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Abstract

It has recently b~n shown that there a.re efficient. algorithms for qua.ntum
computers to solve c~rta.in problems, such a.s prime factorization, which are in
tractable to date on k:Iassical comput.ers. The chances for practical implenwu
tatioll, however, are limited by decoherence, in which the effect of an external
environment causes r~ndom errors ill the quantum calculation. To combat this
problem, quantum ertor correction schemes have been proposed, in which a sin
gle quantum bit (qub,t) is "encoded" as a state of some larger number of qubits,
chosen to resist particular types of errors. Most such schemes are vulnerable,
however, to errors in! the encoding and decoding itself. We examine two such
schemes, in which a $ingle qubit is encoded in a state of n qubits while subject
t.o dephasing or to arbitrary isotropic noise. Using both analytical and numerical
calculations, we argur that error correction remains beneficial in the presence of
weak noise, and tha( there is an optimal time between error correction steps,
determined by the s~rength of the interaction with the environment and the
parameters set by th¢ encoding.

1 Introduction

Soon after the discovery Qf fast quantum algorithms for factorization [1], it was realized
that the efficiency of qu~ntum computers depends crucially on the control of errors
during a computation. this is not surprising in itself, since classical computers also
require an active monitqring of errors to operate properly. However, the dissipative
techniques used in classkal error correction destroy the superpositions necessary for
quantum computation. 'this problem stimulated an important effort in the direction of
quantum error correction. In the last year or so, after the initial discovery of quantum
error correction codes ~y Shor [2] and Steane [3, 4], significant progress has been
made in the development and understanding of these codes. Much attention has been
devoted to the constructiion of codes using a variety of different techniques to convert
classical codes into quanjtum codes [5, 6] and providing a mathematical description of
large families of these codes [7, 8]. Minimal codes, that correct only one or a few errors,
were also derived [9, 10]. 'Most of this work addresses the issue of how most efficiently to
preserve a quantum stat¢ in a noisy environment given that encoding and decoding can
be done in an error-freeway. Only a few recent papers have addressed the possibility
of encoding and decoding in the presence of noise [11, 12]; these fault-tolerant schemes
are relatively complicat~dand involve many more qubits than the earlier simple codes.
It is therefore unlikely tpat we will see an experimental implementation of these more
elaborate proposals in t(he near term. On the other hand, the issue of errors arising
during encoding and deqoding has only been partially investigated in the simplest error
correcting codes propos~d so far [13]. These are the codes that could be implemented
in a near-future quantutn computer. The aim of this work is to bridge this gap, and
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provide numerical as we1J, as algebraic evidence that for certain regimes of noise, error
correction is worthwhile ~ven when noise is present during the encoding and decoding
steps, as will be the case ~n any real experiment.

This paper is organiized as follows. Section 2 reviews the effect of unwanted
environmental coupling qn a quantum computer, its description in terms of master
equations, and the fundartIental operation of error correcting codes. Section 3 presents
an analytical discussion qf the effect of errors on an evolution consisting of encoding,
free evolution of a.n encodrd qllbit, and decoding, with noise present at all stages. The
concept of a quantum tra~ectory is described in section 4, where numerical simulation
algorithms are presented tfsing two unravelings of the master equation (quantum jumps
and quantum state diffusi<jm) as well as direct numerical solution of the master equa.tion.
The numerical methods *e found to be in reasonable agreement with the analytical
model.

2 Noise and etror correction

2.1 Decoherence

A quantum system in cOII1plete isolation evolves according to the Schrodinger equation

(1)

where It/J} is the state of .he system (in this case a quantum computer) and H is the
Hamiltonian (in this case i'representing the action of the quantum "gates;" in general,
il will be time-dependent!). This evolution is unitary.

Unfortunately, the ~pproximation of a system being isolated is only good for
microscopic noninteractint systems. As a system becomes larger and more complicated,
the effects of the environment become more important.

Consider the examplf of a single qubit interacting with an external environment.
The state of the qubit is <llescribed by a vector in a two-dimensional Hilbert space. A
convenient basis is the canpnical basis B = {IO}, /l} }. Suppose that the qubit is initially
in a superposition state olD} + ,8ll} and the environment in some unknown state IA}.
As the system and enviro~ment interact, the initial product state (010) + ,8/1}) 01A}
can evolve into an entanglfd state olD) GIBo) + ,8ll} 0IBl ), where the environment has
become correlated with th~ state of the system (more realistic models of coupling with
the environment can be f~und in Ref [14]). The system can no longer be described by
a state on its own. Normally, an environment is very complicated, containing many
degrees of freedom, so it iJ likely that IBo} and IBI ) will be orthogonal (or very nearly
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so). Thus, if we trace Ollt the environment degrees of freedom, an ensemble of our
systems of interest is left in a mixture, described by a reduced densit~· matrix

(2)

In effect, the environment has measured the value of the qubit, and the superposition
has been destroyed. In this case, the evolution of the reduced system is no longer
unitary; and algorithms which depend on the unitarity of the evolution, such as the
Shor algorithm, will no lolnger function.

The general effects oW the environment on a quantum system can be very compli
cated and difficult to desqribe. However, a useful approximation is to assume that the
effects of the environmen~are Markovian, or local in time. In this case. it is possible to
describe the evolution of the reduced density matrix by a master equation of Lindblad
form [15]

where iI is the system Hamiltonian and the I j are the Lindblad operators representing
the interaction with the e~vironment. This Markovian approximation is generally very
good when the environment is large compared with the system and the interaction
between them is fairly weak. It might fail, however, for some realizations of quantum
computers.

