full State Replication No State Replication

Recovery Time

Figure 8 Continuum from Hot to Cold Standby

There are a number of systems that implement replication. Consul [MISH93] is one such communication mechanism.
Consul is built according to the state machine approach [SCHN90] and includes fundamental functions such as
reliable multi-cast, membership services, and recovery services.

ISIS [BIRMAN89] is probably the most widely known communication package supporting active replication. The
virtual synchrony concept originates from the ISIS project. There are a some recognized problems with ISIS. Firstly,
ISIS does not handle partitioned networks well, that is what happens if replicated servers are unable to communicate
with each other.  Secondly, ISIS does not allow simple composition of replicated services. The problem is that a
service that has replicated clients will see duplicated requests from each client although there logically there should
only be one. ISIS not only a replication mechanism, rather it can be viewed as a general reliable multi-cast
mechanism that can be used for different purposes such as load sharing or replicated processes.  ISIS has been used to
develop an object request broker supporting actively replicated distributed objects [Orbix+ISIS]. ISISand it
successor Horus has also been used in research prototype object request brokers supporting active
replication[MAFFEIS95A].

Transis [DOL95] also supports reliable multi-cast based on group communication. In contrast to ISIS, Transis allows
continued operation in partitioned networks. This means that when a network is partitioned the separate parts of a
divided group continue to operate according to the virtual synchrony model.

Somersault [HARRY95] is an active replication system with some primary backup-like mechanisms. It is an active
replication system in the sense that all the replicated processes receive almost all the messages. A Somersault service
has two redundant processes. Although they are basically identical, they do have slightly different roles. The two
processes are a primary and  secondary server. Somersault is a primary-backup approach in the sense that some
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processingindeterministic choicesare made in one of the processes. Furthermore, responses are sent only from
the secondary process. This protocol, which decreases communication overhead, is called the secondary sender
[FLEM95] protocol. The secondary sender protocol improves the efficiency with which a replicated system responds
to clients and keeps the states of both servers (primary and secondary) synchronized. In addition, the secondary server
algorithm allows Somersault-based services to be composed. The figure below illustrates the architecture used in
Somersault.
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Secondary

Log

Figure 9 Somersault

The response is actually returned from the secondary. Indeterministic choices are made in the primary and logged so
that the secondary can get the same value as the primary. An example of an indeterministic choice would be to get the
time of day.

The following table provides characteristics of a system implemented with an active replication mechanism.

Dimension Typical value

MTTR =Mean-time-to-repair A/D, but usually short. Depends on the failure
detection mechanism and how many state values
that need to be transferred.

V(MTTR) A/D

Max(MTTR)) A/D

MTTF = Mean-time-to-failure A/D, usually long since a failure from the
client view requires that all replicated
servers fail simultaneously.

V(MTTF) A/D

Expected Number of Service Failures A/D, usually very low.

Continuous Availability/T A/D, usually very high.

Availability/t A/D, used to provide very high availability.

Failure Masking Response. There are no guarantees that
response failures will not occur. But messages
are generally not lost, depending on the
protocol.

Service Failure Initial. If the service fails in a way not
masked to clients (all replicated servers
fail), it is usually that the state is lost
due to the type of application when active
replication is used.

Operation Semantics most_once

Rebinding Policy A/D

Data Policy A/D. When all replicated servers fail, it is
application dependent whether the data is
still valid or not.

Table 7

3.4.5 Primary-Backup.

A service implemented with the primary-backup approach has a primary server and one or more backup servers.
Clients send requests to the server that they believe is the primary server. This is different from replication where the
fact that there are several servers is transparent to the client. Replication uses a group abstraction mechanism or
recovery unit mechanism with which the client appears to communicate. In contrast, a primary-backup client
communicates with one particular server. All requests sent by a client to a server that is not a primary server will be
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lost. Therefore, clients need to be notified or be able to detect if a primary fails. When a primary fails, the client
needs to figure out which process is the new primary.

For each received request the primary server sends state updates to its backup servers. It also sends regular heartbeats
so that the backups are able to detect when the primary server fails. The figure below illustrates a client
communicating with a primary server directly and that the primary server sends state updates and heartbeats to its
backup servers.
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 Figure 10 Primary-Backup

The advantages of using a primary-backup mechanism rather than active replication are that there is generally less
communication overhead and less redundant computation. A disadvantage is that failures are not masked as
efficiently to clients. Typically, messages can be lost, and consequently, clients need to be able to handle such
situations.

The main cost-factors associated with primary-backup are [BUD]  degree of replication, blocking time, and failover
time.  The degree of replication is measured as the number of servers used in a service implementation. The blocking
time is the worst case delay caused by the primary-backup mechanism between request and response in a failure free
system. Finally, the failover time is the maximum time that there is no well-defined primary. The failover time is
relevant since messages can be lost during this period.

The primary-backup approach has been characterized quite precisely. One purpose of having such a strict
characterization is to detect problems in the specification and implementation features that claim to support primary-
backup. Another reason is that we can characterize formally the degree of redundancy, blocking time, and failover
time. The primary-backup approach is described by the following four properties (see [BUD] for more formal
descriptions):

1. There is at most one server that is identified as the primary server at anyone time.

2. Each client maintains the identity of the server it believes is the primary server. All requests are sent to this
server.

3. If a request arrives at a server that is not the primary server, the request is discarded.

The fourth and last property deals with the case when all requests are lost. Properties 1 through 3 do not prohibit such
behavior. Assuming all clients are supposed to receive an answer, a server outage is defined as the time when a client
sends a request but does not receive an answer.  The last property then states that:

4. There is a fixed number k of server outages not exceeding the time ∆ in length.

These four properties can be used to verify that a reliability solution is in fact a primary-backup. The characteristics
can also be used to derive the degree of redundancy we need to obtain a certain level of failure tolerance, called n-
fault tolerance. A system is n fault tolerant if it can tolerate n components failing simultaneously. The level of fault
tolerance is determined by the types of failures that we wish to mask, and the degree of redundancy. Budhiraja et al.
[BUD] introduces five failure models and derives the number of components required to support each of them. The
five models (They use the term link for the communication connection between a client and the primary server.) are:

Crash Failure: The primary server fails by halting and does not respond to any further requests. Crash failures are
tolerated by having redundant servers.

