
On Adaptive Strategies for an Extended Family of
Golomb-type Codes

Gadiel Seroussi
Marcelo J. Weinberger

Computer Systems Laboratory

Abstract

Off-centered, two-sided geometric distributions of the integers are often encoun-
tered in lossless image compression applications, as probabilistic models for prediction
residuals. Based on a recent characterization of the family of optimal prefix codes for
these distributions, which is an extension of the Golomb codes, we investigate adaptive
strategies for their symbol-by-symbol prefix coding, as opposed to arithmetic coding.
Our adaptive strategies allow for coding of prediction residuals at very low complex-
ity. They provide a theoretical framework for the heuristic approximations frequently
used when modifying the Golomb code, originally designed for one-sided geometric
distributions of non-negative integers, so as to apply to the encoding of any integer.

Index Terms: image compression, adaptive coding, Golomb codes, geometric distri-
bution, low complexity

Internal Accession Date Only

1 Introduction

Predictive coding techniques [1] have become very widespread in lossless compression of
continuous-tone images, due to their usefulness in capturing expected relations (e.g., smooth-
ness) between adjacent pixels. It has been observed [2] that a good probabilistic model for
prediction errors is given by a two-sided geometric distribution (TSGD) centered at zero.
Namely, the probability of an integer error value x is proportional to θ |x|, where θ ∈ (0, 1)
is a scalar parameter that controls the two-sided exponential decay rate. We assume in the
sequel that prediction errors can take on any integer value, an assumption that, in the con-
text of exponential distributions, is well approximated in practice by the use of large symbol
alphabets (e.g., 8 bits per pixel).

In applications where very low complexity is a primary concern, arithmetic coding of the
TSGD may not be an affordable option. For that reason, symbol-by-symbol prefix coding
of these distributions has been the subject of extensive research in conjunction with low
complexity lossless image compression algorithms. This research reveals that well-tuned
schemes based on symbol-wise coding can attain, for typical gray-scale images, compression
ratios quite close to that of their counterparts based on arithmetic coding [3, 4].

Since the problem of completely characterizing the optimal prefix codes for the TSGD has
been open until very recently (some very partial answers existed in [5]), the approach was
mainly ad hoc. Specifically, it was based on the analogy between the targeted distribution
and the one-sided geometric distribution (OSGD) of non-negative integers, for which it is
well-known that the Golomb codes [6] are optimal [7]. Given a positive integer parameter
`, the Golomb code of order ` encodes a non-negative integer y in two parts: a modified
binary representation of y mod `, and a unary representation of by/`c. Thus, given ` (which
depends on the rate of decay θ), the optimum Huffman tree has a structure that enables
simple calculation of the code word of any given source symbol, without recourse to the
storage of large code tables. In the context of adaptive coding, this property is crucial as it
may relax the need for a dynamic update of these tables due to possible variations in the
estimated parameter θ (see, e.g., [8]).

A popular approach [9] is to “fold” the negative error values into the positive ones.
Thus, an integer is encoded by applying a Golomb code to its index in the sequence
0,−1,+1,−2,+2,−3,+3, This is motivated in part by the observation that the dis-
tribution of folded indices is in some sense “close” to (but not quite) an OSGD. In addition,
a further reduction in complexity is obtained by reducing the family of Golomb codes to the
case where ` = 2m for some non-negative integer m. Choosing ` to be a power of 2 leads to
extremely simple encoding/decoding procedures: the code word for a non-negative integer y
consists of the m least significant bits of y, followed by the number formed by the remaining
higher order bits of y, in unary representation (the simplicity of the case ` = 2m was already
noted in [6]). The length of the encoding is m+ 1 + by/2mc bits. Even though this strategy
is sub-optimal for a TSGD centered at zero for every θ > 1/3, except for isolated singular
points (see Section 2 below), it is evidenced in [9] that the average code length obtained with
the best code in the reduced family (i.e., the envelope of all code length curves as functions
of θ) is often reasonably close to the entropy. It should be noticed, however, that the average
code length is computed there under the assumption that the index sequence is distributed
OSGD.