What kinds of Lind~lad operators typically occur in (3)? This depends on the
physics of the system, but certain operators are common in quantum optical and atomic
physics models. One notmal effect of environmental interaction is dissipation, as in
spontaneous emission. Wthe qubit state 11) represents an excited state, there will be
a Lindblad operator pro~ortional to the lowering operator, of the form I = ~;,_,
(;'_11) = 10) and ;'_10) =iO). The qubit will tend to the ground state in the long term,
regardless of its initial state. If the environment has a non-zero temperature, there is
the possibility of thermaLexcitations as well, represented by another Lindblad operator
proportional to the raising operator;'+ = q! .

Even if the rate of ~issipation is small enough to be negligible, the environment
can still act to destroy s~perpositions. As we saw in (2), correlations which develop
with the environment can randomly dephase the basis states 10) and 11). This process
is represented by a Lind~lad operator proportional to the z Pauli matrix, L = ~;,:"
(;'zIO) = -10) and ;'zll):j:: 11)).

The most general interaction will reduce the qubit ensemble density operator to
the one at the center of tpe Bloch sphere. The individual (pure) states of the members
of the ensemble can be v~ewed as moving randomly on the surface of the sphere. This
effect is represented by i~otropic noise, with three Lindblad operators proportional to
;'X,;'y and a=, used in stludying the depolarizing channel [7, 10]. The exact choice of
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model is determined by the physics of the quantum computer and its environment.al
int('raetions.

2.2 Error correcting codes

For a qubit It!'), the most general form of single-qubit error induced by the environment
can be wri tten as

It!') ~ Elt!'),
where E is an arbitrary q>perator which can be decomposed as

E= e t 1l. + exCrx + eyCry + e;:Cr;:,

(4)

(5)

where 11. is the identity aind t.he Cri are the Pauli matrices. In the simplest case (when
one wants to protect a $ingle qubit), error correcting codes consist in encoding the
basis states 10) and /1) of a qubit in well chosen states of several qubits:

10) ~ IGo)
11) ~ IGI ),

(6)

(7)

where ICo) and IGI ) belo~g to the extended Hilbert space of several qubits. Numerous
techniques for constructilng these codes have appeared in the recent literature [16].
These error correcting te~hniques commonly assume that the encoding step (i.e. the
operation by which a siqgle qubit in state 010) + .B11) is entangled with additional
qubits to form the state qlGo) + .BIGI )) as well as the decoding and correcting steps are
done in a noiseless envir<jmment. The issue of noisy encoding and decoding has been
addressed little outside t~e context of fault-tolerant techniques, which require many
more qubits [11, 12]. In this work, we will focus on earlier and more compact codes,
and analyze the issue of :noisy encoding and decoding. In the next two sections we
review the two codes tha~ we have analyzed.

2.3 Dephasing nelise

If one seeks to protect a 'qubit against a dephasing noise (in Eq. 5 this is equivalent
to setting ey = ez = 0); it can be shown that the smallest possible code requires
three qubits to encode fhe states 10) and 11) of the initial qubit. This carefully chosen
superposition was first pr~posed by Shor [2]. We use here an equivalent version found
in Ref. [5, 17], in which

10) ~ IGo) = 1(00) + 1001) + 1010) + 1011) + 1100) + /101) + 1110) + 1111)
/1) ~ ICI ) = 1000) - 1001) - 1010) + lOll) -1100) + 1101) + IllO) - Ill1)

(normalization factors hav'e been omitted). We use the networks for encoding and for
decoding/correcting ShOWll in Fig. 1. Initially, the first qubit is in the state 010) + .811).
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This is the state we wish 0 protect. The second and third qubits are in the state 10).
The result of the encodin network is the three-qubit sta.t.e oleo) + ,BICI ).

(8)

(9)1 (1 1)
Uy = Vi -1 1 '

In these figures we C oose the various quant.um gates in such way that they can
be described by simple Ha liltonians. The gates A correspond to the unitary operation

I

I U __1 (11)
I ,.4-Vi 1-1

effected by the HamiltonJan HA = H~(O'r - O'z) + 1L) acting for one unit of time.
Similarly the gate Uy corr~sponds to the unitary operation

I

I
generated by the Hamilto lian Hy = -~Uy acting for one unit of time.

Please note that th e matrices are represented in the basis {IO), II)}, as is the
convention in the quantu computation literature. Unfortunately, this is precisely the
opposite of the usual conv ntion for the Pauli matrices. For this paper we have retained
the quantum computatio basis, as we do not present the Pauli matrices explicitly, but
this notational conflict sh uld be resolved.

(10)

The two-bit gates of/the network correspond to controlled phase shifts. These are
represented in the canonifal basis B = {IOO), 10I}, 110), Ill}} by the unitary operator

i (1 0 0 0)'i U= 0 1 0 0
I 0 0 1 0 '
I 0 0 0 -1

generated by the Hamilt nian H = 1r ,Pjl),i (8) ,Pjl),j, where i and j designate the two
qubits on which the gat acts and ,Pjl) = tCD. + O'z) is the projector on state 11). In
this case a state li,j) pi s up a phase 1r iff both qubits are in state II}. Variants on
this gate can be obtaine by replacing either or both of the projection operators with
,PjO) in the definition of t e Hamiltonian.

The decoding netwo k is just the reverse of the encoding network. After complet
ing the sequence of gates qubits 2 and 3 can be measured to identify the error. which
is followed by an adequa e correction of the first qubit [5, 17]..

