
Extensions to Permutation Warping
for Parallel Volume Rendering

Craig M. Wittenbrink
Computer Systems Laboratory
HPL-97-116 (R.1)
April, 1998

SIMD, MIMD,
MasPar,
volume visualization,
parallel algorithms

Biomedical volume visualization requires high quality
and high performance, but the existing high
performance solutions such as the Shear Warp
algorithm, 3D texture mapping, and special purpose
hardware have problems. Permutation warping
achieves high fidelity for biomedical datasets of
regular rectilinear volumes, using a one-to-one
communication scheme for optimal O(1)
communication on massively parallel computers.
Extensions are presented including data dependent
optimizations using octrees, arbitrary view angles
flexibility, and multiple instruction stream multiple
data stream (MIMD) implementation. A MasPar MP-
2, single instruction stream multiple data stream
(SIMD) (16,384 processor), implementation achieves 14
frames/second, using trilinear reconstruction on 1283

volumes for 400% runtime improvement over our
previous result. A Proteus MIMD (32 processor)
implementation achieves 1 frame/second on the same
data. Additionally the PermWeb software architecture
is presented, that has shown as a proof of concept
means to provide wide shared access to a powerful
centralized rendered. All of these improvements make
permutation warping an effective solution for
biomedical volume visualization.

 Copyright Hewlett-Packard Company 1998

Internal Accession Date Only

Extensions to Permutation Warping for Parallel Volume

Rendering

Craig M. Wittenbrink

Hewlett-Packard Laboratories

Palo Alto, CA

April 8, 1998

Abstract

Biomedical volume visualization requires high quality and high performance, but
the existing high performance solutions such as the Shear Warp algorithm, 3D texture
mapping, and special purpose hardware have problems. Permutation warping achieves
high �delity for biomedical datasets of regular rectilinear volumes, using a one-to-one
communication scheme for optimal O(1) communication on massively parallel comput-
ers. Extensions are presented including data dependent optimizations using octrees,
arbitrary view angle exibility, and multiple instruction stream multiple data stream
(MIMD) implementation. A MasPar MP-2, single instruction stream multiple data
stream (SIMD) (16,384 processor), implementation achieves 14 frames/second, using
trilinear reconstruction on 1283 volumes for 400% runtime improvement over our pre-
vious result. A Proteus MIMD (32 processor) implementation achieves 1 frame/second
on the same data. Additionally the PermWeb software architecture is presented, that
has been shown as a proof of concept means to provide wide shared access to a powerful
centralized renderer. All of these improvements make permutation warping an e�ective
solution for biomedial volume visualization.

Keywords: SIMD, MIMD, MasPar, volume visualization, parallel algorithms.

1 Introduction

Biomedical rendering demands the highest image quality, and good interactive per-
formance. There are many classes of algorithms and implementations for volume vi-
sualization of regular rectilinear datasets. Such datasets include magnetic resonance
imaging (MRI), computed tomography (CT), positron emission tomography (PET),
and ultrasound. Such data is commonly used for clinical diagnosis and preopera-
tive planning. In the last ten years, a technique for the direct visualization of these

1

datasets{Volume Rendering [2]{has been explored in the computer science and medical
communities. Initially developed for the visualization of natural phenomena such as
clouds and planetary rings, the algorithms were quickly adapted to process medical
volumes.

In medical diagnosis and planning, there has been resistance to using three-dimensional
(3D) visualizations. There are questions about the quality of the renderings and the
lack of dynamic range on cathode ray tube (CRT) displays. Researchers have down-
played the quality issues and continue to develop new ways in which to visualize volume
data interactively. Recently, high-quality repeatable renderings have been de�ned by
specifying a standard pipeline, for example, in the proposed OpenGL extensions for
volume rendering [8].

Many avenues of research have proven to be useful to achieve high performance
volume visualization. Examples include software acceleration techniques, specialized
graphics and volume hardware, and 3D texture mapping architectures. Each of these
solutions provides quality performance trade-o�s in the rendering, as they are approx-
imations to ray tracing.

Permutation warping is an algorithm for parallel processors that renders e�ciently
an exact ray tracing algorithm, is scalable to more processors and large volumes, and
has simple data parallel or SIMD implementation. I have been researching extensions
to permutation warping, including data dependent optimizations for up to a 5 times
improvement, view angle exibility{now with no restrictions for orthogonal views, and
MIMD implementation{using large granularity methods. High quality requires higher
performance, and to achieve this takes state of the art computers. State of the art
computers are costly, but this is not an impediment to wide use of the permutation
warping technique. Using centralized servers and distributed access can provide sharing
of these techniques and a software architecture, PermWeb, has been designed and
implemented for this purpose.

Section 2 describes the quality issues in the in the volume visualization pipeline.
Section 3 reviews permutation warping and describes new developments, including data
dependent optimizations using octrees, improved view angle exibility with new ma-
trix decompositions, and MIMD implementation. Section 4, describes the distributed
architecture that provides easier access to special purpose renderers thus making them
more available.

2 High Quality Rendering

When considered as a data processing pipeline, volume rendering [2] takes any data
value input and passes it through the following stages: gradient, classi�cation, shad-
ing, resampling, and compositing. With each stage, there are many algorithm design
decisions. Also, user control of each stage may be useful when exploring the features
of any given dataset. The following describes each stage, and briey mentions how the
existing work performs each stage citing any shortcomings.

2

Gradient The gradient calculation is the approximation of the partial derivative
with respect to all three directions,rf(x; y; z) = @f

@x
@f
@y

@f
@z
. Tradeo�s in various gradient

calculations have been examined [1]. Gradient calculations are done as an o�ine process
by the Shear Warp algorithm [6], Vizard [5], and 3D texture mapping [17]. EM-Cube
[13] uses a skewed neighborhood for a 12-point gradient �lter. The gradient is used
both to classify the type of data, and to compute computer graphics shading when
rendering the data. An accurate gradient operator requries a lot of computation, while
simpler approximations are sensitive to noise because di�erentiation ampli�es noise.