Crash and Link Failure: The primary server fails by halting and does not respond or a link may loose requests. We
do not include failures where links delay, corrupt, or duplicate requests. Link failures are tolerated by having
redundant links.
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Receive Omission Failure: A primary server does not receive requests despite a non-faulty link. This could be caused
by for example in-buffer overflow. This type of failures is tolerated by correcting problems at the server side, by for
example increasing buffer size.

Send Omission Failure: A primary server does not send requests despite a non-faulty link. This could be caused by
for example out-buffer overflow. We can tolerate this kind of failures by correcting the error in the server, or in the
client. In the out-buffer overflow case, the problem is in the client application rather than in the server.

Request Omission Failure: If a primary server exhibit both send and receive omission failures say that it exhibits
request omission failures.

To a client many of these distinctions are invisible.  We will, however, need to make these distinctions to analyze the
level of redundancy that is needed to make a primary-backup based service n-fault tolerant. The following table from
[BUD] summarizes the lower bounds L for the number of components needed to achieve n-fault tolerance with a
specific failure model.

If we wish to tolerate n simultaneous crash failures, the number of servers needs to be greater that n. If we wish to
tolerate n crash and link failures, the number of servers needs to be greater than n+1, and so forth, see Table 8. The
lower bounds described here are also based about some assumptions on the primary-backup protocol (see [BUD] for
further details).

Failure Model Lower bound for redundancy

Crash L  > n

Crash and Link L  > n+1

Receive Omission L  >  ceiling(3f/2)

Send Omission L > f

Request Omission L  > 2*f

Table 8 Relationship between n-fault Tolerance and Failure Models

Table 9 can be used to understand the relation between failure models and what is required to make a service n-fault
tolerant with a specific failure model. Similarly it describes what characteristics a primary-backup server has with
respect to blocking time and failover time. We will, however, defer this discussion to section 3.6. These aspects are
more implementation-oriented, and are, in our view not relevant to clients.

From the previous description we can see that primary server solutions commonly have less communication overhead
than active replication solutions. The performance characteristics will, however, be different depending on whether
the primary needs an acknowledgment from backups when their states are updated. The performance characteristics
for primary backups are usually better than those for active replication. On the other hand, active replication usually
provides better failure-masking characteristics. With primary-backup, clients need to know the identity (from a client
perspective) of the primary server. If the primary server fails, the client needs to know how to recover and switch over
to the new primary server. There is also a fail-over period during which messages can be lost.

Dimension Typical value

MTTR =Mean-time-to-repair A/D, usually short but longer than for active
replication.

V(MTTR) A/D

Max(MTTR)) A/D

MTTF = Mean-time-to-failure A/D, usually long.

V(MTTF) A/D

Expected Number of Service Failures A/D. Server failures are more frequent than
service failures. Server failures are not masked
to clients. Service failures, on the other hand,
are expected to be rare.

Continuous Availability/T A/D, usually high.

Availability/t A/D, usually high.

Failure Masking Omission, response. Messages can be lost
especially during rollover. No guarantees are
provided for the correctness of responses.

Service Failure rolled_back
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Operation Semantics most_once, messages can be lost, especially
during rollover.

Rebinding Policy Rebind. Rebinding is usually required if the
primary fails.

Data Policy A/D

Table 9

3.4.6 N-version Programming

N-version programming means that we have N implementations of a specification that are run in parallel. All servers
receive all requests and a majority vote is taken on the response. The goal with n-version programming is to remove
some of the problems associated with the errors introduced during the development of software systems. By having
several separately developed versions of a program, the hope is that they will not fail in the same way. Thus, there
should be a high-probability that a majority of the N servers will provide the correct response.

It seems that the same underlying techniquesmulticast, request ordering, etc.is required for N-version
programming. The difference is that each of the servers in an object group is implemented differently and by different
people.

N-version programming usually leads to much higher development and maintenance costs. It has also been shown that
although independently developed, errors are likely to be introduced in related parts of the server code. This means
that different programmers are likely to introduce errors for the same functions of a service specification. The
following figure illustrates different implementations of servers. Each request is forwarded to each of them and they
all respond. The responses are compared, and the response received from a majority of servers is sent back to the
client.
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Figure 11  N-version Programming

In summary, N-version programming requires voting and coordination among several servers. It is therefore likely
that it will have performance characteristics similar to replication. The advantage of n-version programming is that
programming and design errors can be neutralized. Unfortunately, due to human nature, the outcomes will not be as
good as could be expected. It is, however, a viable technique to improve the availability of replicated systems.

In this brief survey of implementation techniques we have pointed out the main characteristic of each techniques.
Although the exact characteristics are application dependent, we have also indicated that the set of proposed
dimensions are indeed useful in characterizing reliability contracts.

In the topics of the next two sections are reliability modeling and time and frequency. The purpose of these sections
is to point out main ideas and uses of reliability modeling and generally discuss some time and frequency measures
for reliability.

3.5 Reliability and Availability Modeling
One of the difficulties of designing reliable and available systems is that of choosing between design alternatives. It is
also difficult to predict how reliable and available a particular solution will be. Reliability modeling attempts to
address these issues by providing techniques to model various aspects of system reliability [LITT91]. Reliability
modeling can help designer with the following [REIB91]:
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• To set and interpret reliability requirements

• To predict the reliability of different system configurations

• To identify weak points and bottle necks with respect to reliability

• To evaluate alternative designs with respect to reliability, cost performance, etc.

There are three basic types of reliability models [REIB91]: Parts-count models, Combinatorial models, and State-
space models.