I

2.4 Arbitrary n1se
I

In the previous section have shown how to protect a single qubit against dephasing
noise (i.e., noise generat d by a single Lindblad operator proportional to u=). If one
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a)

11/') --+-...-----1t

10)

10)

b)

I¢)

M

M

(11)

Figure 1: Encoding and dlfcoding networks from [17]. The graphical conventions are similar
to those in Ref. [18]. The g~te UA represents the operation 10) -- 10) + II} and II) -,. 10} -II}
(cr. Eq. 8 in the text). Th~ gate Fy is a 7i rotation of the qubit along t.he y axis (Eq. 9). The
two- bit gates denoted by a, line and two black dots are "control-phase" gates. They change
by 7i the phase of a quantuim state only when both qubits are in state 11) (d. Eq. 10).

seeks to protect a singl~ qubit against an arbitrary error of the form (5), such as
isotropic noise, then five qubits are necessary to encode a state. Different versions of
these codes (all equivale*t) have been proposed [9, 10]. We choose to implement an
equivalent version of the code given by [9]:

IGo) = Ibl)lOO) -1b:3)lll) + Ibs)101) + Ib7 )11O)
IGI ) =- Ib2)lll) -lb4 )100) -lb6)11O) + Ibs)lOl),

where Ibl) = (1000) ± IH1)), Ib3) = (1010) ± 1101)), Ibs) = (1001) ± 1110)), Ib7) =
2 '4 6 a

(1011) ± 1100)). The impl~mentationof this code is done in a way similar to the three
bit case. In the first stag~, a qubit in state It/Jin) = 010) + ,B11) is entangled with four
additional qubits (initiall~ in state 10)) to produce the state alGo) + ,BICI ). This is
done through the networ~ of Fig. 2. Similar gates as in the previous section are used.
Note that some of the coptrol-phase gates change the phase when a qubit is in state
10) rather than in state II!), unlike the three qubit code.

The decoding netwo~k is also given by Fig. 2 with the gate operations performed
in the reverse order (this iIs possible because each gate appearing in the network is self
adjoint). After decoding, ,qubits 2 to 5 are measured and, depending on the outcome,
an appropriate correction is applied to return the first qubit to the correct state. (For
a complete description of ithis code, see Ref. [9].)

3 Analytic co~siderations

Given that error correctio~can be implemented through encoding a one-qubit state into
an n-qubit state, it is instructive to consider some simple analytic conditions for the case
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10)

a)
T = 1 T = 2 T = 3 = 4 T = 5 T = 6 T = 7 T = 8 T = 9 T = 10

11,b)----+-~-+--o 1------+---1 UA I----<....--+----I UA 1--........--
o

: I

10)

10)
O·····10) ------_0_1 UA I----......-~-~........~+__O_I [fA ....:_--

I
Figure 2: Encoding netwo k for the five bit error correcting code from Ref. [9]. The network
has been adapted in order to provide a more natural implementation of the gates in term
of Hamiltonians. The dec ding network is identical to the encoding one read backwards.
Dashed line indicate units f time, Le., all the gates between two dashed line can be effected
in one unit of time. The t tal encoding (or decoding) time is therefore 10 units. The gate
that appear at time 2 is a eneralization of the control-phase gate; it imparts a phase factor
of 11" to the quantum state only if all qubits denoted by a black dot are in state 11). It will
effect the operation 11, i 2, ,1, is) -10 -11, i 2, 1, 1, is) and leave all others states untouched.
The gate at time 3 is a va iation: the qubits indicated by a white dot act as controls when
they are in state 10) rather than 11).
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of imperfect encoding, de(oding and correction. These conditions will complement our
numerical results and in~icate the parameter ranges for which correction is potentially
useful. .

Subsections 3.1-3.3 discuss a simple approach. To model the imperfect operation
of the code, we assume tl~at the decoherence which acts during the encoding and decod
ing does not get correcteti at all. Subsection 3.4 examines the validity of modeling the
influence of the environ~entas instantaneous errors of the type (4), and demonstrates
that this type of treatment can be made consistent with the master equation (3) to
low order.

3.1 Perfect single error correction

First we need a benchmatk. For simple decoherence, the probability that a single qubit
remains error free for a time T is defined to be

-"'nT
Psne = e . (12)

The "s" stands for succe$s-it could be that the aim is to successfully store the qubit
for time T, or to tranSnjlit it down a channel where the time taken for this is T
and "ne" indicates that !no correction procedure is applied to the qubit. If ~ is the
probability of an error aqd ~ <t:: 1, then ~ = 1 - Psne ~ KnT.

The subscript n on the decoherence rate K n denotes the fact that the number of
qubits needed for encodi*g is determined by the type of noise. The relevant examples
presented in the previou~ section are n = 3 for phase noise (modeled by 11 = VKUz )

and n = 5 for isotropic $ise (modeled by 11 = y'K.ux , 12 = y'K.uy and 13 = y'K.uz ).

We define the mismatch between the ensemble at time T and that T = 0 to be

(13)

where ItPini) is the initi~l pure state at time T = O. In the phase noise example,
an ensemble of single qubits given by I~'ini) = 2-1/ 2 (10) + 11)) decoheres so that the
mismatch m nec is easily slhown to be

(1.1)

We therefore obtain "'3 = 21>:, since the exponentially decaying term in the mismatch can
be identified with the pr<1lbability that the system remains error free. In the isotropic
noise case, the same initial ensemble decoheres and exhibits a mismatch of
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and so we identify 1'i.5 = 411:. The particular choice of initial state is made so that
it exhibits sensitivity to phase or to isotropic noise. It is also used in the numerical
simulations, so we compaa-e like with like.

