
Managing Collaborations

Mary E.S. Loomis
Software Technology Laboratory
HPL-97-117
September, 1997

collaboration,
program management,
project management

Managing software project teams can be quite a
challenge; many of us bear scars we've earned in the
process. Managing the particular kind of software
project that I'll call a "collaboration" involves further
complications. I want to take this opportunity to
discuss some of the guidelines I've gathered about
how to increase the probability that a collaborative
software project will be successful.

To be published in Software Development, Volume 6, Number 1, January 1998.
 Copyright Hewlett-Packard Company 1997

Internal Accession Date Only

MANAGING COLLABORATIONS
Mary E.S. Loomis, Ph.D.

Hewlett-Packard Company

Managing software project teams can be quite a challenge; many of us bear battle scars we’ve earned in the
process. Managing the particular kind of software project that I’ll call a “collaboration” involves further
complications. I want to take this opportunity to discuss some of the guidelines I’ve gathered about how to
increase the probability that a collaborative software project will be successful.

What is a collaboration?
I’ll use the term “collaboration” here to refer to a project in which

different parties are working together for some period to achieve a common goal.

Each phrase in this description is carefully chosen to focus our discussion on a particular kind of project.

• different parties -- The people involved in the project are from different organizations. Multiple
management chains are involved, sometimes in different companies. Multi-organizational projects are
especially challenging to manage, as each organization introduces its own motives, culture, and reward
system (not to mention personalities and egos) into the soup.

• are working together -- Real energy is expended in cooperative effort. Together the parties produce
some software result, ranging from a specification to a running system.

• for some period -- The joint effort has a finite life-span. The parties will eventually return to their
separate efforts. Often the parties continue to pursue their separate efforts in parallel with their work on
the collaboration. The life-span of a collaboration is typically relatively short, although depending on
the circumstances, that lifetime may be measured in units of years rather than weeks. Nonetheless, a
team member should not plan to make a career out of his or her participation in the collaboration.

• to achieve a common goal -- There are valid reasons that the parties are working together. There is
some identifiable rationale for forming the collaboration and for management and participants to be
willing to deal with its inherent complexities.

This topic – making collaborations successful – has been on my mind a lot over the last several years, and
especially recently. I hope that the topic has some general appeal; my observation is that collaborative
efforts are becoming increasingly common. Quite often, my success as a manager is largely determined by
the ability of people in my organization to collaborate with people in other organizations.

Characteristics of successful collaborations
Here are some of the characteristics of successful collaborations that I’ve observed. They’re listed in no
particular sequence; all seem to be important.

1. Leadership. A successful collaboration has a leader, who is respected by the team. The leader should
be either designated by some higher-ranking authority, or appointed by the team itself. Sometimes it
works to have two co-leaders, but they must trust each other and communicate well. It typically does
not work to have two leaders, unless they agree up-front on what to do to clearly resolve situations
where they disagree

2. Goal. A successful collaboration has a clear goal and well-specified expectations. All the team
members understand why they are working together, rather than having some other non-collaborative
project pursue their goal. The team members together frequently assess their progress toward the goal.
The leader keeps the goal highly visible, and uses the team members’ commitment to pursue that goal
to keep the effort on track. It is very easy for collaborative efforts to get bogged down in extra work, if
the goal is obscured.

3. Roles. In a successful collaboration, each team member has a well-defined role. If multiple team
members from the same organization have identical roles, then perhaps one of the team members is
superfluous. In the most successful collaborations, each team member trusts the others to successfully
accomplish their roles. Without this trust, team members may encroach on each others’ territories in

attempts to get the overall task done. Territorial encroachment can threaten a collaboration’s chances
of success.

4. Buy-in. A successful collaboration has buy-in from all appropriate levels in the participating
organizations. It is important to identify not only the stakeholders who have resources invested in the
effort, but also the managers who can make strategic decisions that could torpedo the effort. The team
should identify these people and communicate with them, asking them to state their endorsement of the
work, both within their organizations and to the team. One technique that works well to ensure
continued buy-in is to hold reviews of intermediate results, inviting the peers in the involved
organizations (especially within the same company) to attend the same review. For example, an
architectural review of an effort intended to provide an integration path for multiple software product
lines might include the division managers from both the affected divisions, rather than conducting a
separate review for each.

5. Schedule and interdependencies. A successful collaboration has a clearly visible schedule, with
reasonable delivery points and visible recognition of dependencies across organizations. There is a
process for handling changes and for tracking status. One sign of a software collaboration that is in
trouble is one where there is no schedule reflecting the combined efforts of all the participants. The
schedule is also a way to clarify the expected end of the collaboration. Successful collaborations have
finite lifetimes and do not drag on forever.

