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We have illustrated our techniques for de-

signing and implementing cyclic redundancy

checks for multilevel systems by discussing

a particular example where the number of

levels is 9. However, the techniques that we

have described in this article are applicable

in general. We hope that they will be use-

ful to engineers designing other multilevel

transmission systems.
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E�cient implementation of the shift register

We now consider how to choose a gener-

ator polynomial over Z9 so that the shift

register for computing the CRC can be im-

plemented e�ciently. We showed in the pre-

vious section that if g(y) 2 Z3[y] generates

a truncated code with Hamming distance 4,

and h(y) is any polynomial in Z9[y] whose

coe�cients are equivalent to those of g(y)

mod 3, then h(y) also generates a truncated

code with Hamming distance 4. When we

compute the remainder of the message mod-

ulo h(y) we will have to multiply by the co-

e�cients of h(y) many times, and we want

this process to be as easy as possible. We

can make the computation of the remainder

easy by insisting that all these coe�cients

are either 0 or �1, so that the only multi-

plications that we do are by 0 or �1. This

implies that given g(y), we should choose

h(y) to look formally exactly like g(y), ex-

cept that the coe�cients are now viewed as

elements of Z9 rather than Z3. In our ex-

ample we use the polynomial over Z9 which

is formally identical to the one found in sec-

tion 2, namely h(y) = �1� y + y11 � y13 �

y14 � y17 + y18.

We can improve the e�ciency of the shift

register by making multiplication modulo 9

easier. By our choice of the generator poly-

nomial, we only have to worry about multi-

plication by 0 and �1. In order to do any

computations modulo 9, we will need to con-

vert the symbol to a binary string. This

conversion is only needed at the beginning

and end of the transmission. We use the

following lookup chart to go back and forth

between binary and 9-level symbols:

0 0000

1 0001 -1 0010

2 0110 -2 1001

3 0100 -3 1000

4 0101 -4 1010

If we use this scheme, multiplication by

minus 1 simply requires us to transpose the

�rst two bits and the second two bits of

the binary encoding. In other words, if x

is encoded abcd, then �x is encoded badc.

This does not require any gates, (and nei-

ther does multiplication by 0 or by 1) and

so we will be able to do the shift register

computations in a straightforward manner.

Of course, we still have to design an adder

for the shift register. We need about 20{30

logic gates to do this. This is the major cost

of going to a 9-level system: adding modulo

9 cannot be done with current gate technol-

ogy without a sizeable number of gates.
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Fig. 1. Triples sent in synch, subjected to a burst

error �ve symbols in length. Symbols 3 and

25, which are 23 positions apart, are both cor-

rupted.

ity that the noise that causes the burst error

will a�ect all of the channels, and we want to

devise a scheme that will enhance the burst

error protection while at the same time not

strongly hurting the encoding and decoding

procedures. Our system was going to use

three wires to transmit the data. The mes-

sage would be transmitted in triples, with

the �rst triple of symbols going on the �rst

wire, the second triple on the second wire,

and the third on the third wire. We re-

peat this process for the entire message. If

we keep the triples in synch with eachother,

then a burst error of 5 symbol periods can

possibly corrupt data symbols that are 23

positions apart. We cannot guarantee that

this will be detected by our CRC because it

can only guarantee detection for corruption

that occurs in any 18 consecutive positions.

See �gure 1 for a picture of this.
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Fig. 2. Triples sent out of synch, subjected to a

burst error �ve symbols in length. All corrupted

symbols lie in a set of 17 consecutive symbols,

symbols 3 to 19 inclusive.

We can slightly modify our transmission

scheme and improve the burst error protec-

tion, using an idea similar to that described

in [5]. If we do not transmit the triples on

the wires in synch, but we delay the second

wire by one symbol period and the third

wire by two symbol periods, then all the

symbols corrupted by a burst of duration

5 symbol periods will be within a set of 17

consecutive positions. This will be picked

up by the CRC, so we have improved the

performance of the system by delaying the

transmissions on the wires. See �gure 2 for

a picture of this.

There is essentially no cost in speed or

complexity to do this, and any system which

will divide the message to send it across mul-

tiple channels that could be a�ected by a

single burst event will bene�t from this stag-

gering.
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the original polynomial mod 3.

Therefore once we have used the technique

of section 2 to construct a polynomial over

GF (3) = Z3 which generates a code trun-

cated at length n with Hamming distance 4,

any polynomial over Z9 which reduces mod

3 to the polynomial we have constructed will

also generate a code truncated at length n

with Hamming distance 4.

Lemma 3: Suppose m > 1 and P (x) is a

polynomial over Z with leading coe�cient 1.