Consider now the n-~ubit encoding and decoding procedure which is able to cor
rect perfectly for a singl~ error in one of the n qubits, but fails if there are two or
more errors. Using this ptocedure, the probability of the successful survival of a single
encoded qubit state for time T is the sum of the zero error and one error probabilities;

(16)

(Each qubit is assumed tp suffer the same decoherence rate 1'i. n .) Clearly, if 1'i. n T ~ 1,
perfect error correction is worthwhile because Pse(n) is closer to unity than is psne.
(Psne ~ 1- 1'i. nT, whereas pse ~ 1- n(r1

2
-1) 1'i.~T2 .) For the case 11. = :3 the crossover point

arises when psne = Pse(3). which yields 1'i.3T = In 2. For the case n = 5, Psne = Psc(5)
gives K5T = 0.14. Any rt'lalistic syst.ems are likely to be well down in 1'i.nT from these
values and so would cert~inly benefit from perfect error correction.

3.2 Imperfect er~or correction

Consider now the case wh~re the encoding (E) and decoding (0) for the error correction
procedure take a finite a~ount of time. Let this be T6, so 6 is the dimensionless fraction
of time taken by one full E+O stage. 0 may be essentially the inverse of E and so each
may take 6/2, but this i$ not crucial. The decoherence rate could well differ during
E and OJ we denote it bt II:~. The environment seen by the qubits may be different
when the encoding and d~coding interactions are occurring. The point to note is that
errors which occur durin$ the E+O stage are unwelcome. We assume that they don't
get corrected and so contribute directly to the error rate for qubit system.

If the problem at h~nd is the storage of a given qubit state for time T, it seems
reasonable to allow E+O to be part of T, so the encoded n-qubit state is then kept for
(1 - 6)T. Alternatively, it the goal is to propagate a qubit state down a channel where
the time for transmission is T, it would seem to be rp.ore realistic to add on T6, so the
whole process takes (1 +6)T. This distinction does not appear to be crucial, but we
examine both cases.

3.2.1 Storage with irpperfect correction

The probability s that th~re is no error in this system is the product of the probability
of all 11. qubits surviving f6 at a decoherence rate of K:~ with the probability of zero or
one error (which can be ~orrected) during the time (1 - 6)T at a. rate 1'i.n • Using (16),
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this gives

s"c(n) = e""""nK~Te5 (ne-(n-l)lCn(l-S)T _ (n - l)e-nlCn (l-S)T) . (17)

This reduces to p"c(n) given in (16) as 0 --+ O.

To make a simple cqmparison, let K~ = Kn. Equating s"c(n) to P"nc(n), the aim is
to find the crossover vahle for o. Clearly 0 is about lin; the next order correction in
KnT gives

1 (n - 1)3
0= - - 2 KnT + ... (18)

n 2n
Provided that 6 stays b<:)low this value, there should be benefit from error correction
even though errors may bccur during E+D. However, if 6 exceeds this value, the per
formance of the procedUlte is actually worse than doing no correction to a single qubit.
For the cases 11 = 3 and '11 = 5 and provided that K"T ~ 1, the bounds on b are not
very constraining. Practi!cal systems would probably have 0~ 1 and so would operate
in the regime where imphfect correction is beneficial.

3.2.2 Transmission with imperfect correction

The probability t that t~re is no error in this system is the product of the probability
of all n qubits surviving t;r6 at a decoherence rate of K~ with the probability of zero or
one error (which can be ¢orrected) during the transmission time T at a rate K n . Using
(16), this gives

t"c(n) ~ e-nlC~T6 (ne-(n-l)lCnT _ (n _l)e-nlCnT) .

This also reduces to p"c(n) given in (16) as 0 --+ O.

(19)

To again make a sirp.ple comparison, let K~ = Kn. Equating t"c(n) to P"nc(n), the
aim is to find the crossqver value for 6. Once again 6 is about lin; the next order
correction in KnT gives .

1 (n - 1)
6 = - - KnT + ... (20)

n 2
The conclusion for transIjnission is the same as that for storage. Practical systems with
KnT ~ 1 and 6 ~ 1 willlbe in the regime where correction is beneficial.

3.2.3 Single correctiion optimization

In the numerical simula~ions presented in Sect. 4, the encoding and decoding take a
set amount of time, rath¢r than a set fraction of T. We therefore define an alternative
parameterization of the ~ime taken for E+D, setting T6 = ~. Our analytic expressions
can be viewed either in ~erms of 6 or of ~, whiche\'er is most appropriate.
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Here we just give a $imple analyt.ic result.. optimizing the time T to achie ....e the
most benefit from correction. Assuming that. the time taken for E+D is fixed at tl,
what is the optimum T?· We find t.his by ma.ximizing the ratio R of the mismatch
without correction to the mismatch wit.h correction

(21)

and similarly for the tran~missioJl case. The maximum of R is an indicator of where
(imperfect) error correctio~ is giving the ma.ximum benefit in comparison to performing
no correction at all; it is one of the measures we use in our numerical work. To the
lowest approximation (as~uming that /{,71 T ~ 1 always), the optimum T is the same
for both storage and tran$mission, and is given by

(
2~ ) 1/2

To t ~P (n - l)Kn
(22)

Obviously, if the error corlrection is perfect (effectively taking zero time), we arrive at
the conclusion that it sholjlld be performed as often as possible; Topt = O. However, for
cases of practical interest (finite tl) this is not so as Topt is then finite. The dependence
of Topt on K will be comp~red to our numerical simulations in Fig. 6.

3.3 N-correction procedure

The basic aim of error cqrrection (within the context of this paper) is to maximize
the probability of success1storing or transmitting the state as well as possible. The
parameters T, K, /\,', nand 8 are therefore set by the problem at hand. T is set by the
total length of the transm~ssionchannel or the total required storage time. (The latter
might be the time for whi¢h the state "idles" between interactions in a larger quantum
computation; for such a clase the simple error correction procedures discussed in this
paper w.ould be sufficient to keep it coherent while it idles.) The decoherence is set by
the environment. nand 8 iwill be set by the chosen correction scheme and its physical
realization. However, ther~ is still some freedom. Given all the parameters above, the
number of correction procedures applied during T can be varied.