A parts-count model assumes that the failure of any component in a service can cause the failure of the entire service.
The reliability of a service can therefore be assessed as the sum of the reliability of its components. A parts-count
model is quite conservative and not sophisticated enough to take the interesting aspects of fault-tolerance features
into account.

Combinatorial models are more advanced than parts-count models in that they can model simple redundant systems.
There are variations of combinatorial models called, for example fault tree, success tree, and reliability block
diagrams. A success tree provides a model of what is required for the system to function. A success tree can be
described as a series of AND gates from which inputs are components vital for the functioning of the system. The
weakness of combinatorial models is that they do not model certain aspects, such as whether a system can handle a
specific fault, system repairs or other properties of fault-tolerant systems.

State-space models are more expressive than combinatorial models and are therefore often used in advanced
modeling of fault-tolerant systems. In a state-space model all combinations of functioning and non-functioning
components are represented by a state. The model is used to evaluate the probability that the system to is a specific
state. Based on this information other values such as mean-time-to-failure can be predicted.

For software, reliability modeling generally focuses on predicting the reliability and fault content of software systems.
More specifically, the focus is on predicting the number of faults in a system and the frequency with which they cause
failures. Gokhale et al. [GOKHALE] provides an overview of popular techniques and models used for software
reliability modeling. Such models estimate reliability and  availability at specified times, based on available software
failure data. There are mainly two classes of such models: data domain models and time domain models. The
prevalent definition of reliability for both these models is consistent with the one we have been using previously in
this paper: the probability of fault-free operation, provided by the software product under consideration, over a
specific period of time in a specified operational environment [GOKHALE].

The fundamental principle of data domain models is that, if the set of all input combinations can be identified, we can
estimate the reliability by observing the relationship between inputs and outputs. Finding and executing every input
combination is, in practice, not feasible. Thus, finding a representative set of inputs is one of the major challenges of
this method.

Time domain models model the underlying failure process of the software under consideration. This model, with an
observed failure history, is used to estimate both the residual number of faults in the software and the test time
required to detect them.

Reliability modeling for software is focused on giving us trustworthy information so that we can make a statement
about the reliability of a system. A final assessment of reliability can not be made until the system has been running
for a period of time. Therefore reliability modeling helps us gain confidence that a particular software product will
indeed satisfy the reliability requirements. Fault injection[HSUEH97] is a complement to reliability modeling. The
goal of fault-injection is to make different components fail and observe the overall reliability of the system.

Reliability modeling techniques do not directly provide us with dimensions for characterizing and specifying
reliability of services. They do, however, give us tools to analyze and predict the reliability of a specific service.
Reliability modeling is therefore essential during the design of reliable services.

3.6 Time and Frequency
Various time measures are often used to characterize reliability and fault-tolerance. These measures are also used to
derive new metrics for availability and reliability. In this section we will describe some common measures and their
usage.
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Name Abbreviation Description

Mean-Time-To-Repair MTTR The mean time it takes to repair a service after it
failed.

Mean-Time-To-Failure MTTF The mean time between any two failures.

Table 10

The measure mean-time-to-failure (MTTF) is often used as a measure for the reliability of a system.  Time-to-failure
is the time between two subsequent failures of a service. MTTF is, consequently, the mean time between each
consecutive failure. MTTF does not take the variability or distribution of the time between failures into account. If the
necessary information is available, it can be very beneficial to describe the distribution for MTTF.  Variance is a
weaker, but still useful, measure. Variance indicates how an actual value will vary from the mean. In addition,
percentiles could is useful way of characterizing many different kinds of attributes, such as MTTF.

Figure 12 Distribution of MTTF

The time that the service is interrupted —and thus unavailable—is called the time-to-repair. It is often measured
statistically as the mean-time-to-repair (MTTR). MTTF in combination with MTTR can be used to get a derived metric
often used for availability [GRAY].

Availability
MTTF

MTTF MTTR
≡

+

While MTTF and MTTR characterize reliability from the perspective of a client there are other time measures, such as
worst-case-failover-time and mean-state-recovery-time, that are relevant from the server perspective. These measures
are usually interesting for particular solutions and are therefore not useful as general characterizations.  In some cases
these times are part of MTTF or MTTR. As an example, mean-state-recovery-time is usually a component in mean-
time-to-repair.

In primary-backup there is a period of time when there is  no appointed primary-server and clients may not have
detected yet that the primary-server has failed. During this period, requests issued to the primary server will be lost.
We call the upper boundary for this time the worst-case-failover-time.  The worst-case-failover-time is relevant in
primary-backup solutions, but not in active replication. Blocking time is the worst-case elapsed time between the
receipt of a request and sending the associated —failure free—response. This also assumes that the number of
simultaneous failures has not exceeded what the system is designed to manage. In some cases, such as for primary-
backup, different boundaries for some of the time attributes have been analyzed. Such analysis is valuable in that it
provides insight into how a particular solution behaves and what the inherent timing constraints are.

Name Abbreviation Definition

Worst Case Failover Time WCFT The worst case time occurs when a request is lost
because of failures.

Worst Case Blocking Time WCBT The worst case time between the time a server
receives a request and the time the reply is sent.

Mean State Recovery Time MSRT The mean time to recover the state of a failed
service. This is usually application dependent.

Table 11  Additional Time Measures

MTTF
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The table below indicates the relationship between failure models and the lower bounds for blocking time for
primary-backup based systems. The table basically states that if you build a primary backup mechanism assuming a
specific failure model you will have an associated lower bound on the blocking time. Recall from section 3.4.50 that n
denotes the maximum number of faulty components that is tolerated (N-fault tolerance), and s is the number of
servers. The lower bounds depend on the time (τ) it takes to transfer messages between processes, the degree of fault
tolerance (n), and the number of servers used in the implementation (s). The blocking time defines the delay for
executions when no failures occur. Although we focus on lower bounds, it should be noted that the bounds defined
below are also the upper bounds in many cases. See the chapter by Buhiraja et al. [BUD] or the paper [BUD92] for
details.