Suppose that P (x)mod(m) generates a trun-

cated cyclic code over Zm of Hamming dis-

tance h. Then for all r � 1, P (x)mod(mr)

generates a truncated cyclic code (truncated

at the same length) over Zmr of Hamming

distance at least h.

roof: The proof is by induction on

r; case r = 1 is trivial. et (x) be a

polynomial over Z with degree less than the

truncation length, whose coe�cients lie be-

tween 0 and mr � 1 and with fewer than h

nonzero coe�cients. Suppose that P (x) di-

vides (x) (mod mr). Then P (x) divides

(x) (mod m), and since P (x) (mod m)

generates a truncated a cyclic code of Ham-

ming distance h it follows that (x) is equal

to the zero polynomial (mod m); in other

words, (x) = m: 0(x) for some 0(x)

whose coe�cients lie between 0 and mr�1�

1. Since the leading coe�cient of P (x) is 1,

no prime factor ofm divides P (x). It follows

that P (x) divides 0(x) (mod mr�1). But

0(x) has fewer than h nonzero coe�cients,

and so by induction on r, 0(x) must be the

zero polynomial, and hence (x) is the zero

polynomial, which completes the proof.

I . I ple en i n iss es

urst error protection

There are two types of errors which occur

in real systems. The �rst type are caused by

random noise in the system, and the previ-

ous section discussed techniques for coding

that would detect errors of this type a�ect-

ing a certain number of symbols. The sec-

ond type of errors are called burst errors:

these occur when a sequence of consecutive

symbols are compromised, typically by some

external event. In general, CRCs will pro-

tect against bursts whose length is the same

as the degree of the CRC because division

by the polynomial g(y) will yield a remain-

der di�erent than the recorded remainder of

the message.

In some systems, in order to increase the

transmission rate, the message is not sent

as a continuous stream of symbols across

one channel, but it is split up into several

channels. We need to consider the possibil-
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x^ + x^ + x^ + x^ + x - 1,

x ,

yields the minimal polynomial for the

primitive element that we have

constructed, and is therefore a primi-

tive irreducible polynomial of degree 17.

The output of this command is

(y) = 1� y � y2 � y3 � y4� y5 � y6 �

y7� y8� y9� y10+ y11+ y12� y13+ y17.

When we multiply (y) by (y� 1), we get

g(y) = �1� y + y11� y13� y14� y17 + y18.

The truncated code generated by g(y) has

Hamming distance 4, so it will detect any

errors which result in changes to at most 3

symbols.

The same method can be used to produce

other polynomials of degree 18 over (3)

which generate a truncated code with Ham-

ming distance 4. iven a number of such

polynomials, select the one with smallest

weight, because the smaller the weight the

simpler the implementation of the CRC will

be.

III. if in p l n i l er Z9

So far we have been discussing 3 level

codes, and we would like to have a 9 level

code. We could do the usual coding the-

ory following the same model as above over

GF (9) rather than GF (3). We could, al-

ternatively, lift the codes from the previous

sections to a code over Z9. This alternative

has the advantage of having a natural con-

nection to the symbols that are going to be

transmitted over the wires. We will follow

this method of working with a 9 level code.

Recent papers in the literature (see [4])

have described how to generalize binary

cyclic codes to codes over Z4. The general

idea is to follow an algorithm to get a poly-

nomial g(x) with coe�cients in Z4 so that

the natural homomorphism from Z4[x] to

Z2[x] maps g(x) to the generator of a binary

cyclic code. In [4], g(x) is required to be a

\basic primitive polynomial", related to its

use in de�ning alois Rings. This process

can be mimicked to lift polynomials from

Z3 to Z9, yielding a basic primitive poly-

nomial with coe�cients in Z9 which when

reduced modulo 3 is just the original poly-

nomial with coe�cients in Z3. However, we

do not really need to have a basic primitive

polynomial, only a polynomial that has at

least as good error detection as the polyno-

mial over Z3 from which it is lifted.

