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Abstract

In an earlier paper, we studied the problem of guessing a random vector X within

distortion D, and characterized the best attainable exponent E(D; �) of the �th mo-

ment of the number of required guesses G(X) until the guessing error falls below D.

In this paper, we extend these results to a multi-stage, hierarchical guessing model,

which allows for a faster search of a codeword vector at the encoder of a rate-distortion

codebook. In the two-stage case of this model, if the target distortion level is D2, the

guesser �rst makes guesses w.r.t. (a higher) distortion level D1, and then, upon his/her

�rst success, directs the subsequent guesses to distortion D2. As in the above men-

tioned earlier paper, we provide a single-letter characterization of the best attainable

guessing exponent, which relies heavily on well-known results on the successive re�ne-

ment problem. We also relate this guessing exponent function to the source coding

error exponent function of the two-step coding process.

Index Terms: rate-distortion theory, successive re�nement, guessing, source coding

error exponent.
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1 Introduction

In [1], we studied the basic problem of guessing a random vector w.r.t. a �delity criterion.

In particular, for a given information source, a distortion measure d, and distortion level D,

this problem is de�ned as follows. The source generates a sample vector x = (x1; :::; xN) of

a random N -vector X = (X1; :::; XN). Then, the guesser, who does not have access to x,

provides a sequence ofN -vectors (guesses) y1;y2; ::: until the �rst success of guessing x within

per-letter distortion D, namely, d(x;yi) � ND for some positive integer i. Clearly, for a

given list of guesses, this number of guesses i is solely a function of x, denoted by GN(x). The

objective of [1] was to characterize the best achievable asymptotic performance and to devise

good guessing strategies in the sense of minimizing moments of GN (X). It has been shown

in [1], that for a �nite-alphabet, memoryless source P and an additive distortion measure d,

the smallest attainable asymptotic exponential growth rate of EfGN(X)�g (� > 0) with N ,

is given by

E(D; �) = max
P 0

[�R(D;P 0)�D(P 0jjP )]; (1)

where the maximum w.r.t. P 0 is over the set of all memoryless sources with the same alphabet

as P , R(D;P 0) is the rate-distortion function of P 0 w.r.t. distortion measure d at level D, and

D(P 0jjP ) is the relative entropy, or the Kullback-Leibler information divergence, between P 0

and P , i.e., the expectation of ln[P 0(X)=P (X)] w.r.t. P 0.

One of the motivations of the guessing problem in its above described basic form, is that a

good guessing strategy tells us how to order the codebook vectors of a rate-distortion block

encoder, so as to minimize the typical search e�ort until a satisfactory codeword is found. As

explained in [1], however, the guessing performance is an indication on the search complexity

only under a very simple search model where the codewords are scanned in a �xed order,

without taking advantage of the full information available from earlier unsuccessful search

trials or guesses.

In this paper, we make one step towards the improvement of this search model. This is done

by examining families of guessing strategies that are induced by hierarchical, multi-stage

codebook structures, in particular, successive re�nement codes (see, e.g., [2]-[7]). From the

rate-distortion coding point of view, these structures are motivated by progressive transmis-

sion applications since they allow for simultaneous operation at more than one point in the

rate-distortion plane, sometimes without loss of rate-distortion optimality at either point.

From the searching, or guessing aspects considered here, these structures are attractive be-

cause they provide considerably more e�cient and faster search for the �rst codeword that

satis�es the distortion constraint w.r.t. a given source vector. In the two-stage case of the

successive re�nement structure, in order to encode a source vector x within a given target

per-letter distortion level D2, one �rst seeks, in a �rst-layer codebook, the �rst codeword yi
within distance ND1 from x (which is a relatively fast search), and then seeks the �rst code-

word zij at the target distance ND2 from x along a second-layer codebook that corresponds

to yi. As a simple example, if the �rst-layer code operates at rate R=2 and each second-layer
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code is at rate R=2, then the total rate is R but the number of guesses, or search trials grows

exponentially as 2NR=2, and not 2NR which would be the case if the code had only one stage.

Analogously to [1], our main result in this paper, is in characterizing the best attainable

two-stage guessing exponent for memoryless sources, additive distortion measures, and two

given distortion levels. We �rst derive a lower bound on the �th order moment of the

guessing exponent E2(D1; D2; �) associated with the intermediate distortion level D1 and

the target distortion level D2. Clearly, if only the target distortion level D2 is speci�ed, it

would be natural to select D1 so as to minimize E2(D1; D2; �). We are able to demonstrate

the achievability of E2(D1; D2; �) under the assumption that the guesser knows in advance

the type class, or equivalently, the empirical probability mass function (PMF) of the given

source vector x. There are several justi�cations for this assumption. First, in source coding

applications, which serve as the main motivation for the two-stage guessing problem, it is

conceivable that the empirical PMF information is easily accessible to the guesser (or the

encoder). Secondly, similarly as in the single-stage case, the validity of E2(D1; D2; �) as a

lower bound is una�ected by knowledge of the type class. For the same reason, this setting

still serves as an extension of [1]. Finally, and perhaps most importantly, under this assump-

tion, the guesser has the exibility to choose the �rst-layer distortion level D1 depending

on the empirical PMF. This, in general, gives better guessing performance than if D1 were

�xed. We also show that the successively re�nable case gives the best possible guessing expo-

nent, which can be easily expressed in terms of the single-stage guessing exponent E1(D2; �).
The achievability of E2(D1; D2; �) without knowing the empirical PMF, however, remains

an open problem, and we shall elaborate on this later on.