Classi�cation A mapping from data values to material values is required in order to
determine the proper light interaction. For example, bone has a di�erent reectivity,
opacity, and color than skin. Classi�cation is done as an o�ine process by Shear
Warp, Vizard, and 3D texture mapping. Shear warp provides a partly accelerated
classi�cation using a min max octree, and EM-Cube does classi�cation using a lookup
table opacity map.

Shading Shading is the calculation of emitted intensity using the gradient orien-
tation and classi�ed material in the volume [7, 11]. Shading is done as a preprocess
by Shear Warp, Vizard, and 3D texture mapping. Shear warp provides lookup table
shading with octrees, but has degraded performance due to the nonscanline traversal of
octrees. EM-Cube uses lookup table shading, and 3D texture mapping can do shading
with a lookup table approach, but it requires multiple passes to reload the textures.
Shading is complex, and only recently have quality artifacts from Levoy's technique of
separate interpolation of color and opacity been discovered, as shown in Figure 1 [10].

Resampling Resampling is required to calculate the samples of opacity and inten-
sity along the view rays. Because any particular view ray will not in general line up
with the original dataset grid points, a reconstruction of the discrete dataset to a con-
tinuous dataset and a discretization to points along view rays are performed. Shear
warping [6] resamples with a bilinear interpolation to shear the volume and then a
warp of the skewed projection image using a bilinear interpolation. The EM-Cube ar-
chitecture [13] performs sheared trilinear resampling for which results vary with view
angle, and a warp of the skewed projection image similar to Shear Warp. Vizard uses
a table lookup, and a multiply/addition for an approximate trilinear interpolation. 3D
texture mapping uses trilinear interpolation, though does not correctly interpolate for
perspective projection, because using a set of parallel planes to resample through the
volume creates a di�erent ray step size for di�erent pixels. This varying step size in-
correctly accumulates opacities that are computed for a �xed step size. Ray tracing
typically uses a trilinear reconstruction �lter [7].

Figure 2 shows a comparison of multipass and direct resampling, where the trilinear
and nearest neighbor or zero order hold both perform better than a multipass linear
resampling. A cube and a sphere are resampled, and the error between the sample
and their analytically de�ned values is summed along view rays. Black is mapped to
the maximum error, as shown in the color map at the bottom of the �gure. Multipass

3

resampling, bottom row, has greater error than trilinear interpolation, top row, for
both test shapes. Figure 3 shows the di�erence between a zero order hold and trilinear
reconstruction for rendering a bifurcation of an MRI angiogram.

Compositing Compositing combines the view samples along each view ray by cal-
culating the over operator, given below. The opacity � de�nes the material presence at
each point along the ray. Volume rendering takes into account the partial transparency
of material along a view ray. The equations given use associated colors ~C = �C [10],
which can be used for shading when classifying before interpolation.

~Cnew = (1� �front) ~Cback + ~Cfront

�new = (1� �front)�back + �front:
(1)

3 Permutation Warping

An algorithm that addresses the shortcomings, of slow or required preprocessing and
inaccurate resampling is permutation warping [22]. A permutation is a one-to-one
assignment of processor to processor, which for massive parallelism can be considered
as a processor per voxel. I have shown that for spatial assignment in resampling
for rendering, such a permutation can be computed, and therefore rendering takes 1
communication step for any equiareal view transform [22]. This holds for regular grids
such as biomedical datasets from MRI, CT, and PET. Such an assignment is used
to calculate a warping or resampling of the input volume data to data that lie upon
view rays. In this section I briey review the basic permutation warping algorithm for
volumetric visualization, and then describe extensions for data dependent acceleration,
view angle exibility, and MIMD implementation.

Permutation warping calculates a 2D output image, by processing a 3D volume.
The three steps are: (1) the preprocessing stage (PPS), (2) the volume warping stage
(VWS), and (3) the compositing stage (CS). The inputs to the algorithm are a scalar
valued volume, gradient, classi�cation, and shading selections. The PPS calculates
gradients, opacities, and intensities. The VWS transforms the intensities and the
opacities to the 3D screen space by resampling. The CS evaluates the compositing
to the 2D output image. Figure 4 shows pseudo-code for the permutation warping
algorithm for no virtualization or for data parallel implementation.

Figure 5 illustrates the transforms calculated by processors. The object space and
screen space are separated into the object space on the left and the screen space on the
right. Yellow processors on the left are communicating with yellow processors on the
right to compute the resampled 3D screen space. On the left and right the 3D screen
space volume is red, and the 3D object space volume is black. Blue processors, for this
slight rotation, do not perform any communication, but compute and store the result
locally. Red processors are clipped outside of the 3D screen space, so do not interpolate
at all. A processor does permutation warping by (See Figure 4): 2.1) Calculating
processor assignments; 2.2) Calculating the reconstruction point; 2.3) Resampling after
reading the values of the neighboring processors; And, 2.4) Sending resampled values

4

to screen processors. In Figure 4, Step 3, a parallel compositing combines resampled
intensities and opacities. Binary tree combining computes compositing as shown in our
work [19, 22] and the related work by Ma et al. [9].

Our prior algorithmic studies of permutation warping have shown that it is asymp-
totically time and space optimal for resampling on the EREW PRAM (exclusive read
exclusive write parallel random access machine) [19, 22, 23]. But, several enhancements
are possible such as load balancing and data dependent acceleration.

Quality Comparison Gradient calculations are performed on the original sample
points, and near-neighbor communication is used for high e�ciency. Because a general
purpose parallel processor is used, gradient calculations do not need to be part of
an o�ine process as in Shear Warp, Vizard, and 3D texture mapping. A general
purpose parallel processor has su�cient performance to compute gradients as needed.
The gradient is not skewed as required for EM-Cube, because of the object space
partitioning. Classi�cation and shading can be done using a general function or through
a lookup table.