Failure Model Blocking Time (Lower Bound)

Crash 0   (immediate response)

Crash and Link 0   (immediate response)

Receive Omission τ when n = 1 and s =2

2 * τ when n > 1 and s <= 2n

Send Omission τ when n = 1

2 τ when n > 1

Request Omission τ when n = 1

2 τ when n > 1

Table 12

For systems assuming Crash or Crash/Link failure models there is no delay involved. The primary can respond
immediately after it has sent state updates to the backups.

For receive omission failures we have two different cases related to two possible designs. If we only intend to allow
one failure and we have two servers, we can use something that is similar to secondary sender in replicated systems.
Concretely this means that the backup rather than the primary sends the response; thus, we only have the overhead of
one message between the primary and the backup. The other solution requires that the primary gets messages from
backups verifying the state updates, etc. The bound is dependent on the failure model (backups might lose received
messages) and the number of failures we want to tolerate. The same reasoning applies to send and request omission
failures. Budhiraja and Marzullo [BUD92] also describe optimal implementations of these mechanisms (except
receive omission failures) and show that they are tight [BUD].

We have not seen any similar analysis for replicated systems. To do this we need to analyze individual solutions. As
an example, we could derive the lower bound for the blocking time from the design of Somersault [FLEM95,
HARRY95]. We will, however, not attempt to do such an analysis in this paper.

The fail-over time is the worst-case elapsed time when messages are lost because a server has failed and the service
is recovering. For replicated systems this time is essentially zero, because if one server fails there are already other
servers in the group receiving, processing, and responding to requests. Since the time is zero the possibility of losing
messages is also zero, as long as the number of failures is less than n. For primary-backup solutions the situation is
different. In primary-backup there is a period of time when a backup server needs to detect that the primary server
has failed. Usually requests are lost if they are issued to the primary server between the time it failed and the time a
backup server takes over, and the time clients are notified.

The following table—taken from [BUD]—shows the relationship between some failure models described in Section
3.4.5 and the lower bounds of failover times. τ is the maximum time it takes to transfer one request from one process
to another.

Failure Model Failover Time

Crash n * τ

Crash and Link 2 * n * τ

Receive Omission 2 * n * τ
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Send Omission 2 * n * τ

Request Omission 2 * n *τ

Table 13  Failover Time for Primary Backup

In the case of request store systems, the client can rely on the delivery after it has delivered request to the message
queue. Thus the failover time should be zero.

Our conclusion from looking at various time measures is that MTTF and MTTR capture what seems to be the
appropriate characterization from a client’s perspective. Other time measures are interesting in understanding a
particular solution, but are usually also components of MTTF or MTTR. Another approach would be to include a much
richer set of time measures in a client view contract. For many solutions these measures would be not applicable, or
they would be zero. As an example, failover time is in principal zero for message store systems. This would also
require that we describe the relationships between various measures. This description is complicated by the fact that
the measures might aggregate differently depending on the solution in question. We have seriously considered
including a measure for the time between the occurrence of the failure the time it is detected by a client.

One problem with MTTF, MTTR, etc. is that it can not be directly verifed that a service indeed satisfies certain MTTR
and MTTF values. Rather, such requirements can only be verified until deployment when the system reliability is
measured.

4. Dimensions in Detail

4.1 Client View Reliability Specification
Previously in this paper we surveyed various aspects of reliability that we use as the basis for selecting a set of
representative dimensions. The table below (the same as in section 2.3) summarizes the dimensions that we have
proposed. In this section we will describe the proposed dimensions in greater detail and provide some additional
motivation and discussion.

Name Description Definition

MTTR The mean time it takes to repair a service
after it has failed.

Time in for example milli-seconds.

V(MTTR) The variance that exists for mean-time-to-
repair.

Statistically  defined as the mean value of the
variable defined as  (R-MTTR), where R is a
stochastic variable for time to repair and MTTR
is mean-time-to-repair.

Max(MTTR) The maximum time that a repair is
allowed to take.

Time in for example milli-seconds

MTTF The mean time between any two failures. Time in for example milli-seconds.

V(MTTF) The variance that exists in mean time to
failure.

Statistically2   defined as the mean value of the
variable defined as  (F-MTTF) where F is a
stochastic variable for time to failure and MTTF
is mean-time-to-failure.

Continuous
Availability/T

The probability that a service will be
functioning during a specific time interval
T. Clients should be able to count on state
information being preserved until
subsequent calls.

Probability ={0….1}

Time period = T

Availability/t The probability that a service will be
available at a point in time.

Probability  ={0….1}

Failure Masking The types of failures masked by a service.
The client must handle failures not
masked by the service.

set {omission, lost_response,
no_execution, response,
response_value, state
transition }

Service Failure The way in which the service fails. The
state of the server after recovery.

enum {halt, initial_state,
rolled_back, no_guarantees}.
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Operation Semantics The semantics of pending request when a
service fails. Will they be executed or not.

enum  {least_once, most_once,
once}

Rebinding Policy Will a reference to the service before a
failure be valid after the service has
recovered?

enum { no_guarantees , rebind,
norebind}

Expected Number of
Service Failures

The expected number of service failures
N within a certain time period T. This
should only include failures from which
the client must recover from.

N per T

N is an integer

T is time in for example hours.

Data Policy Will data supplied by the service before a
failure be valid after the service has
recovered from the failure?

enum { no_guarantees , valid ,
invalidated}

Table 14

Mean-time-to-failure (MTTF) and mean-time-to-recover (MTTR) are both measures that indicate reliability and
availability. Generally, we define MTTF to represent the mean time over the total life of a system including periods of
stable and less stable states. MTTR is the time a service is inaccessible to clients due to a failure. Neither MTTF nor
MTTR reflects variance or distribution. We therefore propose that the estimated variance be included for both MTTF
and MTTR. We denote the variances by V(MTTF) and V(MTTR), respectively. It also seems reasonable to state
the maximum time of a repair; we denote it by max(MTTR). Statistical distributions for MTTF and MTTR can be
defined, but we do not insist on them being a mandatory part of a contract.