Another aspect of the guessing exponent is its interesting relation to the source coding

exponent. In the single-stage setting, the source coding error exponent F1(R;D), is de�ned

as the best exponential decay of the probability of failing to encode a source vector X with

a rate R codebook at distortion D. In [1], it has been shown that the guessing exponent

E1(D; �) as a function of �, and the source coding error exponent F1(R;D) as a function of

R, are a Fenchel-Legendre transform (FLT) pair. We show that this result extends to the

two-stage case merely in a partial manner.

Finally, a general comment is in order: Although we con�ne attention, in this paper, to

strategies with two levels of guessing lists, it should be understood that the results extend

fairly easily to any �xed and �nite number of levels, while the concept remains the same.

Our exposition is limited to the two-level case for reasons of simplicity.

The outline of this paper is as follows. In Section 2, we de�ne notation conventions and

provide some background on the problem of interest. Section 3 is devoted to the lower bound

on the guessing exponent. In Section 4, we discuss the conditions for the achievability of the

lower bound. In Section 5, we focus on the successively re�nable case. Section 6 discusses

the relation to the two-step source coding error exponent. Finally, Section 7 concludes the

paper.

2



2 Notation, Problem Description, and Preliminaries

Consider a memoryless information source P emitting symbols from a �nite alphabet X ,

and let Y and Z denote two �nite reproduction alphabets. Let d1 : X � Y ! [0;1) and

d2 : X � Z ! [0;1), denote two single-letter distortion measures. Let XN , YN , and ZN

denote the Nth order Cartesian powers of X , Y, and Z, respectively. The distortion between
a source vector x = (x1; :::; xN) 2 XN and a reproduction vector y = (y1; :::; yN) 2 YN is

de�ned as d1(x;y) =
PN

i=1 d1(xi; yi). Similarly, for z = (z1; :::; zn), we de�ne d2(x; z) =PN
i=1 d2(xi; zi).

Throughout the paper, scalar random variables will be denoted by capital letters while their

sample values will be denoted by the respective lower case letters. A similar convention will

apply to random N -dimensional vectors and their sample values, which will be denoted by

boldface letters. Thus, for example, X will denote a random N -vector (X1; :::; XN), and

x = (x1; :::; xN) is a speci�c vector value in XN . Sources and channels will be denoted

generically by capital letters (sometimes indexed by the names of the corresponding random

variables), e.g., P , QXY Z, W , V , etc., where these entities denote the set of (conditional or

unconditional) letter probabilities, e.g., P is understood as a vector of letter probabilities

fP (x); x 2 Xg. For auxiliary random variables (X; Y; Z) 2 X � Y � Z, that will be used
throughout the sequel, the joint PMF will be denoted by QXY Z = fQXY Z(x; y; z); x 2
X ; y 2 Y; z 2 Zg. Marginal and conditional PMFs that are derived from QXY Z will be

denoted also by Q with an appropriate subscript, e.g., QX is the marginal PMF of X, QZjXY

is the conditional PMF of Z given X and Y , and so on. For N -vectors, the probability of

x 2 XN will be denoted by PN(x) =
QN
i=1 P (xi). The probability of an event A � XN

will be denoted by PNfAg, or by PrfAg whenever there is no room for ambiguity regarding

the underlying probability measure. The cardinality of a �nite set A will be denoted by

jAj. The operator Ef�g will denote expectation w.r.t. the underlying source P . Expectation

w.r.t. QXY Z will be denoted by EQf�g.

For a given source vector x 2 XN , the empirical probability mass function (EPMF) is

the vector Px = fPx(a); a 2 Xg, where Px(a) = Nx(a)=N , Nx(a) being the number of

occurrences of the letter a in the vector x. The type class TP associated with a given

PMF P , is the set of all vectors x 2 XN such that Px = P . For two positive sequences

faNgN�1 and fbNgN�1, the notation aN
�
= bN means that N�1 ln(aN=bN) ! 0 as N ! 1,

and in words, aN is said to be exponentially equal to bN . Similarly, aN
�

� bN means that

lim infN!1N�1 ln(aN=bN ) � 0, and in words, aN is said to be exponentially at least as large

as bN , or, bN is exponentially no larger than aN , and so on.

For two memoryless sources P and P 0, let

D(P 0jjP ) =
X
x2X

P 0(x) ln
P 0(x)

P (x)
(2)

denote the relative entropy between P 0 and P . For a given random pair (X; Y ) governed by

3



QXY , let I(X;Y ) denote the mutual information between X and Y . Let R(D;P 0) denote

the rate-distortion function of P 0, w.r.t. d1, i.e.,

R(D;P 0) = inffI(X; Y ) : QX = P 0; EQd1(X; Y ) � Dg: (3)

In [1] we de�ned the following terminology for the basic, single-stage guessing problem. We

provide here de�nitions that are slightly simpler than in [1], but they are equivalent in the

�nite alphabet case considered here. Let S1(y; D)
4
= fx : d1(x;y) � NDg.