And to save on compute time, permutation warping can also use preclassi�ed/shaded
values. Resampling is done in a one-pass resampling, using a local area support recon-
struction �lter. A one pass �lter avoids multiple aliasing, but a multipass �lter both
distorts and aliases with each pass as shown in Figure 2. This one-pass resampling
is an improvement over the two-pass resamplings used by Shear Warp and EM-Cube.
The resampling is also an accurate reconstruction, and not an approximation as used
by Vizard. 3D texture mapping does accurate trilinear resampling, but su�ers from
the shortcomings discussed in Section 2 where gradient, classi�cation, and shading are
done as an o�ine preprocess. If shading, classi�cation, and gradients are assumed to
be computed o�ine, then there are not su�cient computational resources to compute
them interactively.

Related Parallel Work There are a large number of volume rendering approaches
that have been tried, and because of the many variants, there is a large di�erence
between algorithms. Accurate direct comparison of approaches is di�cult, so I discuss
some of the main techniques, and also discuss more closely related work done on the
MasPar. Parallel volume rendering algorithms may be grouped into four categories
as determined by their viewing transforms: backwards, multipass forwards, forwards
splatting, and forwards wavefront. Ma et al. [9], Neumann [12], Goel and Mukherjee
(G�) [3], and Hsu (Hz) [4] have developed backwards (ray tracing) volume rendering
algorithms. 3D texture mapping using Silicon Graphics' architectures [17] is also a
backwards view transformation approach. Lacroute [6], Osborne et al. [13], and Vezina
et al. (Vf, Vz) [18] have developed multipass forwards algorithms. Neumann [12] has
developed a forwards splatting algorithm, and Schr�oder and Stoll [15] have developed
a forwards wavefront algorithm. The Lacroute and Levoy Shear Warp algorithm [6]
reduces the amount of work by an order of magnitude over octree encoding [7]. Culling
of the volume, compressed data structures, and adaptive termination speed up the
algorithm. Parallel versions [6] use screen space parallelization. But, their studies

5

show that the possible speedup to higher numbers of processors is limited because of
this screen space decomposition. A speedup of 12.5 is achieved on 32 processors over
one processor, where 32 would be linear [6]. Figure 7 shows that permutation warping
has better scaling properties. SIMD implementations [23, 22] achieve linear scalability
on a 1K processor MP-1 to a 16K processor MP-1, and it is also possible to use similar
culling and compression to further improve e�ciencies. In direct comparison to other
MasPar implementations of volume rendering [3, 4, 18], permutation warping [23, 22]
has also been proven to be more scalable, Figure 7. Permutation warping has also
demonstrated the highest performance achieved on the MasPar. Figure 6 shows that
permutation warping on a 16,384 processor MasPar MP-1 achieves 10.1 Mvoxels/second
performance versus Hsu's 8.8 Mvoxels/second (Hz). Further improvements have been
achieved using octree encoding which is discussed in Section 3.1.

3.1 Data Dependent Optimizations

As presented in [19, 22, 23], permutation warping does not use data dependent accel-
eration methods. This means that the worst case performance is the same as the best
case performance. All datasets will be rendered with the same runtime, irrespective
of the density of the volume, classi�cation function, or distribution of nonzero and
heterogeneous voxels. The methods used to accelerate volume rendering using data
dependencies include: adaptive ray termination [7], skipping of empty regions, leaping
through homogeneous regions, and load balancing the varying workload.

We have implemented octree volume subdivision within the permutation warping
algorithm [20]. The octree encoding is computed for each subvolume of the object
space subdivision. The octree encodings investigated include the use of thresholding
to cull regions of the volume. To demonstrate the encoding, consider the example in
Figure 8. Processors are shown in a 2D layout. Regions are quadtree-encoded at each
processor, PE0 to PE3. PE0 has a heterogeneous volume, resulting in a tree of depth
two, with 13 nodes. PE1 and PE2 have empty space, and their quadtrees have a single
null node. PE3 has a homogeneous region, and its quadtree is a single homogeneous
node.

Octrees can be used to further compress the data by using thresholding and by
considering all voxels below a given threshold to be e�ectively zero. This provides
some immunity against noise in the creation of empty regions in the octrees, but does
alter the output visualization. Considering Figure 8, the values in PE1 and PE2 may
have been non-zero, but were below threshold when the octrees were created.

Using thresholding and the additional precalculated static load balancing of the
data, we achieved a 260% to 404% improvement in runtime over the baseline permu-
tation warping algorithm as presented in [22]. Table 1 shows the run times with the
publicly available brain data set at two resolutions, 1283 and 2563. The times shown
are captured using the cycle count facility in the MasPar MP-2 instruction set, and
calculated as the average of multiple runs, taken at di�erent view angles. The runtime
for di�erent view angles is the same. The MasPar MP-2 is a single instruction stream
multiple data stream (SIMD) machine with 1K to 16K processors that have mesh and

6

general router interconnections. Experiments presented were run on 16,384 and 4096
processor machines. The speedups were calculated against the baseline execution times
of .282 and 2.199 seconds, respectively [20]. The majority of the processing takes place
in the rotation or resampling phase of the algorithm, as shown in column three of Table
1. Figure 10 shows the performance of our new octree encoded volume rendering algo-
rithm Wittenbrink and Kim zero-order hold octree (WzO) and Wittenbrink and Kim
trilinear octree (WtO). Performance is given for a 16,384 processor MP-2, rendering
a 2563 MRI brain dataset. The zero-order hold octree version (WzO) achieves 39.3
Mvoxels/second, the trilinear algorithm (WtO) achieves 36.8 Mvoxels/second, which
is 2 times the performance of our previously published permutation warping algorithm
(Wz) which achieves 14.2 Mvoxels/second (zero-order hold). Results are also shown
for the 4K MP-2, where we render a 1283 dataset for closer comparison, and we showed
results superior to Hsu [4] (Hz) who also provides MP-2 results.

octree vol. size rotation time compositing time avg. total time speedup
yes 1283 65 13 78 3.60
yes 2563 368 68 436 5.04
no 1283 269 13 282 -
no 2563 2131 68 2199 -

Table 1: Data dependent run times trilinear reconstruction (milliseconds) on 16,384 pro-
cessor MasPar MP-2, octree threshold 50, and speedup of octree algorithm over nonoctree
permutation warping