A different heuristic approach is proposed in [10], where a Golomb code is applied on the

1

absolute values of the prediction residuals, and then a sign bit is appended whenever a
residual is non-zero. It is evidenced that the envelope of all code length curves as functions
of θ often coincides with the curve corresponding to the Huffman code, obtained through
numerical computation. In [10], an explicit formula for the average length of the proposed
codes is obtained under a true TSGD assumption.

The issue of sequential adaptivity is not directly addressed in the referenced works, as the
above codes are used in the context of block coding. The source sequence is divided into fixed
length blocks, which are scanned twice in order to use the best code in the corresponding
family. A few overhead bits are needed to identify the appropriate code. In schemes that
target for a higher compression through context modeling [11, 4, 12], a sequential approach is
mandatory, as pixels encoded in a given context are not necessarily contiguous in the image
and, thus, cannot be easily blocked. With this approach, each pixel is encoded independently,
and the encoder determines the code parameter based on the values observed for previous
pixels. The decoder makes the same determination, after decoding the same past sequence.
In LOCO-I [4], the core of the prospective lossless/near-lossless image compression standard
JPEG-LS [13], the same family of codes as in [9] is used, with a very simple adaptation
strategy based on the accumulated sum of the magnitudes of prediction errors in the past
observed sequence (for each context).

In addition, a more general model than the TSGD centered at zero is considered in [4].
Although the centered TSGD is an appropriate model for memoryless image compression
schemes, it has been observed [4, 12] that prediction errors in context-based schemes exhibit
systematic biases, and a more appropriate model is given by an off-centered TSGD. This
model is also useful for better capturing the two adjacent modes often observed in empirical
context-dependent histograms of prediction errors. More specifically, the generalized model
is given by distributions of the form

Pθ,d(x) = p0(θ, d)θ|x+d|, 0 < θ < 1, 0 ≤ d ≤ 1/2, (1)

where p0(θ, d) = (1 − θ)/(θ1−d + θd) is a normalization factor, and d is a parameter that
determines the “offset” of the distribution. The restriction on the range of d is justified in
practice through straightforward application of appropriate translations and reflections of
the real line. For example, the interval containing the “center” of the distribution can be
located by using an error feedback loop [4, 12], for which the “resolution” is a unit interval
(integer-valued translation). Then, the reflection x → −(x + 1) can be used to halve the
relevant range of d. The centered TSGD corresponds to d = 0, and, when d = 1/2, Pθ,d is a
bi-modal distribution with equal peaks at −1 and 0. (The preference of −1 over +1 here is
arbitrary).

Recently, a complete characterization of optimal prefix codes for the TSGD (1) was presented
[14]. The family of optimal codes is an extension of the Golomb codes, and for some values
of the parameters θ and d the optimal codes indeed coincide with the codes used in [9],
[10], and [4]. The result of [14] makes it possible to approach in a more comprehensive way
the design of low complexity adaptive strategies for encoding TSGD models, in the sense
that the proposed strategies can be shown to derive from provably optimal schemes. In this
paper, we elaborate on the adaptive coding of TSGD models on a symbol-by-symbol basis,
and we present low complexity adaptive strategies that approach the performance of the
optimal codes in [14].

The remainder of this paper is organized as follows. In Section 2, we discuss the optimal
codes of [14] and we derive the corresponding average code lengths. In Section 3, we present

2

an optimal adaptive strategy corresponding to these codes. Finally, in Section 4, we make
some complexity compromises which lead to very simple, yet efficient adaptive strategies for
the family of TSGD models. We compare the performance of the proposed codes with the
achievable optimum, in terms of average code length.

2 Optimal prefix codes for TSGD’s

Throughout this section the values of the parameters θ and d in (1) are assumed known,
with 0 < θ < 1 and 0 ≤ d ≤ 1/2. The optimal prefix codes for TSGD’s are described in [14]
in terms of a partition of the parameter space (θ, d), such that each class corresponds to a
different code. We omit here a detailed description of this partition, as only the following
properties are relevant to our study:

a) Each class in the partition is associated with one of four different types of codes, termed
Type I, II, III, and IV, respectively.

b) For each type of code, the classes are indexed with a positive integer `, which is given
by an explicit many-to-one function (θ, d) → `(θ, d). For fixed d, this function is
non-decreasing in θ.

c) The various types of codes alternate in the (θ, d) plane as shown in Figure 1 for ` = 1, 2,
where the θi(`, d) denote boundary curves between classes.