De�nition 1 A D-admissible guessing strategy is an ordered list GN = fy1;y2; :::g of vectors

in YN , henceforth referred to as guessing words, such that

[
i

S1(yi; D) = XN : (4)

De�nition 2 The guessing function GN(�) induced by a D-admissible guessing strategy GN ,
is the function that maps each x 2 XN into a positive integer, which is the index j of the

�rst guessing codeword yj 2 GN such that d(x;yj) � ND.

De�nition 3 The optimum �th order single-stage guessing exponent theoretically attainable

at distortion level D is de�ned, whenever the limit exists, as

E1(D; �)
4
= lim

N!1

1

N
min
GN

lnEfGN(X)�g; (5)

where the minimum is taken over all D-admissible guessing strategies, and the subscript `1'

indicates the fact that the class of single-stage guessing strategies is considered.

The main result of [1] is that for a memoryless source, and an additive distortion measure,

E1(D; �) exists and has a single-letter characterization given by

E1(D; �) = E1(D; �)
4
= max

P 0
[�R(D;P 0)�D(P 0jjP )]: (6)

Note that E1(D; �) depends on the source P . However, since the underlying source P is �xed,

and to avoid cumbersome notation, the dependency of E1 on P is not denoted explicitly.

We now turn to the two-stage guessing problem, which in its basic form, is de�ned as follows.

A memoryless source P randomly draws a realization x 2 XN of a random vector X. For

a given intermediate distortion level D1 w.r.t. distortion measure d1, and a given target

distortion level D2 w.r.t. distortion measure d2, the guesser �rst presents a sequence of

guesses y1, y2; :::, until the �rst time that d1(x;yi) � ND1, and then is temporarily scored

by the number of guesses thus far G1
N(x) = i. In the second stage of the guessing process,
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the guesser provides another sequence of guesses zi1; zi2; :::, corresponding to i, until the �rst

j such that d2(x; zij) � ND2, and the score increases by the additional number of guesses

G2
N(x) = j. The question is: What is the best one can do in designing the guessing lists so

as to minimize the exponential growth rate of the �th moment of the total number of guesses

G1
N(X) + G2

N(X)? Clearly, the approach of using an intermediate search makes sense only

if E1(D1; �) w.r.t. distortion measure d1 is smaller than E1(D2; �) w.r.t. distortion measure

d2. If d1 = d2, this simply means that D1 > D2.

We next provide de�nitions for the two-stage case which are analogous to our earlier de�ni-

tions for the single-stage case. In addition to the above de�nition of S1(y; D), for a given

z 2 ZN , let S2(z; D) = fx : d2(x; z) � NDg.

De�nition 4 Given a source P , an intermediate distortion level D1, and a target distortion

level D2, an admissible two-stage guessing strategy GN comprises a D1-admissible guessing

strategy G1
N = fyi; i = 1; 2; :::g, referred to as a �rst-layer guessing list, with a guessing

function G1
N(�), and a set of lists, fGN(i); i = 1; 2; :::g, GN (i) = fzij; j = 1; 2; :::g, zij 2 Z

N ,

i; j = 1; 2; :::, referred to as second-layer guessing lists, such that for all i,

[
j

S2(zij; D2) � S1(yi; D1)
\
[
i�1\
k=1

S1(yk; D1)
c]:

Comment: This set inequality takes into account the fact that if G1
N(x) = i, then x is in

S1(yi; D1), but not in any of the spheres associated with earlier examined guesses S1(yk; D1),

k = 1; :::; i�1. Hence, the second-layer guessing list corresponding to imust cover only source
vectors with these properties.

De�nition 5 The guessing function induced by a given admissible two-layer guessing strat-

egy is given by

GN(x) = G1
N (x) +G2

N(x); (7)

where G1
N(�) is the guessing function induced by the associated �rst-layer guessing strategy

G1
N , and G2

N(x) is the index j of the �rst codeword zij 2 GN(i), such that d2(x; zij) � ND2,

where i = G1
N(x).

Before we turn to characterize the best attainable two-stage guessing exponent, we review

some known results on the multistage source coding problem [2],[6],[7] (see also [8],[4]), which

are intimately related to the two-stage guessing problem considered here. We �rst present

some de�nitions associated with two-stage source codes.