3.3.1 Perfect error cOirrection

Consider then the problem of optimizing error correction to achieve the greatest prob
ability of successful storag~ or transmission of a qubit state, given the freedom to apply
an arbitrary number N of E+D procedures during the time T. Assume that these are
spaced out equally. For the case of perfect error correction, where D= 0 so there is
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no possibility of an error occurring during E+D, it is obviously beneficial to apply as
many corrections as poss ble. The probability of success for N applications is

PNsc(n1 = (ne-(n-l)KnT/N - (n - l)e-nKnT/N)N . (23)

I

This maximizes for N ~ 00, tending to unity independent of the value of n, and is
consistent with our obse vation that Topt = 0 when ~ = O. Such behavior is like the
"Zeno" or "watchdog" e ct; there is no change at all from the initial state as N -+ 00.

I

3.3.2 Storage with i perfect correction

In any realistic situatio we will have C > O. For any finite value of C, there is a
non-vanishing probabilit of introducing a non-correct.able error for each application
of E+D, so it seems intu tively reasonable that there should be an optimum value of
N. Also, for the case of storage, it makes sense to impose Nc < 1, or else the time
taken for N applications of E+D will exceed the time for which the qubit is stored.
Practiccl.J.ly, it is likely th t N c~ 1 would hold.

The generalization f (17) to N equally spaced corrections is

SNsc(n) = e-nNK~Te51 (ne-(n-l)Kn((I/N)-e5)T _ (n _ l)e-nKn ((I/N)-e5)T)N . (24)

For the simplest case of11

decoherence rate always equal to len, equating the derivative
(with respect to N) to z ro, keeping only the leading terms and rearranging to give
the optimum N yields

I ( ) 1/2 ( . ) 1/2N ~I (n - l)lI':nT = (n - l)t.:n T. (25)
I 2c 2~
I

Note that this is consistert with our result (22), if we identify Topt with TIN.

I

3.3.3 Transmission 1ith imperfect correction

I
Since the time for N affilications of E+D does not eat into T, but adds to it for
transmission, there is n the absolute requirement that C < (liN). However, for
practical cases it is likely that N C~ 1, the same as for storage. The generalization of
(19) to N equally spaced corrections is

i
! N

tNsc(n) = etnNK~Te5 (ne-(n-l)KnT/N - (n - 1)e-nKnT/N). (26)

The optimum N is again ~iven by (25), although there are differences at the next order.

I,
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3.3.4 N -step optimization

As expected, there is a.n cptimum number N of corrections to apply when these pro
cedures themselves are imperfect. When N fJ ~ 1, the optimum is the same for t.he
storage and the transmission scenarios.

It is interesting to sUbstitute back the optimum N of (25), to obtain the maxi
mum achievable transmi~sion and storage success probabilities. At the first order of
approximation they are equal and given by

m;x(SNsc(n)) ~ mtx(tNsc(n)) ~ exp [-nKnT (2(n -l)fJKnT)1/2]

~ 1 - nKnT (2(n - 1)fJKnT)1/2 . (:27)

Thus, within the simple framework used here, the minimum probability for a qubit
state to incur an error in a total (storage or transmission) time T is approximately
nKnT (2fJ(n - l)KnT)1/2. For cases of practical interest, where this probability is small
(and so the success probaibilities are close to unity), this is a good approximation.

It is worth noting that, because of the square root in (25), the optimum N does
not grow too quickly. F<>r example, with phase noise at K = 10-5 (i.e. n = 3 and
K3 = 2K), and with ~ =, 10 and a total time of T = 10\ the minimum qubit error
probability (calculated u~ing (27)) of 0.017 arises from applying N '" 14 corrections.
With isotropic noise at t4e same K (i.e. n = 5 and K5 = 4K), and with ~ = 20 and an
elapsed time of T = 103

, the minimum error probability of 0.016 is obtained with just
two corrections.

3.4 Errors and quantum jumps

In all of this analysis we have been explicitly assuming that the influence of the envi
ronment produces errors of type (4). It might be asked what the relation is between
the general form of singlEt-qubit errors given in (4) and the Lindblad master equation
(3). At first glance they seem to have no resemblance to each other. The former is an
abrupt, instantaneous chl:Lnge of state which occurs at random times; the la.tter is a
continuous, deterministic!equation for the density operator p. This is the more correct
description of the system1s evolution. In what circumstances can we approximate it by
(4)?

If we represent the right-hand side of equation (3) by a superoperator £, then the
master equation becomes

d. r.
dtP = J-p, (28)

and given the df'll!o'ity op¢rator .0(0) at some initial time we can formally solve for it a
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time T later:
(29)

(30)

(31)

p(T) =

p(T) = eCTp(O).

We can expand the righ~ hand side of this equation to get
I

e-iHefrlTp(O)eiH1frT

+ :>;: r.T dt [e-Iii•• IT-, ILje-di•• ,fi(0)elb;.'L)elli;.(T-,I]

+L t iT dt f'dt' [e-iHefr(T-t>tje-iHefr(t-t') Lke-iHefrt'p(O)
j f 0 10

xeiH1rt!eiJi1fr(t-t') IjeiH1fr (T-t>] + ... ,

I

I

where

is a non-Hermitian "effe ive Hamiltonian" [21, 22, 23].