Case m = 3; r = 2 of the lemma below im-

plies that the truncated code over Z9 gen-

erated by any polynomial over Z9 has er-

ror detection capabilities at least as good

as the polynomial over Z3 whose coe�cients

are obtained by reducing the coe�cients of

DRAFT December 23, 1996
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x5+x3+x� 1 > is cyclic (true of all �-

nite �elds) of order 2(1871)(34511). We

need to �nd a generator of this cyclic

group, in other words an element of this

order, which we will construct by mul-

tiplying together three elements whose

orders are 2, 1871, and 34511 respec-

tively. So we need to �nd an element

of order 34511. If (x2 + 1)2(1871) is not

1 in the �eld, then it will be an element

of order 34511. (If it is equal to 1, take

another irreducible polynomial in place

of x2+1 and try again). To do this, �rst

use athematica to compute the powers

of x with the command

x_, _ :=

x, ,x^1 + x^1 + x^1 + x^ +

x^ + x^ + x^ + x - 1, , ,1,

then rewrite (x2 + 1)2(1871) as

((x2 + 1)729)5((x2 + 1)81)((x2 + 1)9)

:((x2 + 1)7) =

((x1458+1)5(x162+1)(x18+1)(x2+1)7),

exploiting the fact that raising polyno-

mials to powers of 3 is easy mod 3; This

can be computed using the athemat-

ica command

x,1 +1 ^ x,1 +1

x,1 +1 x^ +1 ^ , x^1 +

x^1 + x^1 + x^ + x^ + x^ +

x^ + x - 1 ,

which yields the result 1+x2+x4+x5+

x11+x13�x14�x15. This polynomial has

multiplicative order 34511 in the �nite

�eld GF (3)[x] x17+ x14+x13+x9+

x7 + x5 + x3 + x� 1 >.

3. The element 2 has order 2 in the �eld.

ultiplying this by x, which has order

1871, and by 1 + x2 + x4 + x5 + x11 +

x13 � x14 � x15, we get that x16 + x15 �

x14�x12�x6�x5�x3�x is a primitive

element of the �eld. If we call this ele-

ment b, then the minimum polynomial

for the element is

(y) = (y�b)(y�b3)(y�b9) � � � (y�b3
16

).

In athematica, call b the function

x_ :=x^1 + x^1 - x^1 - x^1

- x^ - x^ - x^ - x

and b3
n�1

is the function

x_ :=

-1 x ^ , x^1 + x^1 +

x^1 + x^ + x^ + x^ + x^ + x

- 1, x ,

. The athematica command

- 1 x

- x - x ...

- 1 x , x^1 + x^1 + x^1 +

December 23, 1996 DRAFT
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symbols. Thus, the detection scheme will be

a truncated 9 level cyclic code of length at

most 13500. Since the length of the pack-

ets that we will be sending is at most 13500,

if we �nd a primitive polynomial overGF (3)

of degree at least 10, then by the �rst

emma this will generate a truncated code

with Hamming distance 3. ultiplying this

primitive polynomial by (x � 1) will give a

polynomial of degree at least 11, which by

the second emma will generate a truncated

code with Hamming distance 4 as long as

we avoid codewords of the speci�ed form.

We want to organize the remainder symbols

into triples like the rest of the packet, and

hence we would like the degree of the prim-

itive polynomial to be congruent to 2 mod

3. computer search failed to �nd a primi-

tive polynomial over GF (3) of degree 11 or

14 which did not divide any polynomial of

the form 1 x
m� � m�

1 xm� � ;m n.

(The search did not check all primitive poly-

nomials of degree 11 and 14, so there may

be one with the required property.) How-

ever we did �nd some primitive polynomi-

als of degree 17 which do not divide any

polynomial of this form. One example is

(x) = 1�x�x2�x3�x4�x5�x6�x7�

x8 � x9 � x10 + x11 + x12 � x13 + x17.

We now describe the procedure which we

followed in order to �nd this primitive poly-

nomial of degree 17. Once we'd found it we

used athematica [2] to check whether it

divided any polynomial of the form

1 x
m� � m�

1 xm� � , m n;

it doesn't, but if it had we would have used

the same procedure to �nd another primi-

tive polynomial. The procedure can be used

in general to �nd primitive polynomials of

a given degree over GF (3), and is derived

from the results in [3].

. ind an irreducible polynomial of de-

gree 17 over GF (3). The multiplica-

tive group of (317) is cyclic with or-

der 317 � 1=2.1871.34511, so contains

an element of order 1871. The minimal

polynomial of this element (over GF3)

divides x1871 � 1, and is irreducible of

degree 17. Type the command

x^ 1 1 - 1, -

into athematica. This gives 110 irre-

ducible factors of degree 17 (and the ob-

vious factor of (x-1)). Choose one of

these; there is no clear reason at this

stage to prefer any one of these to any

other. The polynomial that we chose

was x17+x14+x13+x9+x7+x5+x3+x�1.

. The multiplicative group of GF (317) =

GF (3)[x] x17+ x14+x13+ x9+ x7+
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(P (x) divides (1� x )(1 x ) = x2 � 1

for some 2 2n 3 � 1).

But P (x) is primitive of degree d, and so by

standard properties of primitive polynomi-

als does not divide x �1 for any 3 �1.