For any integer K > 0, let GK denote the Golomb code [6] of order K. Also, for any integer
x, define

M(x) =
{

2x x ≥ 0,
2|x| − 1 x < 0. . (2)

Theorem 1 [14] Let x denote an integer-valued random variable distributed according to
(1), and let ` = `(θ, d). Then, an optimal prefix code for x is constructed by proceeding in
the different classes as follows:

(Type I) Encode x using G2`−1(M(x)).

(Type III) Encode x using G2`(M(x)).

(Type II) Encode |x| using the code described below, and append a sign bit whenever x 6= 0.
Let r be the integer satisfying 2r−1 ≤ ` < 2r, let s = 2r − `, and let s′ = s mod 2r−1,
where a mod b denotes the least nonnegative residue of a modulo b. Define

z(x) =

s′ x = 0,
0 x = s′,
x otherwise.

(3)

Encode |x| using G`(z(|x|)).

3

Figure 1: Optimal prefix code classes

(Type IV) Define s as in Type II, encode |x| using C(|x|) defined below, and append a sign
bit whenever x 6= 0.

C(|x|) =

G`(|x| − 1) |x| > s,
G`(|x|) 1 ≤ |x| < s,
G`(0)0 x = 0,
G`(0)1 |x| = s.

(4)

The codes of types I and III are asymmetric, in that they assign different code lengths to x
and −x for some values of x. In contrast, the codes of types II and IV are symmetric.

As stated in Section 1, the mapping (2) was first employed in [9] to apply Golomb codes
to alphabets that include both positive and negative numbers. Theorem 1 shows that this
strategy (which was also used in [4] and always produces asymmetric codes) is optimal for
values of (θ, d) for which the optimal code is of type I or III, but is not so for classes that yield

4

optimal codes of type II or IV. Moreover, the codes in the minimal complexity sub-family
used in both [9] and [4], for which the code parameter ` is a power of 2, are never optimal in
the centered case (d = 0) considered in [9], except for the case ` = 1 (Type I) and for isolated
singular points for which codes of Type III are optimal (see Figure 1). On the other hand,
the codes in the sub-family of [10] (which are always symmetric) can only be optimal when `
is a power of 2 (Type II), as only in this case z(x) = x for every non-negative integer x in (3)
(namely, s′ = 0). Of course, the sub-optimality of its individual codes does not necessarily
rule out a sub-family as a good approximation of the optimal family of Theorem 1.

Lemma 1 below summarizes the average code lengths of all the codes described in Theorem 1.
In order to state Lemma 1, it will be convenient to re-parameterize the family of off-centered
TSGD models (1) as

Pθ,ρ(x) =
{

(1− ρ)(1 − θ)θx x = 0, 1, 2, ...
ρ(1− θ)θ−x−1 x = −1,−2, ... (5)

The real parameter ρ designates the probability that a random variable drawn according to
(5) would be negative. It can be seen that when ρ is restricted to the range [θ/(1 + θ), 1/2]
and d ∈ [0, 1/2], the model classes given in (1) and (5) coincide, with

ρ =
θ1−d

θd + θ1−d . (6)

In the framework of adaptive coding, we will see in Section 3 that the representation (5) is
also more convenient in terms of the estimation of its parameters.

The values `, r, s, and s′ in Lemma 1 are defined as in Theorem 1. Also, logarithms are
taken to base 2.

Lemma 1 For all (θ, ρ), the per-symbol average lengths of the codes defined for the various
classes in Theorem 1 are as follows.