A rate R1 block code of length N consists of an encoder f 1N : XN ! f1; 2; :::; 2NR1g and a

decoder g1N : f1; 2; :::; 2NR1g ! YN . A re�ned rate R2 block code of length N (R2 > R1)
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consists of an encoder f 2N : XN ! f1; 2; :::; 2N(R2�R1)g and a decoder g2N : f1; 2; :::; 2NR1g �
f1; 2; :::; 2N(R2�R1)g ! ZN . A quadruple (R1; R2; D1; D2) is referred to as an achievable

quadruple w.r.t. a source P if for every � > 0, � > 0, and N su�ciently large, there exists a

length�N block code (f 1N ; g
1
N) of rate not exceeding R1 + �, and a re�ned length�N block

code (f 2N ; g
2
N) of rate not exceeding R2 + �, such that

Pr
n
d1(X; g

1
N(f

1
N(X)) � ND1; d2(X; g

2
N(f

1
N (X); f 2N(X))) � ND2

o
� 1� �: (8)

To characterize the region of achievable quadruples (R1; R2; D1; D2), consider an auxiliary

random vector (X; Y; Z) governed by a PMF QXY Z, and let I(X;Y Z) denote the mutual

information between X and (Y; Z).

Theorem 1 ([2],[6],[7]): For a memoryless source P , two additive distortion measures d1
and d2, and two distortion levels D1 and D2, respectively, a quadruple (R1; R2; D1; D2) is

achievable w.r.t. P if and only if there exists a PMF QXY Z such that QX = P , I(X;Y ) � R1,

I(X;Y Z) � R2, EQd1(X; Y ) � D1, and EQd2(X;Z) � D2.

An immediate corollary [7, Corollary 1] to this theorem states that given D1, D2, and

R1 � R(D1; Q), the minimum achievable R2, denoted by R(R1; D1; D2; P ), is given by

min I(X;Y Z) over all fQXY Zg such that QX = P , I(X;Y ) � R1, EQd1(X; Y ) � D1, and

EQd2(X;Z) � D2.

3 A Lower Bound

We are now ready to present our main result, which is a single-letter characterization of a

lower bound on the best two-stage guessing exponent theoretically attainable. Let d1 and d2
be two given distortion measures as above, and let D1 and D2 be two given distortion levels,

respectively. For a given memoryless source P 0, let

K(D1; D2; P
0) = min

S
maxfI(X;Y ); I(X;ZjY )g; (9)

where I(X;ZjY ) is the conditional mutual information between X and Z given Y , and

S
4
= fQXY Z : QX = P 0; EQd1(X; Y ) � D1; EQd2(X;Z) � D2g: (10)

Now, let

E2(D1; D2; �) = max
P 0

[�K(D1; D2; P
0)�D(P 0jjP )]: (11)

The following theorem tells us that E2(D1; D2; �) is a lower bound on the best attainable

two-stage guessing exponent.
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Theorem 2 Let P be a �nite-alphabet memoryless source, d1 and d2 two additive distortion

measures, D1 an intermediate distortion level, and D2 a target distortion level. Then,

lim inf
N!1

1

N
min
GN

lnEfGN(X)�g � E2(D1; D2; �): (12)

Discussion: The intuitive interpretation of the expression of K(D1; D2; P
0) is that at each

level, the number of guesses is exponential, i.e., exponentially eNI(X;Y ) guesses in the �rst

level and eNI(X;ZjY ) in the second. Thus, the exponential order of the total number of

guesses is dominated by the larger exponent. This is di�erent from the two-step source

coding problem, where the codebook sizes of the two levels multiply, and so, their exponents

(the rates) sum up to I(X;Y ) + I(X;ZjY ) = I(X;Y Z).

The remaining part of this section is devoted to the proof of Theorem 2.

Proof. For a given positive integer N , let GN be an arbitrary two-stage guessing scheme with

distortion levels D1 and D2. Similarly as in the proof of [1, Theorem 1], we begin with the

following chain of inequalities for an arbitrary auxiliary memoryless source P 0:

EfGN(X)�g = EP 0

"
GN(X)�

NY
i=1

P (Xi)=P
0(Xi)

#

= EP 0 exp

"
� lnGN(X) +

NX
i=1

ln
P (Xi)

P 0(Xi)

#

� exp [�EP 0 lnGN(X)�ND(P 0jjP )]

� exp
h
�maxfEP 0 lnG1

N(X);EP 0 lnG2
N(X)g �ND(P 0jjP )

i
(13)

where for the �rst inequality, we have used Jensen's inequality together with the convexity of

the exponential function, and for the second inequality, we have used the fact that GN(X) =

G1
N(X) +G2

N(X) � maxfG1
N(X); G2

N(X)g. Since P 0 is an arbitrary memoryless source, the

proof will be complete if we show that

max

�
1

N
EP 0 lnG1

N(X);
1

N
EP 0 lnG2

N(X)

�
� K(D1; D2; P

0)� o(N) (14)

for every P 0. Now, let us de�ne

RN =
1

N
EP 0 lnG1

N(X) (15)

and

�N =
1

N
EP 0 lnG2

N(X): (16)

Intuitively, the functions L1(X) = lnG1
N(X) and L2(X) = lnG2

N(X)+ lnG2
N(X) are (within

negligible terms for large N) legitimate code length functions (in nats) for lossless entropy
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coding of the locations of the guessing codewords, and so, one would expect (RN ; RN +

�N ; D1; D2) to be `essentially' an achievable quadruple. However, Theorem 1 above cannot

be used straightforwardly to establish such an argument because it deals with �xed rate

coding, without allowing for variable-length entropy coding. Nevertheless, in the Appendix,

we prove that there exists a constant c = c(jYj; jZj) such that for all N , (RN + c ln(N +

1)=N;RN +�N + c ln(N + 1)=N;D1; D2) is an achievable quadruple w.r.t. P 0. This is done

by constructing a �xed rate length�l block code (l� N) that satis�es eq. (8) with less than

el(RN+0:5c ln(N+1)=N) codewords at the �rst level, and less than el(�N+0:5c ln(N+1)=N) second-level

codewords for each �rst-level codeword.