MTTF and MTTR are used to derive the availability measure that we adopt. The availability measure can be
informally defined as the probability that a service will be available when a client attempts to access it (at a specific
time). Although there is a direct relationship between MTTR/MTTF and availability, we propose that all three of them
be incorporated in to client contracts. An extension to availability could take various other parameters into account.
As an example, the availability could be different at different times of the day. It could also differ among different
users and usage patterns. At this point we do not elaborate on these aspects, rather we assume that multiple
alternative contracts will be sufficient in such situations or dealt with by other mechanisms.

Continuous availability is the likelihood P that a service performs correctly during a specific time period T. This
means that a client will be able to access a service arbitrarily many times for the period T with probability P.
Continuous availability can also be thought of as the probability that a service will be available for all of a sequence
of requests. Viewed this way, availability can be regarded as a special case of continuous availability when the
sequence consists of just one request. As with availability we could introduce distributions to more accurately
characterize the probability that a service will be continuously available.

By being explicit about which failures a server may expose, clients can be prepared to handle these failures. Assume
that a server fails to mask failure of type  F, then clients must be prepared to detect and handle failures of type F. In
some cases it is trivial for a client to detect a failure, for example, whether a reference is invalid or not. In other cases
it is more difficult, such as when the response value is corrupted. It is, however, important that a reliability contract
specify the failure masking properties so clients understand the failure semantics of a service. We propose that failure
masking be part of the reliability protocol and we currently draw the domain for this dimension largely from the work
by Cristian [CRIS91] (described in Section 3.3). We will, however, modify the types of failures slightly, as illustrated
by the failure type hierarchy shown below:
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Figure 13 Failure Types

We add two sub-types of omission failures: lost reply and no execution. Lost reply means that the request was
executed but the reply was lost. No execution indicates that the request was actually never processed by the service.
It is important to notice that, while more specific failure types are preferable, the level at which a client can
distinguish between failures depends on the support provided by the computing environment.

Service failure is concerned with the state of the server after an unmasked failure.  The client will depend on this
information for continued operation and recovery. The spirit of our dimension is similar to the one described by
Cristian [CRIS91]. Cristian defines the set of possible states as crash, amnesia, partial amnesia, pause-crash, and halt
(see section 3.2 for further details). Our domain is slightly different from that of Cristian’s proposal. As an example,
we believe that crash failures are relevant for all failure types, not only omission failures as he suggests. We will
therefore introduce a slightly different set of service failure semantics: halt, initial_state, rolled_back,
no_guarantees.

If the semantics is halt, the server will be down for an unknown time after the failure. The initial_state means that
the server is reset into a predefined initial state that is known to be consistent. The rolled_back value indicates that
the service state is rolled back, but we do not specify how far back. The roll back could be to the previous committed
transaction or to some other well-defined point in time.  Although we omit specifying the state to which the service is
rolled back here, we believe it should be a part of the service specification. Finally, no_guarantees states that we can
assert nothing about the state of the recovered server.

Operation semantics captures the semantics of issued, but not finished, requests to a service that fails. We can, for
example, guarantee that the request will be executed once the service is up again. In other situations no such
guarantees can be made and thus we have weaker semantics such as least once and most once.

The expected number of service failures is a generally useful measure in reliable systems. The measure is useful to
get a more complete picture of the failure behavior together with other availability measures. For contracts this value
only includes failures visible to the clients—failures not masked by the service.

From a client perspective, failure might or might not be visible. If the server masks the failure the client will not see
it. On the other hand, if it is not masked, the client must (in its role as server) handle the situation and either mask
the failure to its clients, or propagate the failure. Whether a client can mask a failure is dependent on the validity of
the requests that the client has previously received from the service.

We are concerned primarily with distributed object-oriented systems. In such systems we use references to issue
requests for objects in other processes. We call obtaining a reference binding to a service. Clients are certainly
interested in how references are affected by the fact that a service fails. We propose the usage of a rebind policy to
specify whether a reference is valid after a crash or not. Assume that the client has a reference to a service and that
the service fails. It must then be clear to the client whether this reference is still valid or if the client needs to obtain a
new reference to the same logical service. The concept of rebinding policy can be generalized to other kind of
bindings in distributed non-object oriented systems as well:
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rebinding policy = enum {rebind,  norebind , no_guarantees}

For each unmasked service failure type we associate a rebinding policy. This means that, if a failure of that type
happens, the associated rebinding policy should be used. Assume that a service does not mask response failures. We
might associate no rebind with those response failures. This would mean that even if a response fails, the client
doesn’t need to get a new object reference to the service.

Another example is whether data previously received from a service will still be valid after the service has recovered.
As an example, assume a client that has received a ticket from a service as part of a response. If the service fails it
must be clear to the client whether the ticket is still valid.  We call this aspect data policy and we want to be able to
associate data policies with individual return values:

data policy = enum {valid, invalidated, no_guarantees}

Data policies are also associated with failure types and with certain data elements provided by the service. Thus,
different data elements could have different associated policies. In the end though, the language used to specify such
contracts will determine on what level of granularity (interface, operation, attribute etc.) these dimensions are
applied.

A third important aspect is concerned with what happens to pending requests in case of failures. We have selected
three basic forms of semantics that have been used for remote operations: exactly once, at most once, and at least
once. The exactly once semantics guarantees that a request is always executed exactly once, which is hard to achieve
in practice. The at most once semantics states that the call was executed if the service did not fail, otherwise it might
not have been executed at all. Finally, at least once guarantees that the call is always executed once. This semantics
is useful for idempotent operations, i.e., operations causing no harm even if they are executed more than once.

operation semantics = enum {least_once, most_once, once}

4.2 Server and System Reliability
We like to make the distinction between three views on reliability: Client, Server, and System. Client view reliability
focuses on how reliable a client considers a service to be. Server reliability focuses on how a server provides a service
with a particular reliability. Finally, the system reliability view considers the reliability of a system, which consists of
multiple clients and servers that are inter-dependent. Server and system reliability are related but emphasize different
aspects. They tend to focus on how to implement a service and how to compose a system respectively. We are mainly
concerned with client and server reliability. This distinction is also described in section 2.2.