6. Resolution process. A successful collaboration has a well-defined process for surfacing and resolving
issues. It is important to decide on such a process, before the issues begin to arise. A well-defined issue
resolution process is especially important when a collaboration is being co-led by two (or more)
individuals. There must be some way to escalate and make progress. The process must fit the cultures
of the organizations. Some organizations are more open and less threatening than others.

7. Communications. A successful collaboration has a well-designed system of communications. It matters
not so much what tools are used, but rather that the team decides on how the communications will take
place. Typical tools include regular meetings (in person or via teleconferencing or video conferencing,
with notes distributed afterwards to the team members), shared workgroup databases, email and
voicemail distribution lists, shared sets of presentation materials, source code control systems, and
document version management systems. Agreeing on a common set of tools can make a huge
difference to the operation of a collaboration. Paying significant attention to regular communications
and being flexible are especially essential in collaborations that involve geographically dispersed
teams. Finding mutually acceptable meeting times, when teams are many time zones apart can be a
challenge. Either find an acceptable time and be consistent about using it, or move the time around so
as to equally inconvenience everybody. Make it clear that participation in communications meetings is
mandatory, and make them efficient.

8. Vocabulary and mindset. In a successful collaboration, the team members understand what other team
members are talking about. It is worthwhile to invest the time required to develop a common
terminology and vocabulary. Requirements and design models are important to nearly all software
development projects, and especially so for collaborative software development processes. These
models help clarify the semantics of the project area. They can be instrumental in helping the team
members understand each other. However, vocabulary is not enough. In a successful collaboration, the
parties understand each others’ frames of reference, personal motivations and business reasons for
being involved.

9. Credit. In a successful collaboration, there is plenty of credit given for each others’ efforts. Team
members should openly acknowledge each others’ contributions, especially across organization
boundaries. Managers of team members should give credit to the other organizations. After all,
together the collaborating organizations are expected to achieve the goal better than any of the
individual organizations could do alone. Extensive credit-giving works best when practiced by all the
participating organizations. Even if you find your organization on the short-end of the credit-receiving
process, I suggest you not scale back. Acknowledgement is noticed and can make a huge difference to
the quality of the working relationships within the team. Consider your management role as being to
support the team and to ensure the success of the overall effort, not to grab charter or to compete with
your collaborators.

10. Don’t force it. Don’t collaborate merely for the sake of collaborating. These situations are typically
doomed. The collaboration introduces more complexity than value, and the effort could have been
pursued better by one (maybe any one) of the organizations by itself.

What makes software collaborations different?
These characteristics are mostly people-related and probably are not unique to software collaborations.
What makes software collaborations different, anyway? There seem to be a few factors worth noting.

First, it can be difficult to measure the progress of any software project, and especially of a collaborative
software project. Managing inter-organization dependencies and risks is complicated substantially by the
uncertainties seemingly inherent in accurately predicting the schedules of software projects.

Perhaps the smoothest multi-organization project I have had the pleasure to be involved in recently was not
a software collaboration; it produced a software conference. I am the Conference Chair for ACM’s
OOPSLA’97 Conference, which draws more than 2500 participants and over 100 presenters from all over
the planet. It is a complicated conference and the efforts of more than 200 volunteers (from nearly as many
organizations) and about four paid professionals, on over a dozen sub-committees, must be managed to pull
this thing off. It’s about an eighteen-month intensive effort. Contrary to most software projects, it has been
really straightforward to assess progress. We’re not producing code, so I never hear “it’s 80% done” or
“I’ve just fixed the last bug.” This effort is also different from most software projects, in that the
conference is redeveloped every year. Each year the new conference chair and committee get to build on a
rich history of recorded experience.

Another difference inherent in software collaborations seems to be the extent of inter-dependencies. Much
of software development tends to be side-effect rich. Unmanaged inter-dependencies have a way of
showing up later as bugs. Management attention, careful modularization and encapsulation can help
enormously.

The software business also lacks the kinds of blueprint languages that are typically used to ensure valid
communications in other kinds of collaborations, e.g., in designing and implementing buildings, computing
hardware, airplanes, automobiles, or toasters. No matter how conscientious we are about specifying
software interfaces or functionality or expected quality of service (performance, reliability, security and
so on), we’re hardly ever quite precise enough. Also, unlike in these other industries, we in the software
business don’t have large stores of tested, standardized parts to draw from in constructing systems. Without
standardization, communication of the details becomes even more essential.

Example collaborations
Let’s look at the characteristics of several example software collaborations, some more successful than the
others.