(32)

Already in this expa sion we can see the relationship between the stochastic model
of errors (4) and the co tinuous master equation (3) Each term in (30) looks like a
collection of instantaneo s "jumps" (or errors) interrupting a continuous state vector
evolution. I

However, it should be noted that this continuous evolution is not necessarily
the desired evolutionj th non-Hermitian component may produce unwanted effects,
depending on the Lindb ad operators. If we choose dephasing noise, so that t =
y'K.uz , then the effective Hamiltonian is fIef( = fI - i(~/2):u., resulting merely in a
renormalization of the s tej in the case of spontaneous emission, however, we have
t = y'K.u_ and fIef( = A - i(K/2)u+u_, which changes the relative weight of the 10)
and 11) states. •

I

This sort of contin~ous error does not fit the error correction paradigm, and
therefore cannot be com Ietely corrected. However, all is not lost: if KT is very small,
then it is possible to exp nd

I

where 6 is a function of t e commutator of fI and t, and to first order in KT the error
correcting algorithm will till work.

Similarly, we see th t the second and higher terms in (30) correspond to more
than one "error" occurri g during the time Tj hence, error correction techniques for
single errors will be ineffi ctive for these terms. But again, for small ~T, these terms
will be of higher order, correction is still beneficial.
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The situation is son ewhat more involved t.han this, however. For most models of
a quantum computer th Hamiltonian will be time-varying. Thus, the time-evolution
operators will not be the simple exponentials written in (:30), but some more compli
cated operators. In the imple case where a gate is effected merely by ·'turning on"'
some Hamiltonian for a et period of time and t.hen '"turning it off" again, the time
evolution operator for th operation of n gates would be

IT( T, 0) = e -iilntn ... e -iH2t2e -iHI t1.

The expansion would th4n become

p(T) = Teff(t. 0)p(0)T1ff(T, 0)

+~ iT dt [Teff(T, t)ljTeff(l, O)P(O)j~ff(i,o)ljt1ff(T. I)]
J I

+>1E1
T

dt it dt' [Teff(T,t)ijTeff(t, t')lkTeff(t', O)p(O)il k 0 0

~ tl, ~ t ~ t , ~ t ~ t ]
XTe1(i ,O)LkTeff(t, t )LjTeff(T, t) + .. ', (34)

where the effective time- volution operator Teff includes the non-unitary effects of the
environment, just as in ( 0). (Note that it is possible for the Lindblad operators to be
different during the oper tion of each gate.)

Let us now use thi expansion to analyze the effectiveness of error correction in
the presence of noise. B r simplicity we will examine the three-qubit error correction
scheme for dephasing no se.

As we see from figu 1 the 3-qubit encoding scheme can be effected by a sequence
of 5 Hamiltonians given n section 2.3:

TE(~' 0) = e-iHr,tr,e-iH4t4e-iH3t3e-iH2t2e-iilltl, (35)

while the decoding scheie is effected hy applying the same gates in the opposite orde"

tD(p. 0) = e-iHltr,e-iH2t4e-iH3t3e-ifltt2e-iHr,tl. (36)

I

In this case, E = D = i 1 + t 2 + t3 + t 4 + ts. The sum of these times is the time
E + D = ~ defined abo e. The effects of the environment are summarized by three
Lindblad operators of t form .jK.uz , one for each qubit. The effective Hamiltonians
then become

~ ~ 3ill:
I Heff =H- T 1l.· (37)

Assume that the qubits volve for a time T between error correction steps, defined as
the transmission scenari in Sect. 3.2.2. The procedure is then as follows: the initial
qubit is encoded into th ·ee qubits in a time E, evolves for a time T undisturbed, and
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is then decoded in time D. Assume further that between the encoding and decoding
stages, the Hamiltonian lfio = 0 for the three qubits (interaction picture). The density
operator is then

p(T + il)=

(38)

The third and fourth t¢rms of this expansion represent the possibility of an error
occurring during the en40ding or decoding phase. Such errors cannot necessarily be
corrected, and represent! a loss additional to that from the higher order terms in the
expansion. The first tWo terms represent the possibilities of no errors or a single
correctable error occurri~g.

The longer the time T between error correcting steps, the larger the higher-order
terms, while the shorter ~he time T, the higher the proportion 6 = b,.jT spent encoding
and decoding. Hence, thiere should be an optimal time Topt between error corrections
as a function of /'i, and ~, which minimizes the total error rate, consistent with the
result of (22). For dephajsing or isotropic noise, (22) will hold exactly to lowest order.

4 Numerical $imulation

Since the dimension of t(he Hilbert space of n qubits is 2n , the density operator p in
the n-qubit case can be riepresented by a complex Hermitian 2n x 2n matrix. This puts
severe constraints on the: memory of the computer used to simulate these systems. For
n = 3 and n = .5, a direqt numerical solution of the master equation (3) is feasible on
a workstation. Simulating the master equation for larger values of n requires a much
larger computer (more memory in particular), because of the exponential growth of
the Hilbert space dimen~ion. The difficulty of simulating such small 11 systems on a
classical computer illustriptes how much power would exist in a real quantum machine,

I

where the computation \~'ould actually run in the Hilbert space.
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Our n = 3 results (see below) wen' obtained by a straightforward integration
of the density matrix, u~ing a fifth-order Runge-Kutta algorithm for the numerical
integrat.ion. For our 11 *5 calculations, we have used an alternative approach, the
quantum state diffusion 111ethod. This involves an average over sequential evolutions
of a 2n -dimensional qua~tum state, and therefore needs less computer memory. A
workstation can probabl~ handle up to about a dozen qubits if they are simulated
this way. The drawback 'is that, because of the sequential runs required to construct
good statistics, such a s~mulation may require a lot of CPU time. The n = 5 case
can be handled by diredt integration of the master equation and we have checked
the accuracy of our quanjtum state calculations using direct integration of the master
equation. Since the requlred computer memory grows like 22ft for a direct solution of
the master equation, but,! only like 2n for a quantum trajectory simulation, the latter
method can be used for values of 71 where t.he former would be impractical.