We have made a distinction between the reliability dimensions that are appropriate in client view contracts and those
that are appropriate from the server view. In the server view we consider the failures that can occur and what we can
do to satisfy the client view contract. The server reliability specification is a superset of the client view. Thus,
everything used to characterize reliability from a client perspective is also useful from the implementation
perspective. In addition, there are other dimensions, models, and information that are more closely related to the
internal structure of a service. In this section we will briefly describe some of the additional dimensions and
considerations that are useful from the implementation view. This is not intended as a complete set. Rather we would
like to point out that client contracts are not enough to determine whether a server satisfies its reliability
requirements and how those requirements are traded against other qualities.

From a server perspective we are interested in what the reliability bottlenecks are and generally how a service
behaves when one or more components fail. We are also interested in how various dimensions can be broken down
and mapped to smaller elements that are solution specific. As an example, for some solutions the timing dimensions
described in client contracts can be divided into smaller pieces that all contribute to some value, such as MTTR.

The table below presents some useful server view dimensions. As an example, we propose an alternative definition of
expected number of failures that measures the number of component failures. . Not all such failures result in a failure
of the service. An implementation needs to consider how many failures and what combinations of failures it is able to
handle.

There is a variety of time dimensions that can be used, such as blocking time, state recovery time etc. They are
commonly solution-specific (primary-backup, replication, etc.) or depend on the application.

.

Name Description Definition
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Expected Number of
Failures

The expected number N of failures of components within a time
period T.

N per T

N is an integer

T is time, in for example hours.

Blocking Time The time T between request and response in a failure free
execution

T is time, for example in milli-seconds.

State-recovery-time The time T needed to recover the state of a crashed service so that
the service can operate normally again.

T is time, for example in  milli-seconds

Failure Time The time interval T  that requests can be lost because the service
in a state between normal operation and failure.

Time in for example milli-seconds.

Table 15

One way of understanding how well an implementation handles failures and how likely the system is to fail is to use
reliability modeling.  The kind of reliability model to use for a specific system depends on the precision we need in
predicting reliability and the effort we are willing to spend on the modeling. See section 3.5 for brief descriptions of
and references to various modeling techniques.

Reliability can usually not be considered in isolation. In particular we can not consider solutions to reliability
requirements without considering the impact they may have on other dimensions. Typically, different reliability
solutions have different performance characteristics. As an example, replicated servers typically have execution
overhead due to synchronization.

It is quite clear that reliability can not be considered without taking performance into account. The solutions that have
been outlined in previous sections all have different performance characteristics. They differ in communication
overhead, recovery time, failover time, etc. In addition performance characteristics commonly depend on the
application. Recovery time depends on the size of the state that needs to be recovered; failover depends on configured
time-outs and heartbeat rates; communication overhead depends on the degree of redundancy, etc.

It is a common perception that reliability and performance are tightly related. Although we have focused on reliability
dimensions, these should generally be used with performance dimensions for a more complete characterization of
solutions and applications. Throughput and delay are two commonly used dimensions for performance.

There are, of course many other quality aspects that need consideration when we implement a service and a system.
Modularity, composability, and reusability are examples of such qualities. To take an example, let us consider
composability. By composability we generally mean how simple it is to compose new systems out of existing self-
contained modules, in our case, servers. As an example, let us think about a fictitious application with a cassette
player (CP) abstraction. Such an abstraction could make use of a recorder (R) abstraction and a player (P)
abstraction. When we build and initiate a cassette-player abstraction, we provide it with references to a player object
and to a recorder object. The cassette player would use these objects to provide its own functionality.  The figure
below illustrates how we would compose such objects:

CP

P

R

Client

Figure.  Composition of  Services

Assume that in order to meet reliability requirements we intend to introduce redundancy. Thus, we could implement
all the server objects using a replication or primary-backup approach. The question we need to answer is whether a
redundant object is in fact composable. With some replication techniques composition will involve significantly
higher complexity. Assume, for example, that the cassette player is replicated; thus, it consists of more than one
actual object. In a non-composable replicated implementation each of these objects call the player service. Thus, the
player service must handle several invocations from the cassette player.

Composability is not only the concern of service implementors, but is highly relevant to clients that are required to
provide a service with references to complementary services such as in the case of initiating the cassette-player
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described above.  Composability is not a dimension to characterize reliability, but it is a characteristic that differs
among reliability solutions.

Reliable systems generally have higher development costs than systems for which reliability has not been addressed
explicitly. The tradeoff between cost and reliability is important and usually customer specific. To understand what
reliability is worth we must estimate the downtime costs in lost business, productivity, and goodwill.

5. Example

5.1 A Telephony Service Execution Framework

5.1.1 Introduction

To illustrate the proposed dimensions and their expressability, we will use them to specify the QoS properties of an
example system.

This example is a simplified version of a system for executing telephony services, such as telephone banking,
ordering, etc. The purpose of having such an execution system is to allow rapid development and installation of new
telephony services. The system must be scalable in order to be useful both in small businesses and for servicing
several hundreds of simultaneous calls. More importantlyespecially from the perspective of this paperthe system
needs to provide services with sufficient availability.

Executing a service typically involves playing messages for the caller, reacting to keystrokes, recording responses,
retrieving and updating databases, etc. It should be possible to dynamically install new telephone services and
upgrade them at run-time without shutting down the system.

The system answers incoming telephone calls and selects a service based on the phone number that was called. The
executed service may, for example, play messages to the caller and react to events from the caller or from resources
allocated to handle the call.

Telephone users generally expect plain old telephony to be reliable, and they commonly have the same expectations
for telephony services. A telephony service that is unavailable will therefore have a severe impact on customer
satisfaction, in addition the service provider will lose business. Consequently, in this case we assert that the system
needs to be highly available.