(Type I)

L1(θ, ρ) = 1 + blog(2` − 1)c+
θs
′

1 − θ2`−1 (1− Pθ,ρ(0) + θ`) . (7)

(Type III)

L3(θ, ρ) = 1 + blog(2`)c +
θs

1 − θ` . (8)

(Type II)

L2(θ, ρ) = 1 + dlog `e + (1− Pθ,ρ(0))θs
′
(

1 +
θ`−1

1− θ`

)
. (9)

(Type IV)

L4(θ, ρ) = 2 + blog `c + (1− Pθ,ρ(0))θs−1

(
1 +

θ`+1

1− θ`

)
. (10)

Notice that these average code lengths apply to all values (θ, ρ), and not just to the class
for which a code is optimal. Also, the dependence of L1, L2, and L4 on ρ is given through
Pθ,ρ(0) = (1 − ρ)(1 − θ). The average code length L3, on the other hand, is independent of
ρ. A special case of (9), in which ρ = θ/(1 + θ) (centered TSGD) and ` is a power of 2 (so
that z(x) = x in (3)), was derived in [10].

5

3 Adaptive coding of TSGD’s

In this section, we consider the case where the value of the parameters θ and ρ (or d) is
unknown a priori, in the framework of symbol-by-symbol coding. Even though, in general,
adaptive strategies are easier to implement with arithmetic codes, the construction of [14]
suggests a reasonable alternative for low complexity adaptive coding of TSGD models: Given
a sequential maximum-likelihood (ML) estimate of θ and ρ based on the sequence of source
symbols x t = x1, x2, ..., xt processed so far, determine the corresponding value `(θ, d) of the
index ` and the code-type for the class, and use the associated code to encode the next
symbol xt+1 .

To obtain ML estimates of θ and ρ, we define the indicator function u(x), which takes the
value 1 whenever the integer x is negative, and 0 otherwise. For a sequence of integers x t,
let

St =
t∑
i=1

(|xi| − u(xi)) (11)

and

Nt =
t∑
i=1

u(xi) (12)

namely, Nt is the total number of negative samples in xt, and St + Nt is the accumulated
sum of absolute values. It can be readily shown that St and Nt serve as sufficient statistics
for the distribution (5). The ML estimator ρ̃t of ρ at time t is given by Nt/t, while the ML
estimator of θ is

θ̃t = St/(St + t) . (13)

Thus, it is convenient to replace the parameter θ by a new parameter

S
∆= θ/(1 − θ) , (14)

for which the ML estimate is simply St/t. In case ρ̃t > 1/2, we apply the transform
x → −(x + 1) to the source symbol xt+1, and conceptually to the past sequence x t. The
accumulated statistics St are invariant under this transform, while Nt undergoes Nt → t−Nt,
so that ρ̃t ∈ [0, 1/2]. Also, if

Nt/t < St/(2St + t) (15)

then the ML estimate of ρ̃t in the allowed parameter range corresponds to a centered TSGD,
namely

ρ̃t = St/(2St + t) . (16)

Even though arithmetic coding is avoided, both the class determination for the estimated
pair (θ, ρ) and the encoding procedure may still be too complex in some applications. In
these cases, a complexity compromise can be achieved by reducing the family of codes under
consideration. Next, we present a specific family reduction, for which in Section 4 we derive
both optimal and low complexity, further simplified, adaptation strategies. We should point
out that this sub-family represents a specific optimality-complexity trade-off, and that similar
derivations could be possible for other sub-families. For example, a further simplified sub-
family, resulting from a more drastic reduction, is considered in [14], leading to an easier
one-dimensional analysis.

6

Figure 2: Code length penalty for C and CI,III at d = 0

First, following [9] and [4], we simplify the encoding procedure by limiting the sub-family
under consideration to codes for which the associated Golomb parameter is a power of 2
(thus, only one code, with ` = 1, is of Type I). This limitation also yields simpler adaptation
formulas, as will be shown in Section 4. An additional complexity reduction stems from the
fact that the mapping (3) used for codes of Type II becomes z(x) = x. Second, in order to
avoid the implementation of the mapping (4) used for codes of Type IV, which would yield
intricate adaptation procedures, we omit considering these codes. Specifically, let C I,III
denote the family of (asymmetric) codes of types I and III for which ` is a power of 2 (this is
the family considered in [9]), and let CII denote the analogous family of (symmetric) codes
of Type II (as discussed above, this is the subset of optimal codes in the family considered
in [10]). Furthermore, let C denote the union of CI,III and CII . We will derive both optimal
and minimal complexity adaptation strategies, based on the sufficient statistics St and Nt,
for C. Moreover, our strategies will not be limited to the centered TSGD case.