Using thresholding to eliminate nearly zero valued voxels, and creating an octree
creates approximations that degrade the image quality. Figure 11 shows images ren-
dered with di�erent thresholds, 0, 1, 5, 10, 50 that are considered to be empty voxel
space. Table 3.1 shows the RMS errors, run times, and percentage of the run time over
the baseline for the octree enhancements. Higher thresholds results in higher errors,
but there is also a corresponding improvement in runtime. There are noticeable di�er-
ences for very high thresholds, and the best quality is available by using no threshold.
The performance improvements of 260% to 404%, Table 1 are impressive enough to
warrant the tradeo� in image quality, especially when considered in the context of an
interactive system. Even more improvements in speed and quality are possible by tun-
ing the algorithm to use adaptive coding, compression, and adaptive re�nement where
the highest quality is selected when the user stops changing the viewpoint. With data
dependent optimizations the scalability for greater numbers of processors is no longer
linear, but is nearly linear. A 16,384 processor MP-2 achieves a speedup of 3.6 over
a 4096 processor MP-2 when using the octree enhancements discussed. 4.0 would be
linear, and the baseline permutation warp algorithm achieves a speedup of 3.9.

7

threshold 0 1 5 10 50
RMS error 0.868 0.922 2.741 2.968 7.218

run time (milliseconds) 1,867 1,751 804 710 456
percentage of baseline 83% 78% 36% 32% 20%

Table 2: Quality performance tradeo�s, Runtimes (milliseconds) RMS error (of images as
shown in Fig. 11, and percentage of the baseline permutation warping algorithm on a 16K
processor MP-2.

3.2 View Angle Flexibility

In interactive volume visualization, one of the key advantages comes from changing the
viewpoint to help explore the 3D nature of the data. What this requires is specifying
arbitrary viewpoints. Many volume visualization algorithms have achieved tremendous
speedups by limiting the possible viewpoints, as was done by Schr�oder and Stoll [15].
Restricting the viewpoints limits the types of communication that can occur. This
guarantees high performance for certain view angles and/or architectures.

In permutation warping, there is no angular restriction nor performance penalty for
views. The view transform, T , can be any equiareal transformation or any perspective
transformation, if a two-pass warp is allowed. In 2D, an equiareal transformation is
simply a two-by-two matrix that has a determinant equal to 1. Any rotation, transla-
tion, or shear of the volume under view may be performed.

When specifying this matrix as a rotation instead of as an arbitrary matrix, some
numerical instabilities may arise. In earlier work, we got around this by limiting the
rotation to a certain range. We essentially allowed rotation angles of 0 to 85 degrees.
For example, to rotate by an angle �, you specify the matrix:

T =

�
�
�
�
�

cos � � sin �
sin � cos �

�
�
�
�
�

(2)

When the permutation decomposition is calculated, several matrix values are tan �=2.

T =

�
�
�
�
�

a11 a12
a21 a22

�
�
�
�
�
=

�
�
�
�
�

1 � tan �=2
0 1

�
�
�
�
�

�
�
�
�
�

1 0
sin � 1

�
�
�
�
�

�
�
�
�
�

1 � tan �=2
0 1

�
�
�
�
�

(3)

You can avoid numerical problems in the tan function, by changing the angle in-
terval. Figure 12 shows the separation of the rotation angle domain into two di�erent
tangent functions. The solid line shows tan �=2, and this function goes towards positive
and negative in�nity at +� �;+� 3�; :::, etc. By incorporating a 180-degree rotation
and back rotation into the permutation decomposition, it is possible to always stay
within a stable tangent evaluation. So, if the permutation decomposition were to be
unstable, p0 = Mp, then simply use

p0 = MR

�
�
�
�
�

�1 0
0 �1

�
�
�
�
�
p (4)

8

where MR is matrix M with � substituted by � � � or a 180 degree rotation.
Figure 12 shows the interval in which the angle theta blows up. The function tan(��

�) is stable in this region. Figure 12 shows the translated interval as a dashed line, and
illustrates that the two functions have outputs between +�1. This is directly extended
to 3D rotations, doing a conditional test for each angle of rotation to determine which
interval to compute.

This new angle of rotation speci�cation has been veri�ed in both 2D and 3D per-
mutation warping examples. Figure 13 shows the implementation, assuming � lies in
the 0 to 2� interval:

The change in the view angle speci�cation provides view angle exibility with no
numerical dangers, constant communication complexity, and minimal performance im-
pact to check the interval of angle. This is an important clari�cation for the permu-
tation warping decomposition rotation angle speci�cation. Permutation warping does
not require transposing of the data or storing of multiple volumes to accommodate dif-
ferent viewpoints e�ciently. With permutation warping, only one copy of the volume
is stored, and the e�ciency to render is the same no matter the visualization angle.
Shear warping requires three copies of the volume or transposing of the data prior
to resampling for scanline e�ciency. This was the goal of the research: greater view
exibility with no quality or performance penalties.

3.3 MIMD implementation

As presented in [19, 22, 23], permutation warping is a general parallel algorithm, but
has been evaluated only on single instruction stream multiple data stream (SIMD) ma-
chines. It is unclear whether permutation warping would be as e�cient for other types
of parallel architectures such as MIMD. SIMD and multiple instruction stream mul-
tiple data stream (MIMD) provide somewhat di�erent challenges for implementation.
In order to determine the e�ect upon the permutation warping approach for volume
visualization, an experiment was performed to implement permutation warping on a
general purpose distributed memory MIMD computer [19]. This section discusses the
performance attained on the Proteus Supercomputer [16] and how to maintain full
parallelism on scalable MIMD machines.

In data parallel machines such as the MasPar, the preferred solution is a one-step
warping phase to align the volume to the view direction [22], but in high granularity
machines such as Proteus [16], small messages create network congestion. Instead, an
algorithm was developed that takes advantage of the high data to processor ratio and
sends large messages.