Following the categorization by Gray et al [GRAY], we want the telephony service to be a highly available system
which means it should have a total maximum downtime of 5 minutes per year. The availability measure will then be
0.99999. We assume the system is built on a general-purpose computer platform with specialized computer telephony
hardware. The system is built using a CORBA [CORBA] Object Request Broker (ORB) to achieve scalability and
reliability through distribution.

5.1.2 System Architecture

We call the service execution system module PhoneServiceSystem. As illustrated by the figure below, it uses an
EventService module and a TraderService module. We use the Booch notation[BOOCH] for our models.

EventService TraderService

PhoneService
System

CallHandler
CallHandle

Figure 14 High-level Architecture

Opening up the PhoneServiceSystem module the Figure 16 below, we see its main classes.  The important classes are
CallHandle, ServiceExecutor, and Resource. The model also shows the dependencies to the EventService and
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TraderService interfaces, represented as classes in the diagram. The CallHandler constitutes the abstraction of the
service execution system as seen from the telephone switch. We assume there is an external system that detects
incoming calls and issues the appropriate request to a CallHandler instance. The CallHandler is responsible for
mapping the incoming phone number to a service identifier and creating a CallHandle. The CallHandle holds data
essential to the call, such as the channel on which messages are played. The CallHandle must be passed around since
it must be available to resources, such as players and recorders.

The ServiceExecutor class defines the operations to actually start and stop service executions for incoming calls. The
ServiceExecutor is responsible for mapping service identifiers to a service description. The service description
represents what the ServiceExecutor will in fact execute.

A resource is something that the ServiceExecutor needs to execute services. Databases, players, and recorders are
examples of resources. The Resource defines a general interface supported by all resources. In addition, each type of
resource provides specific operations defined in resource type specific interfaces inheriting from Resource.  The
ServiceExecutor calls resources directly and asynchronously.  When a resource has finished a task it notifies the
ServiceExecutor by sending an event by using the EventService. This communication model allows the
ServiceExecutor to wait for many different types of events simultaneously, such as resource request completions,
hang-up, keystrokes etc.

The Service Executor uses a Trader to find the resources it needs for a specific service execution. In the model we
have added a reference to the reliability contracts that we will describe later. Each reliability contract includes a
description of the reliability that the client can expect and that the service it agrees to provide.
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stop( )
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Figure 15  Class Diagram for PhoneServiceSystem

The scenario diagram in Figure 16 shows a sequence of events for a call. The CallHandler receives an incoming call
(not shown) that triggers a call to the ServiceExecutor and conveys the service identifier. The Service Executor
figures out what resources it needs and calls the trader to get them. After receiving the right resources, the Service
Executor executes the service specification, which involves calling various resources and responding to user
interactions.
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 : CallHandler  : ServiceExecutor  : Trader  : Player EC : PushEvent
Channel

1: start (ServiceId)

2: lookup (Properties)

3: play (VoiceFile, CallHandle)

4: push hang-up

5: push hang-up

6: stop ( )

Figure 16  Scenario Diagram for an Incoming Call.

In this case the Service Executor calls the Player with a voice file and a call handle. While playing the voice file, the
end-user hangs-up, which triggers the CallHandler to push a hang-up event.  The event is received by the Service
Executor instance that associates it with a particular service execution. The hang-up event causes the Service
Executor to interrupt the playing of the message.

5.1.3 Reliability

In this section we discuss reliability and the reliability contracts associated with the phone service system. We do not
providing a methodology for developing contracts; rather we illustrate one situation for which the dimensions we
propose are useful. Neither do we consider tradeoffs between reliability and other QoS categories, such as
performance nor, how the design affects the overall development cost.

To users of telephone services the CallHandler represents the actual execution service. Thus, to provide high-
availability that CallHandler service must be highly available. The figure below summarizes the reliability contracts
that we have defined. For simplicity we have omitted some dimensions such as those indicating the variance. The
arrows are inferred from the class diagram and represent service dependencies.

The CallHandler relies on the ServiceExecutor, which in turn depends on the Trader, EventService, and the
Resources. In the case of a failure services currently executing and their associated connections will be discontinued.
This means among other things that the service executor need not recover its state when restarted. Users consider it
more annoying if a session is interrupted due to a failure than if they are unable to connect to the service in the first
place. We therefore wish the ServiceExecutor to be reliable in the sense that it functions adequately over the duration
of a typical service call. In this fictitious system, calls are estimated to have a mean time of 3 minutes with 80% of
the calls lasting less than 5 minutes.

Although the ServiceExecutor itself can recover rapidly and thereby provides high-availability, it depends on the
Trader and resources for the whole system to function correctly. The ServiceExecutor can simply not execute services
without a Trader from which it can get the resources it needs for a particular requested service.

A Trader is expected to have a state of significant size that needs to be recovered. First it needs to make sure the data
on persistent storage is consistent and complete; then it needs to build the necessary memory structures for the
efficient search and retrieval of resources. Therefore, the Trader has a longer recovery time than some of the other
services. This means the mean-time-to-failure time must also be longer than for Service Executor. Failing resource
services are expected to have long recovery times, which implies they need to have in principle infinite mean-time-to-
failure to satisfy the availability requirements. This does not mean that individual resource can not fail, but it does
mean that there must be enough redundancy that the service can mask such failures.

We are going to insist that all types of services be capable of execution when the system is up which, means that all
types of resources must be available.  The figure below shows reliability contracts as well as proposed dimensions
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and dependencies. Observe that these represent client view contracts, which means that they specify the failures as
seen by a client. As an example, players have a mean-time-to-failure of seven years and a mean-time-to-repair of 2
hours. This does not mean that we believe that one particular player will have a MTTR of seven years, but that we
believe this must be true for the player service provided to its clients.