The coding performance of the richer sub-family C is illustrated in Figure 2, which shows the
compression loss due to the restriction from the full family of optimal codes of Theorem 1 to
C, for a centered TSGD. It also shows, in the dotted line, the compression loss due to using
CI,III alone, as in [9] and [4]. It can be seen that using only asymmetric codes can cause
compression losses close to 4.7% (for θ =

√
2 − 1, i.e., S =

√
2).

4 Low complexity adaptive coding of TSGD’s

In this section, we restrict our study on adaptive coding to the codes in C. We neglect
second-order effects on the code length, disregarding the vanishing adaptation cost due to
the convergence of the estimates to the true parameter values (“model-learning cost”). In
other words, it is assumed that the ML estimates St/t and Nt/t at time t already converged
to the parameters S and ρ, respectively. First, we derive the optimal decision regions to
choose among the codes in the family. By the above discussion, these regions are described
in Theorem 2 below in terms of S and ρ, although we also use θ wherever convenient. This
theorem follows from Lemma 1.

7

Figure 3: Optimal adaptation regions for C
Theorem 2 The optimal codes in C alternate in the (S, ρ) plane as depicted in Figure 3,
with boundaries between regions (labeled according to the corresponding code-type) given as
follows:

(i) The boundary between regions I and III, indexed by ` = 1, is ρ = 1− S.

(ii) The boundary between regions I and II, indexed by ` = 1, is ρ = S2.

(iii) The boundary between Region III, indexed by `, and Region II, indexed by 2`, for every
` > 0 (` a power of 2), is

ρ = −S θ2` + θ`−1 − 1
θ2` − θ2`−1 − 1

, (17)

which is an increasing function of S (or θ).

(iv) The boundary between regions II and III, both indexed by `, for every ` > 0 (` a power
of 2), is

1 − ρ
ρ

=
θ`−1

1 − θ` , (18)

which is a decreasing function of S (or θ).

The exact determination of the regions defined by Theorem 2 is still computationally expen-
sive. However, Lemma 2 below states some properties of the boundary curves which suggest
that these curves can be easily approximated with low complexity computations. Lemma 2
involves the constant φ ∆= (

√
5− 1)/2 (inverse of the golden ratio), which also appears in [3]

in connection with Golomb codes.

8

Lemma 2 (i) The boundary (17) intersects the curve ρ = S/(2S + 1) (i.e., the centered
distribution) at points where the value of S is

S1(`) =
−`
lnφ
− ε1(`) , (19)

where ε1 is a decreasing function of `, that ranges between − ln−1 φ− (
√

3−1)
−1 ≈ 0.71

(` = 1) and (1/2) − (1− φ)/(2
√

5 lnφ) ≈ 0.68 (`→∞).

(ii) The boundary (17) intersects the curve ρ = 1/2 (i.e., the maximum value of ρ in the
relevant range) at points where the value S2(`) of S satisfies

S1(`) < S2(`) < S1(`) + 1/(3.8`) . (20)

(iii) The boundary (18) intersects the curve ρ = S/(2S + 1) at points where the value of θ
is 2−1/`. The corresponding value of S is

S3(`) =
`

ln 2
− 1

2
+ ε3(`) , (21)

where ε3 is a decreasing function of `, that ranges between 3/2− 1/ ln 2 ≈ 0.06 (` = 1)
and 0 (`→∞).

(iv) For every ` > 1, the boundary (18) intersects the curve ρ = 1/2 at points where the
value of S is

S4(`) =
` − 1
ln 2

+ ε4(`) , (22)

where ε4 is an increasing function of `, that ranges between 1+φ−(1/ ln 2) ≈ 0.18 (` =
2) and (1/(ln 2) − 1)/2 ≈ 0.22 (`→∞).