To send large messages, processing occurs at a large granularity level. Figure 16
shows the source volume considered as a collection of subvolumes assigned to processors.
The subvolumes are rendered in parallel to create subframes. And the subframes are
composited to create a �nal image. Also, for MIMD implementation, it is essential
to exploit the separate instruction streams. Speci�cally this algorithm has the same
three steps as given in Figure 4 (PPS, VWS, and CS), but now the VWS and CS are
intermixed. Figure 15 shows the processors warp, VWS, and composite, CS (partial).

9

The processors use the local data to create subframes, as given in Step 2.1. In Step
2.2, each processor then sends sections of its subframe to the output screen space
subframe locations that are aligned. Aligned subframes are then combined through
further compositing in Step 3. Subframes are composited in parallel using a new
parallel product that doubles screen area as screen depths are combined. This approach
provides full parallelism, and the end result is completely distributed across processors.

Figure 16 shows the MIMD algorithm with resampling and product calculations.
Voxels are viewed from an arbitrary viewpoint (View) in the lower left. For each pixel,
resampling occurs along the rays, then the samples are combined by compositing.
Figure 16 also shows the parallel data ow and partitioning from Steps 1 through 3 for
16 processors or clusters. Each processor preprocesses its locally assigned subvolume
in Step 1. The subvolume is assigned through a static object space partitioning of the
volume. Figure 16 shows how subframes are created locally for new view directions.
The subframe is sent to the aligned screen space, Step 2.2. Note that the subframe
may be sent to several screen space processors. Four processors in the view direction
result in two parallel product composites to calculate the �nal image.

Figure 16 gives a simpli�ed view of the algorithm, but reveals, nevertheless, the
full parallelism and data layout(s). Compositing is more e�cient in the aligned di-
mensions of the machine, the screen space. Due to the physical interconnections used
in MIMD machines, preferred communication patterns exist, such as in a mesh where
communication along rows or columns is very e�cient. To communicate subframes
to their aligned positions, multiple rounds of communication are used. Permutation
warping for four processors requires three rounds; in the �rst round, processor 0 talks
to 1, 1 to 2, 2 to 3, and 3 to 0, etc. Each processor calculates a subframe, and then
communicates to P � 1 processors. The actual data sent in each phase changes with
the viewing transform.

Eight processors require seven rounds of communication. This provides a constant
number of communication periods with no conicts. Each processor overlaps at most
18 screen space subvolumes because of the length of the diagonal of a subvolume in Step
2.2. Then, at most 18 messages are sent. The length of a diagonal through a subvolume
de�nes the extent through which a subvolume may interesect a rigidly translated and
rotated 3D screen space subvolume assignment. If a shared memory machine is used,
processors write their results into the appropriate output bu�ers without conict and
with less congestion, because they will get cache ownership of the lines with which they
are working. The aligned screen space is similar to the object space assignment. The
object space coordinates of the screen space change with the view transform. Each
processor sends the aligned samples they create to the processors that need them in
Step 2.2.

The permutation sends, Step 2.2, can be overlapped with calculation, Steps 2.1 and
3, to hide the communication costs. Figure 16 also shows parallel compositing, Step
3. In any view direction there are remaining composites along each view ray, because
the object space is carved up uniformly. In order to avoid idling of processors, every
processor remains busy through this stage by binary tree compositing the frames. In

10

Volume Size 32 PE's Tril 32 PE's Zoh 1 PE tril 1 PE Zoh
323 161 150 241 97
643 291 203 1760 554
1283 1046 498 13846 3870
2563 4316 1411 95064 24523

Table 3: Proteus run times, all output images are 256x256, milliseconds

previous ray tracing techniques, processors are idled when there are more processors
than the number of rays. Our parallel product maintains linear speedup until the
compositing �nally dominates, an improvement over image space partitioning and ray
tracing methods.

The key aspects of the MIMD algorithm are: only local source data is used{no con-
current reads are necessary; the communication requirements are the same, irrespective
of the viewpoint; the communication has no conicts; the algorithm scales input size
and number of processors; and, the �lter quality is as high as desired.

Experiments were performed on the Proteus Computer to evaluate the MIMD ver-
sion of the permutation warp algorithm. Figure 14 shows Proteus, a scalable MIMD
parallel computer [16] with 32 to 1024 processors. A prototype group, or eight clus-
ters, with 32 Intel i860's has been implemented. Figure 14 shows the physical layout
of 32 processors with clusters labelled C0 to C7. The interconnection network is a bit-
serial crossbar with single link transfer rates of 250 Mbits/second. The total memory
capacity of the 32 processor system is 64 Megabytes (eight Mbytes per cluster).)

Performance experiments used two di�erent reconstruction �lters, a �rst-order hold
(trilinear interpolation) and a zero-order hold (nearest neighbor). Refer to Figure 3
for examples and our work [22] that compares zero-order holds, �rst-order holds, and
multipass shearing. Images created were eight bits/pixel. All measurements were taken
using multiple runs of the code, and averaging their execution time. Table 3 shows the
Proteus volume rendering algorithm's runtime versus volume size. The output image
is 2562 for all volume sizes. Speedup is given in Table 4. Proteus provides a speedup of
22 for 32 processors over a single processor using trilinear resampling. More speedup
is achieved for larger volume sizes because of increased cache and communication e�-
ciencies, that hide �xed startup latencies.

The performance of the Proteus implementation is two frames/second for 1283 vol-
umes and 0.7 frames/second for 2563 volumes. Volumes up to 512x512x128 byte voxels
were processed. The voxel/second rate is 12 Mvoxels/second for zoh reconstruction
�lter and 4 Mvoxels/second for a trilinear reconstruction. Key implementation fea-
tures were the use of scanline processing in both resampling and compositing for cache
e�ciency, and optimized memory to memory framebu�er transfer for host interaction.
The implementation also showed that large granularity messages were required, and
that the parallelization strategy worked for MIMD architectures.