Using the same sphere covering arguments as in [6, Lemma 1], the existence of such a code,

implies that there must exist a PMF QXY Z 2 S such that

RN +
c ln(N + 1)

N
� I(X;Y ) (17)

and, at the same time,

�N +
c ln(N + 1)

N
� I(X;ZjY ); (18)

and so,

maxfRN ;�Ng � maxfI(X;Y ); I(X;ZjY )g �
c ln(N + 1)

N

� min
S

maxfI(X;Y ); I(X;ZjY )g �
c ln(N + 1)

N

= K(D1; D2; P
0)�

c ln(N + 1)

N
; (19)

completing the proof of Theorem 2. 2

4 Achievability

The expression for E2(D1; D2; �) strongly suggests that the key to the achievability of

E2(D1; D2; �) lies in the two-stage covering lemma (see, e.g., [7]), which is a straightfor-

ward extension of the ordinary single-stage covering lemma [9]. This two-stage covering

lemma is the following.

Lemma 1 ([7, Lemma 1]) If (R1; R2; D1; D2) is an achievable quadruple w.r.t. P 0, then

there exist:

(i) A set C1 � YN such that
1

N
ln jC1j � R1 + o(N); (20)
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and

TP 0

\ [
y2C1

S1(y; D1) = TP 0: (21)

(ii) Sets C2(y) � ZN ; y 2 C1, such that

1

N
ln
X
y2C1

jC2(y)j � R2 + o(N); (22)

and

TP 0

\ [
z2C2(y)

S2(z; D2) � TP 0

\
S1(y; D1) 8 y 2 C1: (23)

The construction of C1 and fC2(y)g in [7] is as follows: Let Q�
XY Z 2 S minimize I(X;Y Z) =

I(X;Y ) + I(X;ZjY ). First, it is shown that a random selection of exponentially at least

M = eNI(X;Y ) vectors y1; :::;yM1
2 TQ�

Y
, forming C1, satis�es eq. (21) with high probability.

Secondly, for each yi 2 C1, let C2(yi) be a randomly-selected set of M 0
�

� eNI(X;ZjY ) vectors

zi1; :::zi;M 0 which, conditioned on yi, are in the type class associated with Q�
ZjY ; then C2(yi)

satis�es eq. (23) with high probability.

Using this lemma and its proof in [7], it is easy to see that E2(D1; D2; �) is achievable at

least when the guesser is informed of the EPMF of the input sequence x. This is done in

the following manner. By applying the above described covering construction for the PMF

QY and the channel QZjY that attain K(D1; D2; P
0), one can create a �rst-layer guessing list

y1;y2; ::: of size
�

� eNI(X;Y ) that covers TPx, and for each yi, a second-layer guessing list of

size
�

� eNI(X;ZjY ) consisting of second-layer guessing codewords that cover TPx \ S1(yi; D1).

Thus, regardless of the order of the guessing words at both levels, the total number of guesses

G1
N(x) +G2

N(x) exponentially at most eNI(X;Y ) + eNI(X;ZjY ) �
= eNK(D1;D2;Px). Averaging this

w.r.t. the ensemble of EPMF's fPXg, gives the exponential order of e
NE2(D1;D2;�). The dif-

ference between this and the construction of an optimal two-stage code is that the optimum

PMF QXY Z that minimizes the guessing exponent maxfI(X;Y ); I(X;ZjY )g might be dif-

ferent than the one that minimizes the total coding rate I(X;Y ) + I(X;ZjY ) = I(X;Y Z).

Thus, guessing words may have, in general, di�erent compositions than source codewords.

Unfortunately, we were unable to construct a guessing strategy that achieves E2(D1; D2; �)

without prior knowledge of the EPMF of X. The di�culty lies in the fact that the guessing

codebooks (at both levels) for di�erent EPMF's may partially intersect. Therefore, no matter

how the guessing lists for all EPMF's are integrated, there is no guarantee that the �rst-layer

guessing word yi for a given x, will belong to the guessing codebook that corresponds to the

EPMF of x. Consequently, x may not be covered in the second stage guessing list, or may

require exponentially more than eNI(X;ZjY ) guesses.

Nevertheless, the assumption of prior knowledge of the EPMF of X is fairly reasonable as

explained in the Introduction: First, in source coding applications, which serve as the main

9



motivation for the two-stage guessing problem, it is conceivable that the empirical PMF

information is easily accessible to the guesser (or the encoder). Secondly, similarly as in the

single-stage case, the validity of E2(D1; D2; �) as a lower bound is asymptotically una�ected

by knowledge of the EPMF. This is true because asymptotically, the EPMF information is

of zero rate. For the same reason, this setting still serves as an extension of [1].