The result follows.

In order to increase the Hamming distance

of the code we are using to 4 (which would

detect any error altering at most 3 symbols

in the packet), we can modify a standard

technique from binary transmissions: when

working with cyclic codes over GF (2), any

code whose generator is divisible by (x+ 1)

will detect any error altering an odd num-

ber of symbols in the packet. Thus, we can

take a cyclic code over GF (2) whose Ham-

ming distance is 3 and construct a new code

whose Hamming distance is 4 by multiply-

ing the generator by (x+1). This technique

does not directly work over GF (3), but the

following lemma demonstrates that we can

do a similar trick.

Lemma : Suppose g(x) is a generator of

a truncated cyclic code overGF (3) of length

n and Hamming distance at least 3, and sup-

pose that there are no codewords of the form

1 x
m� � m�

1 xm� � , m n. Then the

code of length n generated by (x � 1)g(x)

will have Hamming distance at least 4.

roof: Suppose that b(x) is in the

truncated cyclic code generated by

(x� 1)g(x). It must be of the form

(x � 1)c(x), where c(x) is in the truncated

cyclic code generated by g(x). Without loss

of generality, the the codeword c(x) has a

nonzero constant term: we can shift it if

required. Since b(x) = (x � 1)c(x) is in the

code generated by g(x), we know that it can-

not have fewer than 3 nonzero coe�cients.

Suppose (for a contradiction) that it has ex-

actly 3 nonzero coe�cients. ow b(1) = 0,

so these coe�cients must all be equal. It fol-

lows that c(x) = b(x) (1� x) is of the form

�( 1 x
m� � m�

1 xm� � ) for some m

n. But there are no codewords of this form

in the truncated cyclic code generated by

g(x). Therefore (x � 1)c(x) has weight at

least 4. This proves the lemma.

We will prove later that if b(x) is the gen-

erator for a truncated cyclic code over

GF (3) = Z3 with Hamming distance h, then

the truncated cyclic code overZ9 whose gen-

erator is b(x) (considered as a polynomial

over Z9 rather than GF (3)) will also have

Hamming distance h.

In our application, we work with Token

Ring packets, which have a maximum length

of 4500 bytes (this is Token Ring). ach

byte is to be encoded as a triple of 9 level
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In order to ensure reliable transmission,

some error detection needs to be included.

This article describes how to choose a cyclic

redundancy check polynomial (CRC) in

such a system, and we also discuss how to

implement such a system, describing a tech-

nique which increases protection against

burst errors, and e�cient implementation of

the shift register. We will focus our atten-

tion on a system with 9 levels because of

the particular application out of which this

arose, but everything that we talk about can

be done in a more general setting.

We assume that the reader is familiar with

CRCs over GF (2): see [1] for background.

In section 2, we describe how to choose a

CRC over GF (3) with Hamming distance 4

- ie. so that error resulting in a change in

up to three symbols in the packet will be de-

tected. In section 3, we show how to use this

to construct CRCs over Z9 with Hamming

distance 4. In section 4, we discuss imple-

mentation issues: we demonstrate how to

send a message over three wires so that the

burst error protection will be as good as pos-

sible, and we show how with an appropriate

choice of CRC the shift register can be im-

plemented in a particularly e�cient way.

II. l n i l er GF (3)

We will ultimately want to have error pro-

tection for a 9 level system. In order to do

that, we �rst need to construct a system

which will work for a 3 level system. We

will extend this in section 4, but we state

without proof at this stage that the 9 level

system will have error detection capabilities

at least as good as the 3 level system used to

generate it. We start with an easy emma.

Lemma : Suppose that P (x) is a primi-

tive polynomial overGF (3) with degree d >

1, and that n is an integer less than 3 �1
2

.

Then the code generated by P truncated at

length n has a Hamming distance of at least

3.

roof: et (x) be a nonzero polyno-

mial overGF (3), of degree less than n, with

fewer than 3 nonzero coe�cients. We want

to show that P (x) does not divide (x).

Clearly, (x) must be of the form x or

x (1 � x ) for some ; . Since P (x) is irre-

ducible of degree greater than 1, P (x) does

not divide x, and hence (since the ring of

polynomials over GF (3) is a unique factor-

ization domain) it does not divide x for any

. So we have

(P (x) divides (x))

( (x) = x (1� x ) for some ; n and

P (x) divides (1 � x ))
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I. In r c i n

In an e�ort to have high speed transmis-

sion without exceeding emissions regu-

lations, engineers have turned to transmis-

sions which encode information in multiple

voltage levels in place of the traditional bi-

nary transmission with two voltage levels.
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