11

Volume Size Trilinear Zoh
643 6.05 2.73
1283 13.24 7.80
2563 22.03 17.38

Table 4: Proteus speedup for 32 processors

4 PermWeb Software Architecture

Because high �delity with large data at interactive rates has not been achieved by
any hardware, the initial solutions will use high performance hardware. Such high
performance hardware is of high cost, but this does not mean it cannot be widely
available. The most cost e�ective solution is to have a powerful centralized compute
resource that solves the problem well, and is remotely shareable. In other words,
supporting biomedical visualization with parallel rendering requires wide access. One
means for easily accessing a parallel rendering system is through the use of World Wide
Web (WWW) front-ends.

Figure 17 shows an overview of the software architecture of our PermWeb system
[21] URL http://www.cse.ucsc.edu/research/slvg/mp-render.html. The system design
makes use of as many o�-the-shelf WWW components as possible, and was imple-
mented as a proof of concept for remote parallel rendering access. This system has
been interfaced to the MasPar, and also to workstation servers. The software architec-
ture uses processes shown as ellipses, data �les shown as cylinders, and custom source
code as rectangles. The four main processes are the Web Server, Render Request,
Render Server, and Child Render Work. Only the last three are built from custom
software, and many components of the programs are built from freeware.

The custom software developed is also indicated by the source �les shown in Figure
17. The rectangular source �les include: render.html, tcpclient.c, tcpserv.c, myppm-
togif.c, and render.c. The dashed lines show the correlation of source �les to programs.
The front-end, because of the use of standard WWW browsers, is coded in hypertext
markup language (HTML). This language speci�es a hypertext document, and has
embedded images. Figure 18 shows the appearance of a front-end.

The tcpclient.c program is invoked as a common gateway interface (CGI) program,
so it may run on a di�erent platform than the web server that provides access to the
render.html forms interface. The processes Render Server and Child Render Work are
from the same program that runs continually, waiting for requests to create a volume
rendering. The volume data is in the data �le bone volume.vol, which is stored in
memory for fast access by the rendering server. The results are always compressed
before being sent back to the client (myppmtogif.c), and the server requires a volume
renderer (render.c).

A brief explanation of PermWeb's operation highlights features of the software
architecture. Refer to the numbered circles. In (1) a user makes a request via the
WWW to the Web Server. The Web Server returns the render.html front-end forms

12

interface. In (2) the user selects the desired parameters and chooses a button \render",
which invokes the CGI process. Typically, CGI processes are found in the cgi-bin
directory, and may be referred to as cgi-bin scripts. In (3), the cgi-bin script contacts
the Render Server, which (4) causes the Render Server to fork o� Child Render Work.
In this way, a single server handles requests from many users and controls how many
connections are accepted. In (5), Child Render Work accesses the source volume,
bone volume.vol, renders it into an image, compresses the image to the GIF format,
(6) sends the result through the socket to Render Request, and exits.

Render Request upon receipt of the image, in (7) writes it to a �le, result.gif, and
in (8) returns the appropriate uniform resource locator (URL) to the requesting client.
The page returned to the client includes the URL for the image, and is typically in
the form of a WWW page with the cgi-bin script as the page: http://WebServer2/cgi-
bin/Render Request/?params. WebServer2 is indicated if in fact a di�erent server
is used than for the initial request. The parameters indicate the location where the
actual viewing parameters are passed to the server. The system is simple, e�cient,
and uses WWW technology including front-end clients, servers, protocols, to provide
access to rendered information. The advantage of the system is a small amount of
development code for general and exible use. One of the key components to achieve
acceptable performance is the use of Lempel-Zif compression of the result image. In
addition to the HTML front-end, Java has been investigated as a means to provide
more interactivity to users.

The current performance of the MasPar access is on the order of many seconds.
Depending on the loading of the MasPar, which is a queued system, there may be a
delay to get in the execute queue. The �le read time of the source volume dominates
the total execution time, which could be �xed by using either parallel I/O or memory
caching of the volume using a continually running server. The current performance
of the shear warp is typically a few seconds. The precompressed, run-length encoded,
source volumes used by shear warp help in reducing the �le read latency. The an-
ticipated performance, given full optimization of the system software, would be 5-10
frames per second. To get better performance may require a web browser plug-in for
a more direct connection to the rendering server, bypassing the multiple step socket
paths used with the current system.

5 Conclusions and Future Research

I have shown that for high quality rendering the resampling process is crucial for ac-
curate data reconstruction. One way to do very high quality resampling is by using a
one-pass resampling, and permutation warping does a one-pass resampling. This pro-
vides a quality improvement over other approaches, including Shear Warp, EM-Cube
sheared interpolation, Vizard, and 3D texture mapping. New results were presented
in making the view exibility arbitrary when specifying the view with angles. A new
decomposition was used to avoid numerical instability in the tan() function used in
the angle processor communication assignments. New results were described in data
dependent acceleration techniques, that allowed for a 260% to 400% improvement in

13

runtime over not using data dependent acceleration on a MasPar MP-2. The MasPar
MP-2 can achieve (with 16,384 processors) 14 frames/second on 1283 volumes using
trilinear interpolation. Octrees were used to take advantage of empty space and data
coherency, but required load balancing to achieve high e�ciency. The octree encoding
allowed an object space partitioning to achieve higher e�ciencies similar to the Shear
Warp algorithm, while maintaining scalability and quality advantages. High quality
rendering is important for biomedical visualization, and permutation warping quality
was demonstrated.

Additional research was performed to investigate the applicability of permutation
warping to MIMD computing. Large granularity communication is more e�cient on
such an architecture. An alternative multiple permutation communication was imple-
mented on the Proteus distributed memory MIMD computer. Proteus can achieve
(with 32 processors) computation rates of one frame/second (12 Mvoxels/second) on
1283 volumes. Results showed that volume rendering is e�ciently parallelizeable us-
ing object space partitioning, parallel product, and extended permutation warping for
volume rendering on scalable MIMD architectures.