Before we present. o~lr numerical results, we give a short description of quantum
trajectories as numerical tnethods, with particular reference to quantum state diffusion.

4.1 Quantum traijectory simulations

The storage problem duei to large density matrices can be overcome by unraveling the
density operator evoluti<jm into quantum trajectories [19, 20, 21, 22, 23, 24]. Since
quantum trajectories re~resent the system as a state vector rather than a density
operator, they often have a numerical advantage over solving the master equation
directly, even though on~ has to average over many quantum trajectories to recover
the solution of the mas~r equation. A single quantum trajectory can also give an
excellent, albeit qualitatiive, picture of a single experimental run.

We see from section! 3.4 that we can justify .the use of the stochastic error models
in sections 2 and 3, in spite of the continuous, deterministic character of the master
equation itself. This type of treatment, in which the evolution of the density operator
is written as a sum over rpany different stochastic evolutions of single wavefunctions, is
called an unraveling of thje master equation, and a single realization of these evolutions
is a quantum trajectory. The unraveling of section 3.4 is often used in simulating
quantum optical systems, where it is known as the "Quantum Jumps" or "Monte
Carlo Wavefunction" approach [21, 22, 23].

The evolution of a si!ngle quantum jumps trajectory is given by the (Ito) stochastic
differential equation

IdtP) =
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where the dNj are rea~ stochastic differential variables which are 0 except at cer
tain random times whel) they assume the value 1. These are independent. such that
dNjdNk = 8jkdNj , and have a mean rate of jumps M(dNj) = (L}Lj)",dt. Angular

brackets denote the qu~ntum expectation {C),j, = (¢' IChb) of the operator C in the
state It,b). The evolution between jumps is continuous and differentiable. The density
operator is given by the mean over the projectors onto the quantum states of the en
semble. If the pure states of the ensemble satisfy the equation (39), then the density
operator given by

(40)

(·H)

satisfies the master equaltion (:3). From t.his it is clear that the expectation value of an
operator 6 is given by

Quantum jumps is a useful conceptual picture, but it is not the only unraveling
of the master equation. It is convenient that we can use whatever unraveling we
choose based solely on calculational convenience, as they are all equivalent to the
master equation. Amon~ the most important is the qua~tum state diffusion (QSD)
equation of Gisin and P~rcival [20]. We have applied both jump and QSD equations
to the problems consider¢d in this paper. It turns out that to obtain good statistics, a
significantly smaller nUn)ber of trajectories need be summed when the QSD equation
was used. We thus limit further discussion to the QSD equation, a nonlinear stochastic
differential equation for *' normalized state vector It,b):

Idt,b) = -*Hilt,b)dt + L: ({Lj)",Lj - ~LjLj - ~(Lj)t/J{Lj)t/J) It,b)dt
)

+L:{Lj-{Lj)t/J) /t,b)dej. (42)
j

The first sum in this eq~ation represents the deterministic drift of the state vector
due to the environment,: and the second sum the random fluctuations. The dej are
independent complex difllerential Gaussian random variables satisfying the conditions

(43)

where M denotes the ens~mblemean. A QSD trajectory is continuous, but not differ
entiable. If the pure sta4es of the ensemble satisfy the QSD equation (42), then the
density operator given by (40) again satisfies the master equation (3).

To simulate the QSI!> equation, we use a publicly available C++ software library
written by two of the aUithors [2.5J. The software uses object-oriented programming
concepts to allow great $exibility in defining operators and states in Hilbert spaces
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with arbitrary numbers of degree of freedom. As an illustration, we show how the list
of Hamiltonians that. defilles the network effecting the encoding is implemented:

const int nOfGates=10!;
Operator H[nOfGates] ~ { A1+A2+A3, B023, C023, A4, B04, AO,

B03+B14, B01+B24, AO+A4, B03 };

The operators in the list ~re implemented as follows (again we give as an example the
operators A2 and B04 onllY):

IdentityOperator id;
SigmaX sx2(2);
SigmaZ szO(O);
SigmaZ sz2(2);
SigmaZ sz4(4);
Operator pr4 = 0.5~(id+sz4);

Operator prO = 0.5~(id+szO);

Operator A2 = (M_P~/2)*(sqrt(0.5)*(sx2-sz2) + id);
Operator B04 = (M_FI)*prO*pr4;

4.2 Numerical Results

The results obtained with the QSD method have been checked against those obtained
by a direct integration o~ the master equation. The disagreement, of the order of 1-2%
is purely statistical and lis due to the finite number of trajectories used to build the
average (around 200 tra~ectories for the three bit code and 200-400 for the five bit
code).

The simulations coij.firm the analytical results discussed in the previous section.
both for the three-bit and the five-bit code. One measure of the efficiency of a quantum
error correcting code is ~he mismatch between the decohered, corrected ensemble and
the initial state, as defin¢d in (13). This mismatch indicates how faithfully the initial
state has been preservedl in the face of noise.

The mismatch mneq for a single qubit undergoing decoherence is defined by (14)
for phase noise and (15) Ifor isotropic noise. Fig. 3 shows the isotropic noise mismatch
of a single qubit. This is the benchmark to evaluate the efficiency of the fiv(' bit error
correction code.