• Next-generation product architecture. Goal: to specify and prototype an architecture to enable multiple
successful software product lines to converge and be extensible into the future. Scope: within one
company, with three major divisions involved. Timeframe: 6 months. This collaboration has all the
characteristics of successful projects listed above, and is judged a success by the team and by their
management, all the way up to their point of convergence in the organization chart.

• Another next-generation product architecture. Goal: same as above, but for different software products.
Scope: within one division, with three geographically distant operations involved. This effort failed
and was eventually abandoned. Several characteristics of successful collaborations were missing.
While there was a clear leader and a specified goal, the buy-in of affected parts of the organization was
sorely lacking. Top-down endorsement of the effort was visible, but the team’s results had no impact
on the work or plans of the very independent (but to-be-affected) operations. The lower level managers
did not buy in to making changes, but rather continued to focus individually on being successful with
what they had (which, by the way, was also the way their performance was measured).

• Modeling language standardization. Goal: to reach convergence on a single specification for a
language for object modeling. Scope: an industry consortium (the Object Management Group) of

companies with vested interest in object technology, either as vendors or users. Reaching convergence
required achieving buy-in from about a dozen tools vendors and methodologists, endorsement from a
task force of representatives from dozens of vendor and user companies, and votes from a committee
of representatives from even more companies. The success of this effort falls into the bucket I label
“Minor Miracle.” As co-chair (with Jim Odell) of the OMG’s Object Analysis & Design Task Force, I
witnessed the importance of each of the characteristics listed above.

• Information system research pilot. Goal: to develop technologies for integration of applications in a
particular domain (I’d rather not reveal which) and to pilot the resulting system with real users. Scope:
within one company, with two major divisions involved, and with multiple development groups, then
deployment at a large customer. While this effort eventually produced a small-scale deployable
system, it definitely did not achieve its goal. The people involved learned a lot (and in that sense it was
a successful experience), but it was not the success envisioned at the outset. Let’s see why.
• There was no clear leader. Sometimes the marketing group was in the lead (and making

commitments) and sometimes the development group was in the lead (also making commitments).
• The goal was really not very clear; it kept changing as the definition of the desired results evolved.
• Although roles were stated, they weren’t very clear and some team members didn’t trust others to

successfully execute their responsibilities. For example, one application team needed a fix to the
infrastructure, but didn’t trust the infrastructure team to be responsive, so made the fix itself
without communicating with the infrastructure team. Then the application team frequently over
the next months complained that it was overworked, relative to the infrastructure team, which
apparently had less to do!

• Buy-in was insufficient. Many levels of managers were involved. Nearly all peers communicated
openly and well, except at the second-level manager level. Mixed signals were getting to the team
members, and priorities became confused. Then the torpedo arrived: a high-level manager of one
of the organizations dramatically changed that division’s business strategy, making the success of
the collaboration essentially irrelevant to the division.

• Believe it or not, this effort went on for a very long time with no real schedule. There was a
schedule, but it bore little resemblance to reality. Some of the first-level managers were quite
frightened by schedules, couldn’t seem to commit to realistic dates, and didn’t report slippage
when it did occur. The schedule had more than one instance of that hoped-for event, “And then a
miracle occurs… ”

• There was a defined resolution process, but it lacked an effective way to identify issues. Team
members were expected to surface issues by speaking up in rather large monthly status meetings.
More frequent, one-on-one communication would have been much more effective for this group of
people, with anonymous display of the issues for discussion at later meetings.

• While most of the team members and their management chains were quite generous in giving each
other credit, there was one manager who was notably less generous. The result was quite a bit of
animosity directed toward that manager. This did not help morale at all.

Need I say more?

The challenge of the obvious…
Actually, the characteristics of successful projects that I listed above appear to be fairly obvious. We
probably all understand their essential contributions to team success. Perhaps I need not have repeated them
here, but I hope there’s value in capturing them in one place. Many of the principles of management are
pretty obvious, yet we sometimes have trouble implementing them in the real world of our daily jobs.
Perhaps there are other guidelines you’d like to add to the list. I’d really welcome hearing your ideas.
Maybe we could collaborate!

Author’s bio
Mary is Director of the Software Technology Laboratory of Hewlett-Packard Laboratories, at Palo Alto
CA. She has many years of experience in both inter- and intra-company collaborations. Her primary
technical interests are in object modeling, software development processes, database management, and

workflow. She earned her Ph.D. in Computer Science from U.C.L.A. in 1975. When not working or
writing, she likes to run, cycle, and ski, and sometimes even manages to keep up with her daughters.