More generally, consider a scenario where instead of one guesser, we have LN independent

parallel guessers (or search machines) with guessing functions G
(j)
N (x), j = 1; :::; LN , and the

guessing process stops as soon as one of the guessers succeeds. Thus, the natural relevant

performance criterion of interest is some moment of the guessing time Efminj G
(j)
N (X)�g.

Again, it is easy to see that the validity of the lower bound E2(D1; D2; �) is asymptoti-

cally una�ected as long as LN
�
= 1, that is, LN grows subexponentially with N . Thus, an

asymptotically optimal solution to this problem would again suggest that each guesser will

be responsible for one EPMF as described above, and so, LN � (N + 1)jX j�1.

In summary, it will be safe to argue that the lower bound E2(D1; D2; �) is achievable provided

that we slightly extend the scope of the problem.

Furthermore, this assumption of knowing the EPMF has even deeper consequences. It

provides the guesser with the exibility to choose the �rst-layer distortion level D1 depending

on the EPMF1. This in general gives better guessing performance than that can be achieved

if D1 was �xed. Speci�cally, if only the target distortion D2 is speci�ed and D1 is a design

parameter subjected to optimization, then in the absence of prior information on Px, the

best performance is bounded from below by

E�
2(D2; �) = inf

D1

E2(D1; D2; �)

= inf
D1

max
P 0

[�K(D1; D2; P
0)�D(P 0jjP )]: (24)

On the other hand, if Px is known ahead of time, it is possible to achieve

E��
2 (D2; �) = max

P 0
inf
D1

[�K(D1; D2; P
0)�D(P 0jjP )] (25)

and clearly, E��
2 (D2; �) � E�

2(D2; �).

5 Successively Re�nable Sources

Obviously, from the viewpoint of rate-distortion source coding, the best possible situation

is when the rate-distortion function can be attained at both distortion levels. A source for

which this can be achieved is referred to as a successively re�nable source in the literature

(see, e.g., [5]). It turns out, as we show in this section, that the successively re�nable case

in this rate-distortion coding sense, is also the best we can hope for from the viewpoint

1Furthermore, the �rst-level distortion measure d1 may also be subjected to optimization.
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of guessing. Although this is fairly plausible, it is not quite obvious since the guessing

performance criterion is somewhat di�erent than that of coding.

To show this, we begin with a simple lower bound on E��
2 (D2; �) in terms of the single-stage

guessing exponent function E1(D2; �).

Lemma 2 For every memoryless source P , E��
2 (D2; �) � E1(D2;

�
2
).

Proof.

K(D1; D2; P
0) = min

S
maxfI(X;Y ); I(X;Y Z)� I(X;Y )g

� min
S

maxfI(X;Y ); I(X;Z)� I(X;Y )g

� min
S

maxfI(X;Y ); R(D2; P
0)� I(X;Y )g

�
1

2
R(D2; P

0): (26)

Since the right-most side is independent of D1, then

inf
D1

K(D1; D2; P
0) �

1

2
R(D2; P

0) (27)

and so,

E��
2 (D2; �) � max

P 0

�
�

2
R(D2; P

0)�D(P 0jjP )

�
= E1

�
D2;

�

2

�
; (28)

completing the proof of Lemma 2. 2

As we show next, in the successively re�nable case, this lower bound is met.

Lemma 3 If the distortion measures d1 and d2 are such that every memoryless source P 0

is successively re�nable for every D1 together with the given target distortion level D2, then

for every memoryless source P , E��
2 (D2; �) = E1(D2;

�
2
).

Comment: If d1 = d2 is the Hamming distortion measure, the condition of Lemma 3 is met.

Another case is where d1 and d2 are arbitrary distortion measures and D2 = 0.

Proof of Lemma 3. Consider a guesser that is informed of the EPMF Px of x, and chooses

D1 = D1(Px) such that R(D1; Px) = R(D2; Px)=2. Since Px is assumed successively re�n-

able, the quadruple (R(D2; Px)=2; R(D2; Px); D1; D2) is achievable w.r.t. Px, and so there

exists a PMF QXY Z for which QX = Px, EQd1(X; Y ) � D1, EQd2(X;Z) � D2, and

I(X;Y ) = I(X;ZjY ) = R(D2; Px)=2. Thus, for every sequence x, GN(x)
�

� eNR(D2;Px)=2,

and so, E��
2 (D2; �) = E1(D2; �=2), completing the proof of Lemma 3. 2.
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Discussion: Note that since E1 is convex in � [1], then E1(D2; �=2) � E1(D2; �)=2 (with

strict inequality unless R(D2; P ) = maxP R(D2; P )), and so, the e�ect of two-stage guessing

in the successively re�nable case is even better than halving the exponent. Intuitively, this

reects a situation, where for each Px, the guessing complexity is divided evenly between

the two levels. The extension of this to a k-stage guessing system would suggest that for

a target distortion level Dk, the best guessing exponent is E1(Dk; �=k). For large k, this is

approximated by E1(Dk; �)=k.