A similar figure can be obtained by plotting the mismatch m ec of a qubit that has
been encoded and later decoded. Instead of looking at the mismatch of a single qubit
in contact. wit.h an isotropic noise reservoir for a time T, one encodes the qubit into
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Figure 3: Mismatch betwe n the initial and final states of a qubit in contact with an isotropic
noise reservoir. The time s ale starts at t =20 to match the encoding and decoding times ill
comparing this figure with the numerical results for the case of a qubit with error correction.
This follows the storage sc nario of Sect 3.2.1.
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Figure 4: Mismatch bet een the initial and final states of a qubit with a five bit error
correction code. The time cale starts at t = 20 units to include the encoding and decoding
times (~ = 10 + 10 = 20). Each step (one or several gates) is effected in unit time, as
indicated in Fig. 2.
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Figure 5: Difference bet
numerical simulation and
a single qubit is encoded i
with noise occurring also
.represents encoding and
the 'encoded qubit is left i

en fflec and manalytic, where m ec is the mismatch occuring in the
analytic is the estimated mismatch from section 3. In both cases

to five and allowed to evolve in contact with a noisy environment,
uring the encoding and the decoding phases. Time on the axis
coding time (i.e., 6. = 10 + 10 = 20 units of time) plus the time
teracting with the environment.

five qubits (10 units of ime), allows the five qubits to interact with the reservoir for
T - 20 units of time, an finally decodes and corrects the qubit (10 units of time). The
resulting reduced densit operator is used to compute m ec via (13). This mismatch,
obtained by numerical s mulation, is illustrated in Fig. 4.

Alternatively, we c n use the results of Sect. 3 and estimate the mismatch by

1
manalytic = 2(1 - s"c(5», (44)

where s"c(n) is defined n (17). The agreement between this simple analytical model
and the numerical sim ations is very good, as illustrated in Fig. 5. The maximum
discrepancy is of the or er of 10 percent for our range of parameters.

Consistent with t analysis developed in Sect. 3.2.3, one can identify in these
numerical simulations a region of the /'i,-T plane for which error correction is likely to
help, despite noise occu ring in the encoding and decoding stages. This can be clearly
seen by looking (in anal gy with Eq. 21) at the positive values of log(mnec/mec).

Another possible easure (If the benefit of error correction is the difference mec 

m nec ' Positive values f the difference indicate that error correction is worthwhile.
However, this measure is of little use when both m ec and m nec go to zero, as their
difference also vanishes The log of the ratio does not have this drawback, and is
therefore preferable as n indicator of where error correction is beneficial. The region
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Figure 6: Surface and co tour plots of log(mnec/mec), where mec is generated numerically.
The shaded area indicate values of (K, T) for which error correction is useful. This figure
should be compared to Fi . 7. The thick line represents, for each given K, the optimum time
between the E and 0 stag s (cf. Sect. 3.2.3, Eq. 22).

of positive values of the og is represented by the shaded area in Fig. 6. One notices,
as expected, that for s I enough K and large T, error correction is desirable (since
log(mnec/mec) > 0 <==> mec < m nec ). For comparison, Fig. 7 shows the same quantity
where the analytical exp ession manall/tic of (44) has been used instead of mec'

I

Conclusion~5

An exactly similar t of calculations can be done for three bit codes in the case
of delocalizing noise, an similar behavior was observed. In both the three bit and five
bit cases, there is a secti n of the K-T plane where error correction remained beneficial
even in the presence of noise during encoding and decoding; and for low values of
the environmental inter ction strength K, there was an optimal time between error
correction steps. This is onsistent with the result obtained by Chuang and Yamamoto
[13].

From both the analytica arguments and the numerical simulations, we see that error
correction can prove wo thwhile even in the presence of noise during encoding and
decoding. For a given st ngth of the environmental coupling, there is an optimal rate
at which error correction should be performed, and for a given time of storage there is
an optimal number of er or correction steps.
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Figure 7: Same as Fig. 6'1ut here we plot log(mnecfmanailitic) instead oflog(mnecfmec). The
discrepancy between the umerical calculations and the analytical arguments is illustrated
in Fig. 5. .

The simulations pr sented in this paper are among the first to treat both the
execution of gates and t e influence of the environment realistically, in the sense that
the operation of gates ta es a finite amount of time during which noise continues to act
on the system. Moreove , models of the noise were used which correspond to common
environmental effects in tomic and optical physics.

While the theory of error correction has moved rapidly, it is unlikely that circuits
involving many qubits ill be experimentally realized soon. Systems of a few qubits
thus remain of great int rest. Three-bit and five-bit error correction are among the
first circuits that might e experimentally implemented, and hence our results should
be of relevance to near-f ture experiments in this field.

We also have seen that quantum trajectories provide a practical technique for
simulating systems with ultiple qubits. This may prove particularly useful in treating
systems with many qubi ,s, where solving the full master equation is impractical due
to the large size of the ilbert space.

These simulations ould be improved and extended in many ways. The Hamil
tonians used to represen the gates were chosen for convenience rather than reflecting
any particular physical ystem. It would be useful to get closer to the actual physics
of proposed quantum co puters, such as the linear ion trap of Cirac and Zoller [26].
In the same way, the co pIing to the environment might differ for different gates. It
would be straightforwar to include these effects.
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There are other interesting problems in quantum computation which might be
studied by techniques li~e those of this paper. The recently proposed fault-tolerant
error correction schemes ~re far more complicated than the ones treated in this paper.
They would be beyond ~he reach of direct numerical simulation of the master equa
tion with present compuiters, but may well prove amenable to a quantum trajectory
approach.

Quantum computation still faces many hurdles before becoming reality. But it is
far too early to say that the ingenuity of those working in the field is not sufficient to
overcome them.
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