Corollaries from Lemma 2

a. Since − ln−1 φ ≈ 2.078, (19) implies that S1(`) + 1/2 is within 4% of 2` (a power of
2) for every ` > 1. By (20), this also holds for S2(`) + 1/2. By the monotonicity of
the boundaries (17), it follows that we can approximate these boundaries by the lines
S = 2` − 1/2 for every ` > 1, independently of ρ. The fact that the boundary S
between approximate regions is such that S + 1/2 is a power of 2, results in a very
simple adaptation.

b. Since − ln−1 2 ≈ 1.44, (21) implies that S3(`) + 1/2 is also within 4% of 3`/2 for every
` > 0. Although the difference is larger for S4(`), the loss caused by approximating
these boundaries by the lines S = (3` − 1)/2 (thus using a code of Type II in cases
where the estimated parameter values indicate that a code of Type III is optimum)
can be reasonably bounded for every ` > 2. Specifically, it can be shown that the
maximum loss due to the use of a code of Type II where a code of Type III would
have been appropriate, occurs when ρ = 1/2 and S takes the maximum value in the
mismatch region, namely S = (3` − 1)/2 in this case. It can further be shown that in
this case the maximum loss ∆Lmax is upper-bounded as

∆Lmax =
1

3` − 1

(
1

[2/(3` + 1) + 1]` − 1
− 1

1 + 2/(3` − 1)

)
<

0.21
3` − 1

. (23)

9

On the other hand, the average length of the optimum prefix code in Region III, index
`, can be shown to be at least 1 + log(2`) + φ bits (as ` is a power of 2, s = ` in (8),
and it can be shown that θ ` > φ2). Thus, the worst case relative loss occurs for ` = 4
and it is less than 0.41%. In fact, a similar line of reasoning can be employed to show
that, for ` > 2, the worst case loss derived from using CII only, is always smaller than
the worst case loss corresponding to CI,III.

The result of the above corollaries is that for ` > 2 the boundaries between regions can be
approximated by the lines S = 2` − (1/2) and S = (3` − 1)/2, independent of ρ, which
are very easily handled as ` is a power of 2. This holds in the first case for ` = 2 as
well. The remaining boundaries also admit reasonable linear approximations, which were
designed under the low complexity constraint that every multiplication by a constant can
be performed with no more than two shifts and one addition/subtraction. This leads to
the following simplified adaptive coding strategy, which assumes that xt+1 is encoded with
Nt < t/2 (otherwise, the symbol −(xt+1 + 1) is encoded).

Encoding procedure

Let A ∆= St + t/2.
If A > 4t,

Let m be the least integer such that 2m+1t ≥ A (m ≥ 2), and let ` = 2m.
If A ≤ 3t2m−1, use Type II with index `. Else, use Type III with index `.

Else, let B ∆= St − t.
If 12B > 63t− 112Nt, use Type III with ` = 2.
Else if 16B > 5(6Nt − t), use Type II with ` = 2.
Else if 3B > 8(t− 3Nt) and B > −Nt, use Type III with ` = 1.
Else if 9(St +B) > 16Nt − 4t, use Type II with ` = 1.
Else, use Type I with ` = 1.

Update: If xt+1 < 0, Nt+1 = Nt + 1 and St+1 = St + |xt+1| − 1.
Else, Nt+1 = Nt and St+1 = St + |xt+1|.

End.

The additional code length penalty resulting from the approximate adaptation strategy is
negligible compared to the original penalty caused by the restriction in code family. This
is illustrated in Figure 4, which shows the overall code length penalty (relative to the opti-
mal prefix code) due to both code family restriction and approximate adaptation, for three
representative values of d. As expected from (23), the maximum additional penalty due to
approximate adaptation is about 0.41%, as seen in the “spike” at θ = 11/13 ≈ 0.85, d = 0.5.
Overall, the code family C, with approximate code region determination as per the above
procedure, is estimated to be within 1.8% of the average code length for the optimal prefix
code family, with exact code region determination. While this estimate has not been for-
mally proven, we expect it to follow from techniques similar to the ones used in Lemma 2
and its corollaries.