For the sake of comparison, consider another form of a two-stage guessing list, where the

�rst stage makes guesses on the �rst N=2 coordinates of X (until distortion D is achieved)

and the second stage then makes guesses on the second half of the coordinates. In this case,

we get

Ef[GN=2(X1; :::; XN=2) +GN=2(XN=2+1; :::; XN)]
�g � exp[N(E1(D; �)=2]; (29)

which means exactly halving the exponent. Thus, the earlier proposed two-stage guess-

ing mechanism has better guessing performance. However, the di�erence between the two

approaches vanishes as the number of hierarchy levels k grows.

6 Relation to the Two-Stage Source Coding Error Ex-

ponent

Consider now a situation where both D1 and D2 are speci�ed (e.g., good guessing exponents

are required at two speci�ed distortion levels), and again, the guesser knows in advance

the EPMF of X. In this case, as we already proved, the best guessing exponent achievable

is E2(D1; D2; �). We will now relate this to the two-stage source coding error exponent,

characterized in [7].

For an achievable quadruple (R1; R2; D1; D2), the two-stage source coding error exponent

F (R1; R2; D1; D2) is de�ned as the best attainable exponential decay rate of the probability

of the event

B =
n
x : d1(x; g

1
N(f

1
N(x))) > ND1; or d2(x; g

2
N(f

1
N(x); f

2
N(x))) > ND2

o
:

Kanlis and Narayan [7], have shown that

F (R1; R2; D1; D2) = minD(P 0jjP ) (30)

where the minimum is over the set

K(R1; R2; D1; D2) = fP 0 : R(D1; P
0) � R1 or R(R1; D1; D2; P

0) � R2g

where R(R1; D1; D2; P
0) is de�ned as in the last paragraph of Section 2.
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Let R0(D1; D2) be de�ned as the solution to the equation

R = R(R;D1; D2; P
0)� R;

with R being the unknown, provided that a solution exists. If a solution does not exist (i.e.,

if R(D1; P
0) > 0:5R(R(D1; P

0); D1; D2; P
0)), then R0(D1; D2)

4
= 0. It is easy to see that

there is at most one solution to this equation. Now,

E2(D1; D2; �) = max
P 0

min
S
[�maxfI(X;Y ); I(X;Y Z)� I(X;Y )g � D(P 0jjP )]

� max
P 0

min
S
[� inf

R>I(X;Y )
maxfR; I(X;Y Z)� Rg � D(P 0jjP )]

� max
P 0

[� inf
R>R(D1;P 0)

maxfR;R(R;D1; D2; P
0)� Rg � D(P 0jjP )]

= max
P 0

[�maxfR(D1; P
0); R0(D1; D2)g � D(P

0jjP )]

= max
P 0

sup
R<maxfR(D1;P 0);R0(D1;D2)g

[�R �D(P 0jjP )]

= sup
R>0

max
P 02K(R;2R;D1;D2)

[�R �D(P 0jjP )]

= sup
R>0

[�R � F (R; 2R;D1; D2)]: (31)

Thus, for �xed D1 and D2, the guessing exponent E2(D1; D2; �) as a function of �, is lower

bounded by the one-sided Fenchel-Legendre transform (FLT) of F (R; 2R;D1; D2) as a func-

tion of R. In [1], we established an analogous equality relation between the single-stage

guessing exponent and the FLT of the single-stage source coding exponent. Here, however,

equality is not guaranteed. As for the inverse relation, note that eq. (31) is equivalent to

the statement:

E2(D1; D2; �) + F (R; 2R;D1; D2) � �R; 8 � > 0; R > 0; (32)

which also means that

F (R; 2R;D1; D2) � sup
�>0

[�R � E2(D1; D2; �)]:

Again, unlike the parallel relation in [1], equality for all R is not guaranteed in general:

While the right-hand side is clearly a convex function of R, the function F (R; 2R;D1; D2) is

not necessarily so. This is demonstrated in the following example.

Example. Let P be a binary memoryless source with letter probabilities p and 1� p, and let

d1 = d2 be the Hamming distortion measure. Let h(p) = �p ln p� (1 � p) ln(1 � p) denote

the binary entropy function. Since R(D;P 0) = h(p0) � h(D) and binary sources with the

Hamming distortion measure are successively re�nable [5], then in this case,

K(R; 2R;D1; D2) = fP 0 : h(p0) � minfR + h(D1); 2R+ h(D2)gg : (33)
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Now, let R� = h(D1)� h(D2), assume that h(p) < R� + h(D1), and de�ne

U(t)
4
= min

x: h(x)�t

"
x ln

x

p
+ (1� x) ln

1� x

1� p

#
(34)

which for p < 1=2, t > h(p), can be also written as

U(t) = h�1(t) ln
h�1(t)

p
+ (1� h�1(t)) ln

1� h�1(t)

1� p
(35)

where h�1(�) is the inverse of h(�) in the range where the argument of h(�) is less than 1=2.