A performance of 39 Mvoxels/second has been achieved on a 16,384 processor Mas-
Par MP-2, but other researchers have achieved higher rates on current MIMD machines.
Lacroute achieved 221 Mvoxels/second on the same MRI brain dataset that we used
for our studies, and Palmer et al. [14] achieved 3.5 Billion voxels/second on the visible
female dataset. Permutation warping does achieve better scalability: 3.6 (versus ideal
4) of a 16,384 processor versus a 4096 processor MasPar MP-2 using octree encodings;
and a 22 (versus ideal 32) for a 32 processor Proteus. Lacroute's speedup is 12.5 (ver-
sus ideal 32). The results are not directly comparable, because the machines used do
not have comparable performance, and were released in di�erent years. I have shown
evidence that octree-permutation warping is scalable, and of the highest performance
of published results on the MasPar, but further work needs to be done to directly
compare the approach to Shear Warp on the same computer.

I have detailed the PermWeb software architecture for remote volume rendering
using many standardized WWW components, and a few custom components. The key
to the performance of the system is image compression, and in-memory rendering and
transfer. Performance issues were investigated to reduce the latency of the rendering
and improve the system. Such an implementation is a proof of concept that a powerful
centralized server can be widely accessed. A high performance, high quality, volume
rendering system such as octree-permutation warping accessed via PermWeb is a good
solution for biomedical applications.

Future work is researching the accuracy of the lighting model for medical visualiza-
tion. Physically based lighting models are being investigated, which are more accurate
than those derived for atmospheric phenomena. Additional topics are development of
coupled compression renderers, parallel compression algorithms, heterogeneous plat-
form parallel rendering, and further data dependent optimized parallel rendering.

14

6 Acknowledgements

I would like to thank Michael Harrington, Karin Hollerbach, Nelson Max, Kwan-
sik Kim, Jeremy Story, and Andrew Macginitie. I would also like to thank Clau-
dio Silva, Barthold Lichtenbelt, and several anonymous reviewers for greatly improv-
ing the manuscript. This project has been partially funded by Lawrence Livermore
National Labs, grant ISCR B291836, the Navy Coastal Systems Center developmen-
tal grant, the NASA Graduate Student Researcher's Program, the Applied Physics
Laboratories-University of Washington, and the O�ce of Naval Research REINAS.
Thanks to NASA-Goddard for providing access to a 16K processor MasPar MP-2.
Portions of this paper were published as [19, 20, 21].

References

[1] Mark J. Bentum, Barthold B.A. Lichtenbelt, and Thomas Malzbender. Frequency
analysis of gradient estimators in volume rendering. IEEE Transactions on Visu-
alization and Computer Graphics, 2(3):242{254, September 1996.

[2] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. In Computer
Graphics, pages 65{74, August 1988.

[3] Vineet Goel and Amar Mukherjee. An optimal parallel algorithm for volume
ray casting. The Visual Computer, 12(1):26{39, 1996. short versions appear in
IPPS'95 and Fifth Symp. on Frontiers of Massively Parallel Computation'94.

[4] W. H. Hsu. Segmented ray casting for data parallel volume rendering. In Pro-
ceedings of the Parallel Rendering Symposium, pages 7{14, San Jose, CA, October
1993.

[5] Gunter Knittel and Wolfgang Strasser. VIZARD: Visualization accelerator for
realtime display. In SIGGRAPH/Eurographics Workshop on Graphics Hardware,
pages 139{146, Los Angeles, CA, August 1997. ACM.

[6] Phillippe Lacroute. Analysis of a parallel volume rendering system based on
the shear-warp factorization. IEEE Transactions on Visualization and Computer
Graphics, 2(3):218{231, September 1996. a short version of this paper appears in
the 1995 Parallel Rendering Symposium.

[7] Marc Levoy. E�cient ray tracing of volume data. ACM Transactions on Graphics,
9(3):245{261, July 1990.

[8] Barthold Lichtenbelt. Design of a high performance volume visualization system.
In SIGGRAPH/Eurographics Workshop on Graphics Hardware, pages 111{120,
Los Angeles, CA, August 1997. ACM.

[9] K. L. Ma, J. Painter, C. D. Hansen, and M. F. Krogh. Parallel volume render-
ing using binary-swap compositing. IEEE Computer Graphics and Applications,
14(4):59{67, 1994.

15

[10] Thomas Malzbender, Craig M. Wittenbrink, and Michael E. Goss. Opacity-
weighted color interpolation for volume sampling. Technical Report HPL-TR-
97-31, H.P. Laboratories, April 1997.

[11] Nelson Max. Optical models for direct volume rendering. IEEE Transactions on
Visualization and Computer Graphics, 1(2):99{108, June 1995.

[12] Ulrich Neumann. Parallel volume rendering algorithm performance on mesh con-
nected multicomputers. In Proceedings on the Parallel Rendering Symposium,
pages 97{104, San Jose, CA, October 1993.

[13] Randy Osborne et al. EM-cube: An architecture for low-cost real-time volume
rendering. In SIGGRAPH/Eurographics Workshop on Graphics Hardware, pages
131{138, Los Angeles, CA, August 1997. ACM.

[14] Michael E. Palmer, Stephen Taylor, and Brian Totty. Exploiting deep parallel
memory hierarchies for ray casting volume rendering. In Proceedings of the Parallel
Rendering Symposium, pages 15{22, Phoenix, AZ, October 1997. IEEE.

[15] P. Schr�oder and G. Stoll. Data parallel volume rendering as line drawing. In
Proceedings of 1992 Workshop on Volume Visualization, pages 25{32, Boston,
MA, October 1992.

[16] A. K. Somani et al. Proteus system architecture and organization. In Fifth Inter-
national Parallel Processing Symposium, pages 276{284, April 1991.

[17] Allen Van Gelder and Kwansik Kim. Direct volume rendering with shading via
3D textures. In ACM/IEEE Symposium on Volume Visualization, pages 23{30,
San Francisco, CA, October 1996. See also technical report UCSC-CRL-96-16.

[18] G. Vezina, P. A. Fletcher, and P. K. Robertson. Volume rendering on the MasPar
MP-1. In Proceedings of 1992 Workshop on Volume Visualization, pages 3{8,
October 1992.

[19] Craig M. Wittenbrink and Michael Harrington. A scalable MIMD volume render-
ing algorithm. In Proceedings IEEE 8th International Parallel Processing Sympo-
sium, pages 916{920, Cancun, Mexico, April 1994.