Notice that when the TSGD is assumed to be centered (line S = ρ/(1 − 2ρ)), the above
encoding procedure is particularly simple, as the boundary points between regions II and III
are S = 2`− (1/2), ` > 1, and S = (3`− 1)/2, ` > 0. In addition, the remaining boundaries
are located at S = 1/(

√
3 − 1) ≈ 1 + 3/8 (Region III, ` = 1, and Region II, ` = 2), and

10

Figure 4: Code length penalty for C with approximate adaptation strategy

S = 1/2 (regions I and II, ` = 1). However, even though St/t can be used as an estimate of
S as in the general case, it should be noticed that in this case it is not the ML estimator. A
decision rule based on ML estimation should rather depend on St +Nt, as the accumulated
sum of absolute values serves as sufficient statistics in the centered case. This rule can be
derived by similar methods.

The next natural step would be to add codes of Type IV to the adaptive strategy, with `
a power of 2. This would entail higher complexity, and in any case the coding penalty will
still remain at least 1.2%.

11

References

[1] A. Netravali and J. O. Limb, “Picture coding: A review,” Proc. IEEE, vol. 68, pp. 366–
406, 1980.

[2] J. O’Neal, “Predictive quantizing differential pulse code modulation for the transmission
of television signals,” Bell Syst. Tech. J., vol. 45, pp. 689–722, May 1966.

[3] P. G. Howard and J. S. Vitter, “Fast and efficient lossless image compression,” in Proc.
of the 1993 Data Compression Conference, (Snowbird, Utah, USA), pp. 351–360, Mar.
1993.

[4] M. J. Weinberger, G. Seroussi, and G. Sapiro, “LOCO-I: A low complexity, context-
based, lossless image compression algorithm,” in Proc. of the 1996 Data Compression
Conference, (Snowbird, Utah, USA), pp. 140–149, Mar. 1996.

[5] J. Abrahams, “Huffman-type codes for infinite source distributions,” J. Franklin Inst.,
vol. 331B, no. 3, pp. 265–271, 1994.

[6] S. W. Golomb, “Run-length encodings,” IEEE Trans. Inform. Theory, vol. IT-12,
pp. 399–401, July 1966.

[7] R. Gallager and D. V. Voorhis, “Optimal source codes for geometrically distributed
integer alphabets,” IEEE Trans. Inform. Theory, vol. IT-21, pp. 228–230, Mar. 1975.

[8] D. E. Knuth, “Dynamic Huffman coding,” J. Algorithms, vol. 6, pp. 163–180, 1985.

[9] R. F. Rice, “Some practical universal noiseless coding techniques - parts I and III,”
Tech. Rep. JPL-79-22 and JPL-91-3, Jet Propulsion Laboratory, Pasadena, CA, Mar.
1979 and Nov. 1991.

[10] K.-M. Cheung and P. Smyth, “A high-speed distortionless predictive image compres-
sion scheme,” in Proc. of the 1990 Int’l Symposium on Information Theory and its
Applications, (Honolulu, Hawaii, USA), pp. 467–470, Nov. 1990.

[11] M. J. Weinberger, J. Rissanen, and R. Arps, “Applications of universal context modeling
to lossless compression of gray-scale images,” IEEE Trans. Image Processing, vol. 5,
pp. 575–586, Apr. 1996.

[12] X. Wu, “An algorithmic study on lossless image compression,” in Proc. of the 1996 Data
Compression Conference, (Snowbird, Utah, USA), pp. 150–159, Mar. 1996.

[13] ISO/IEC JTC 1/SC 29/WG 1, “Lossless/near-lossless compression, working document
WD14495,” 1996.

[14] N. Merhav, G. Seroussi, and M. J. Weinberger, “Modeling and low-complexity adaptive
coding for image prediction residuals,” in Proc. of the 1996 Int’l Conference on Image
Processing, vol. II, (Lausanne, Switzerland), pp. 353–356, Sept. 1996.

12