CallHandler
MTTR=2 min
MTTF = 140 days
Continuous Av.=  99.9999% / 5
min
Availability = 99.999%
Failure M.= omission
Server F.= initial_state
Operation S.= most_once
Rebinding P.= norebind
Num. Of F./Year=2
Data P.= no guarantees

ServiceExecutor
MTTR =20 sec
MTTF = 24 days
Continuous Av = 99.9999% / 5
min
Availability = 99.999%
Failure M.= omission
Server F.= initial_state
Operation S.= most_once
Rebinding P.= rebind
Num. Of F. /Year = 10
Data P.= invalid

Trader (required)
MTTR = 5 min
MTTF = 350 days
Continuous Av =  N/A
Availability =  99.999%
Failure M.= omission
Server F.= rolled_back
Operation S.= least_once
Rebinding P.= rebind
Num. Of F. /Year =  0.1
Data P.= valid

Database
MTTR = 20 min
MTTF = 4 years
Continuous Av = N/A
Availability = 99.999%
Failure M.= failure
Server F.= rolled_back
Operation S.= omission
Rebinding P.= rebind
Num. Of F. /Year = 0.2
Data P.= valid

Player
MTTR = 2 hour
MTTF = 22 years
Continuous Av = N/A
Availability =  99.999%
Failure M.= failure
Server F.= initial_state
Operation S.= least_once
Rebinding P.= rebind
Num. Of F. /Year = 0.1
Data P.= no gurantees

Recorder
MTTR =  2 hour
MTTF = 22 years
Continuous Av =  N/A
Availability = 99.999%
Failure M.= failure
Server F.= initial_state
Operation S.= least_once
Rebinding P.= rebind
Num. Of F. /Year =  0.1
Data P.= no guarantees

Figure 17 b Reliability Contracts

For the CallHandler to provide a highly available service it needs to rely on its components. We do not consider
partial functionality; rather we are interested in the PhoneServiceSystem can providing full functionality with high
reliability and availability. Thus, the requirements on CallHandler are propagated down to the resources and the
ServiceExecutor. We have selected a solution for which we assume that resources and traders can be implemented
reliably, thus relieving the ServiceExecutor can be relieved from some of the failure handling.

The Trader is required to recover in 5 minutes or less. It must be highly available since each execution of a service
depends on getting resources from the trader. The Trader has a persistent storage of offered resources and in case of
failure, it will be rolled back to the previous consistent state. Any references returned by the Trader before a Trader
failure are valid still after the recovery. The Trader must be extremely stable and only fail once a year. This
requirement is necessary so that the CallHandler may meet its reliability requirements.

Database resources must be highly available to ensure that the Service Executor can provide services. The mean
recovery time is expected to be around 20 minutes, which will impose a very long mean-time-to-failure. If the service
fails, clients are expected to rebind when the service has been restarted. The state of the database is also rolled back
to the most recent consistent state. The contract also states that the service can show any omission failure but should
never expose response failures.

The player and the recorder services represent resource pools that are used by the execution engines. To use a player
or recorder, the Service Executor queries the Trader to get one that is available. Player and recorder services are
expected to have a mean recovery time of up to two hours. Since the availability requirements are strict, these
services must be very reliable. If there is a hardware or software failure, the service masks the failure from the
Service Executor. However, if the service itself fails it can expose any type of failures.

Instances of ServiceExecutor have a short recovery time but doas has been mentioned previouslylose existing
service executions and their connections. We expect their continuous availability to be high for the average time
period of five minutes. This means that if a service execution takes five minutes or less, the probability of a service
execution failure should be small. After a failure, the Service Executor is restarted in a well-defined initial state. The
contract also specifies that restarted service executors have new references; therefore clients must rebind. Finally, we
note that data returned by the Service Executor would be invalidated if the Service Executor instance fails.

5.1.4 Discussion

We have presented one set of contracts that, if satisfied, makes the system highly available. We have not presented a
methodology by which such contracts can be identified. Neither have we shown how the requirements on one service
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can be used to identify necessary contracts for the components on which it relies. Rather we have illustrated that the
dimension we propose can be used to understand what the reliability characteristics of a service. These characteristics
will in turn guide the design, implementation, deployment, and management of systems using such services.

In order to characterize services defined with for example OMG IDL [CORBA], we will need more elaborate
languages. They need to deal with the characterization on a detailed level (operations and arguments) and language
concepts such as inheritance. In addition, they need to allow us to easily determine if one contract implies that
another is also satisfied. One such situation occurs when we want to use an existing component that provides quality-
of-service according to a well-defined contract. Clients are interested in whether the contract provided by the service
indeed satisfies their requirements. The QML language described in [FRKO] is such a language.

6. Concluding Remarks
To understand, specify, and implement systems with a predictable reliability, we need to have a vocabulary
setdimensions for expressing reliability contracts. The main goal of this paper is to present such a set of
dimensions for reliability contracts based on what we have learnt from the characteristics of various reliability
solutions and other related work. Our experience has been that proposing such a set of dimensions is quite
controversial and spawns a great deal of discussion. Questions are often raised as to whether the set of lists is too
narrow or too broad. Another question is whether the types of the dimensions are right. As we have mentioned in the
paper, some dimensions can be more accurately described with statistical distributions for which we have proposed
only mean and variance. Unfortunately, a distribution requires evidence as to what a realistic distribution would be.
Another question that has been brought up is whether it makes sense to specify measures such as mean-time-to-
failure, or availability since they can not be verified until the system is deployed.

We do not claim that the dimensions that are proposed represent a canonical set or that they have the most
appropriate types for all situations. But we do believeand our experiments indicate that they constitute a quite
complete and practical set of dimensions that are useful in the specification of distributed services. The example in
Section 5illustrates how the dimensions can be used in the design of a system. The dimensions can clearly also be
used more dynamically in mechanisms that negotiate quality-of-service agreements in runtime.

We have not seen any other proposals for any quality-of-service dimensions with the exception of performance
characterizations in specific domains such as multi-media. We hope that this proposal will inspire continued work on
reliability contracts and contracts for other quality-of-service dimensions. Such sets of dimensions are necessary for
the continuing work on quality-of-service aware distributed systems.
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