[20] Craig M. Wittenbrink and Kwansik Kim. Data dependent optimizations for per-
mutation volume rendering. In Proceedings of IS&T/SPIE Visual Data Explo-
ration and Analysis V, page In press, San Jose, CA, January 1998. SPIE. Available
as Hewlett-Packard Laboratories Technical Report, HPL-97-59-R1.

[21] Craig M. Wittenbrink, Kwansik Kim, Jeremy Story, Alex T. Pang, Karin Holler-
bach, and Nelson Max. A system for remote parallel and distributed volume visu-
alization. In In Proceedings of IS&T/SPIE Visual Data Exploration and Analysis
IV, pages 100{110, San Jose, CA, February 1997. SPIE. Available as Hewlett-
Packard Laboratories Technical Report, HPL-97-34.

[22] Craig M. Wittenbrink and A. K. Somani. Time and space optimal parallel vol-
ume rendering using permutation warping. Journal of Parallel and Distributed
Computing, 46(2):148{164, November 1997. Available as Technical Report, Univ.

16

of California, Santa Cruz, UCSC-CRL-96-33. Portions appeared as C.M. Wit-
tenbrink and A.K. Somani. Permutation Warping for Data Parallel Volume Ren-
dering, in Proceedings of the Parallel Rendering Symposium, pages 57{60, Oct.
1993.

[23] Craig M. Wittenbrink and Arun K. Somani. Permutation warping for data parallel
volume rendering. In Proceedings of the Parallel Rendering Symposium, pages 57{
60, color plate p. 110, San Jose, CA, October 1993.

17

Figure 1: Human vertebra rendered using raycasting with preclassi�cation. Left: separate
interpolation of color and opacity. Middle: Opacity weighted interpolation of colors. Right:
normalized di�erence image.

Maximum0

Trilinear

Zero Order Hold

Multipass

Figure 2: Error in volume resampling.

Zero Order Hold Trilinear

Figure 3: Zero-order hold compared to trilin-
ear reconstruction.

1) PPS, preprocessing stage, gradient, classification, shading

2) VWS, volume warping stage, processors in parallel:

2.1) Calculate processor assignments, pick screen space processor

2.2) Calculate reconstruction point, inverse view transform

2.3) Perform resampling of opacity and intensity

2.4) Send resampled opacity and intensity to screen space processors

3) CS, compositing stage, composite to 2D output image

Figure 4: Permutation warping data parallel algorithm pseudo-code

18

Figure 5: Volume transforms in parallel.

MasPar Volume Rendering Performance

0

2

4

6

8

10

12

Wz Hz Vz G* Vf Wt

Algorithm

M
V

o
xe

ls
/s

ec
o

n
d

Best

Figure 6: Volume rendering algorithm's per-
formance on a 16k MasPar MP-1, rendering
a 1283 volume.

Speedup 1k/16k Processors

0

5

10

15

20

25

Wz Wt Vf Vz G* Hz

Algorithm

R
at

io
Ideal=1

Best

Figure 7: Volume rendering algorithm's
speedup, of a 16k to a 1k processor MasPar
MP-1.

��
��
��
��

��
��
��
��

PE 2

PE 1

PE 3

PE 0 Tree

PE 2 Tree

PE 1 Tree

PE 3 Tree

PE 0 �
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�

NULL

NULL

Figure 8: Octrees (quadtree) in 4 processor
machine.

��
��
��
��

��
��
��
��

PE 1 TreePE 0 Tree

4 bytes 2 bytes
Octree nodes : {octant code, processor #}

PE 3 Tree

PE 1

PE 3PE 2

PE 0

PE 2 Tree

PE 1 : 0 nodes (empty region)

After load balancing No Load Balancing

PE 1 : 4 bottom level nodes

PE 0 : 4 bottom level nodesPE 0 : 13 nodes (1 condenced node)

�
�
�
�

���
���
���

���
���
���

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�
��
��
��
��

�
�
�
�

��
��
��
��

�
�
�
�
���
���
���
���

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

Figure 9: Load balanced octrees.

19

MasPar MP-2 Volume Rendering Performance

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

WzO WtO Hz Wz Wt

Algorithm

M
V

o
xe

ls
/s

ec
o

n
d

4096

16384

Figure 10: Octree encoded permutation warping performance (WzO and WtO) in Mvox-
els/second versus the baseline permutation warping algorithm (Wz and Wt) and Hsu (Hz).

0 1 5 10 50

Figure 11: Outputs from octree accelerated algorithm with di�erent thresholds from the left
0, 1, 5, 10, 50.

20

1 2 3 4 5 6
theta

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Tan(theta/2)

Figure 12: tan(�=2) and tan(���
2
) plotted versus angle.

if (t > pi/2 && t < 3 pi / 2) { /* translated interval */

s = t-pi /* 180 degree rotation */

x = -x /* rotation by reflecting coordinates */

y = -y

p.x = rint(shear(x,y,-tan(s/2.0))); /* round and shear */

p.y = rint(shear(y,p.x,sin(s)));

p.z = rint(shear(p.x,p.y,-tan(s/2.0)));

}

else { /* simply use tan(theta/2) */

p.x = rint(shear(x,y,-tan(t/2.0)));

p.y = rint(shear(y,p.x,sin(t)));

p.z = rint(shear(p.x,p.y,-tan(t/2.0)));

}

Figure 13: View angle interval translation pseudo-code.

21

Figure 14: Volume virtualization for proteus

1) Preprocessing stage opacities and colors calculated

2) VWS/CS(partial), volume warping stage, processors in parallel:

2.1) Warp and composite local data, subframes calculated

2.2) Permutation sends of object space subframes to screen space

3) CS(cont.) Parallel compositing of subframes

Figure 15: Permutation warping MIMD-algorithm pseudo-code

Figure 16: Parallel algorithm ow: object space to resampled view volume to �nal image

22

Figure 17: PermWeb architecture

Figure 18: PermWeb HTML front-end.

23