Clearly, U(t) is a monotonically increasing, di�erentiable function in the above range, and

let U 0(t) denote the derivative. Now, it is easy to see that

F (R; 2R;D1; D2) = U(minfR + h(D1); 2R + h(D2)g) =

(
U(2R + h(D2)) R � R�

U(R + h(D1)) R > R� (36)

This means that the derivative of F (R; 2R;D1; D2) w.r.t. R, which is positive, jumps at R =

R� from 2U 0(R�+h(D1)) down to U
0(R�+h(D1)), which in turn, means that F (R; 2R;D1; D2)

cannot be convex in this case.

7 Conclusion

We derived a lower bound on the two-level guessing exponent, and discussed the conditions

for its achievability. It has been also shown that the successively re�nable case is the ideal

case from the viewpoint of guessing as well as coding. Finally, we have shown that the

two-level guessing exponent can be lower bounded in terms of the two-level source coding

error exponent function with R2 = 2R1. However, this bound is not always tight.

Some open problems for future research are the following: (i) Devise a two-level guessing

strategy that is not informed of the EPMF but still attains E2(D1; D2; �). (ii) Alternatively,

�nd a tighter lower bound that can be achieved in the absence of knowledge of the EPMF. (iii)

Characterize the optimum performance for classes of more sophisticated guessing/searching

mechanisms (e.g., take advantage of the full information carried by unsuccessful guesses thus

far). These issues are currently under investigation.

Appendix

In this appendix, we prove that for some constant c, that depends only on the reproduction

alphabet sizes, the quadruple (RN + c ln(N + 1)=N;RN + �N + c ln(N + 1)=N;D1; D2) is

achievable w.r.t. P 0. We begin with the following simple auxiliary result.

Lemma 4 Let J = f1; :::; Jg (J positive integer), and for a given positive integer n, let

Tn = f(u1; :::; un) 2 J
n :

Pn
i=1 ln ui � nRg for some positive real R. Then,

jTnj � (n + 1)J�1 expfn[R + ln(2 lnJ + 2)]g: (A:1)
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Proof of Lemma 4. First, observe that by the method of types [9], we have

jTnj � (n + 1)J�1eBn (A:2)

where B = maxfH(V ) : E lnV � Rg, H(V ) and E being, respectively, the entropy and the

expectation w.r.t. a random variable V . Thus, it remains to show that B � R+ln(2 lnJ+2).

Consider the following PMF on J :

F (v) =
1

Cv
; v = 1; :::; J (A:3)

where C
4
=
PJ

v=1 1=v � 1+ln J . Now, let us examine the codeword length function (in nats):

L(v) =
d� log2 F (v)e

log2 e
� ln v + lnC + ln 2 (A:4)

Then, we have

H(V ) � EL(V ) � E lnV + lnC + ln 2 � R + ln(2 lnJ + 2); (A:5)

completing the proof of Lemma 4.

Consider now sequences (x1; :::;xn) 2 X l, where l = nN (n positive integer), xi 2 XN ,

i = 1; :::; n. Now, for a given � > 0, let

Al =

(
nX
i=1

lnG1
N(xi) � Nn(RN + �);

nX
i=1

lnG2
N(xi) � Nn(�N + �)

)
: (A:6)

Let us consider a two-stage, �xed-rate block code for l-vectors that operates as follows: If

(x1; :::;xn) 2 Ac
l , then the all-zero codeword is assigned at both levels. Else, (x1; :::;xn) is

encoded by codewords that are formed by concatenating the respective guessing words at

both levels. Since Al is fully covered by codewords within distortion levels D1 and D2, at

both levels respectively, and since, by the weak law of large numbers, the probability of Al

under P 0 tends to unity as n!1 (while N is kept �xed), we have constructed a sequence

of �xed rate block codes that satis�es eq. (8).

To estimate the number of codewords (and hence the rate) at the �rst level code, we apply

Lemma 4 by setting R = N(RN+�), ui = G1
N(xi), and J = jYjN , where the latter assignment

expresses the fact that in the �nite reproduction alphabet case, the guessing list size need

not exceed the total number of possible reproduction vectors. Thus, we can upper bound

the number of codewords in the �rst level by

M1 � (n+ 1)jYj
N

expfn[N(RN + �) + ln(2 ln jYjN + 2)]g

= exp

(
Nn

"
RN + � +

jYjN ln(n+ 1)

Nn
+

ln(2N ln jYj+ 2)

N

#)
: (A.7)

15



Letting n!1 for �xed N , we see that the exponent of this expression tends to RN + � +

ln(2N ln jYj+2)=N . In the same manner, one can verify that the total number of codewords

at the second level satis�es

lim sup
n!1

1

nN
lnM2 � RN +�N + 2� +

1

N
[ln(2N ln jYj+ 2) + ln(2N ln jZj+ 2)] :

Clearly, there exists a constant c (that depends solely on jYj and jZj) such that c ln(N+1)=N

upper bounds the O(logN=N) terms in the exponents of bothM1 andM2, for all N . Finally,

since � is arbitrarily small, this implies that (RN + c ln(N + 1)=N;RN + �N + c ln(N +

1)=N;D1; D2) is an achievable quadruple w.r.t. P 0 by de�nition.
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