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Abstract

We describe a system that is being used to segment gray matter from volumetric

representations of the human cortex obtained using magnetic resonance imaging. The

segmentation algorithm identi�es gray matter voxels and computes their connectivity.

The method di�ers from existing schemes in that it exploits knowledge of the anatomy

of human cortex and produces anatomically consistent segmentations. The method is

based on a novel and computationally e�cient technique of incorporating structural

constraints into the segmentation algorithm. Because the gray matter segmentation is

anatomically consistent, it can be used together with functional magnetic resonance

imaging measurements to visualize the spatial pattern of cortical activity within the

gray matter.

Keywords: Segmentation, human cortex, structural MRI, functional MRI, visualiza-

tion.
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1 Introduction

Magnetic resonance scanners can be used to measure various aspects of a source material.

In one important application magnetic resonance imaging (MRI) is used as a non-invasive

method of visualizing biological structures (sMRI). Recently, functional magnetic resonance

imaging (fMRI) has provided a method of visualizing a correlate of neural activity in the

brain.1 The ability to measure cortical activity non-invasively is an important breakthrough,

providing us with a new opportunity to study the activity of single human brains at relatively

high spatial resolution.

Among the various parts of the brain, the cortex is the most prominent, and one of the

most intensely studied. The cortex is divided into two hemispheres connected by a massive

set of nerve �bers. The cortex is composed largely of two types of tissue: gray matter and

white matter. Gray matter forms the outer layer of the cortex, encasing the inner white

matter almost completely. In humans, gray matter is, on average, 3 mm thick. Gray matter

tissue contains a high density of neurons (approximately 105=mm3 [31]) which form the

computational units of the cortex. White matter is made up of nerve �bers that connect

di�erent parts of the cortex, as well as the cortex with other parts of the brain. Functional

magnetic resonance imaging measures the neural activity in the gray matter.

Despite its complex outward appearance, the structure of each hemisphere is quite

straightforward and consistent across human brains. The cortical gray matter surface is

the same as that of a crumpled sheet; i.e., it does not have any holes or self-intersections.

To visualize the cortex as a three-dimensional structure from sMRI data, most algorithms

require some prior segmentation. This segmentation may be simply discriminating between

white matter, gray matter, and cerebral spinal 
uid (CSF, the 
uid that �lls the cranial

cavity), or the segmentation may involve a more elaborate labeling of di�erent anatomical

structures. Based on this segmentation, the brain is rendered as a three dimensional surface

and the observer sees mainly those portions outside the folds.

Because it is important to see neural activity buried deep within the three-dimensional

folds of the brain, visualizing fMRI data requires novel visualization techniques. An increas-

ingly popular way of visualizing such mappings is to superimpose fMRI measurements on


attened representations of the cortical surface [8, 9, 10, 32]. One method of obtaining a

1This correlate is the relative amount of oxygen in the surrounding blood-
ow. Because (a) the relative

amounts of oxygen around active areas of the cortex are di�erent from those around inactive areas of the

cortex, and (b) the paramagnetic properties of oxygenated and deoxygenated blood di�er, MRI can be used

as an indirect measure of neural activity.
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Figure 1: Functional MRI measurements in response to a visual stimulus overlaid on a 
attened
representation of the occipital lobe (source: Engel et al., 1997). The data represent the retinotopic,
with respect to polar angle, of several visual areas in the occipital lobe. The color codes the
stimulus angle at the moment each location within cortex was active. The angles are indicated by
the key on the upper right: UVM is upper vertical meridian, HM is horizontal meridian, and LVM
is lower vertical meridian. The left hemisphere represents only the right visual �eld. Reversals in
the change of the polar angle representation identify the boundaries between several visual areas
(V1,V2,V3,VP).


attened representation is to compute the best planar representation of a region of gray

matter such that distances on the plane are similar to the corresponding actual (geodesic)

distances on the gray matter surface.

Figure 1 is an example of how fMRI measurements can be represented on a 
attened

region of the occipital lobe. Data from monkey and human studies show that neurons

within area V1 are retinotopically organized: Neurons that are responsive to nearby regions

of the visual �eld are located close to one another within the gray matter layer. Because

of the retinotopic organization of visual areas, it is possible to create simple visual stimuli

that generate continuous traveling waves of neural activity in visual cortex [31]. The �gure

illustrates how the spatial structure of these traveling waves, represented on the 
attened

cortical surface, can be used to determine the locations and boundaries of di�erent areas of

specialized processing.

In order to create 
at maps, it is important not only to be able to identify regions in the

MR data that correspond to gray matter but also to determine their connectivity. The most

time-consuming aspect of creating 
attened representations of visual cortex is to identify the

layer of gray matter from the structural MRI of the brain. This task is often done manually,

though as we discuss later, several algorithms have been proposed.

In this paper, we describe a semi-automatic system that is being used to segment gray
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matter voxels in structural MR data. In addition to identifying gray matter voxels, the

segmentation also computes the connectivity of gray matter voxels within the gray matter

layer. Furthermore, the segmentation ensures that the topology of the connected gray matter

voxels is anatomically correct; i.e., it cannot have holes or self-intersections. This is of

particular importance if the gray matter segmentation will be used, together with fMR

measurements, to visualize the spatial pattern of cortical activity within the gray matter

layer. The presence of holes or self-intersections, caused by incorrect connections or erroneous

segmentations, could have disastrous e�ects on these spatial patterns.

Gray matter segmentation is di�cult for a variety of reasons. First, voxel intensities of

gray matter tissue are spread over a large range. Second, given the current spatial resolution

of MRI, regions of gray matter voxels can be as narrow as one or two voxels. This is thin

compared to regions of white matter voxels which make up the bulk of the MR volume,

so that a large percentage of gray matter voxels su�er from severe partial volume e�ects.2

Partial volume reduces the e�ectiveness of intensity-based gray matter segmentation algo-

rithms. Third, it is impossible to determine the connectivity of the gray matter voxels by

only examining the segmented gray matter voxels. For example, the gray matter voxels on

opposite sides of a sulcus (an infolding in the gray matter) could potentially be very close or

even adjacent to one another on the sampling grid. Yet, the gray matter voxels on opposite

sides of the sulcus should not be labeled as connected to each other. Because connectivity

cannot be discerned from the intensity-based segmentation alone, ensuring that the topology

of the segmented gray matter is anatomically correct is also impossible.

Various gray-matter segmentation techniques have been proposed and many of them use

generic image segmentation techniques that do not fully take advantage of knowledge of the

anatomy of the cortex [33, 29, 34, 30, 6, 3]. In our application, however, the gray matter

segmentation is ultimately used to reveal spatial patterns of cortical activity within the gray

matter layer so that the gray matter segmentation and its connectivity information needs to

be anatomically consistent. There are several techniques that do bene�t from some amount

of anatomical knowledge, but the manner in which such knowledge is employed tends to

be local and statistical [16, 28]. A notable exception is the method proposed by Joliot and

Mazoyer [17] which will be discussed later in the paper.

Unlike generic image segmentation techniques, existing methods using deformable mem-

branes (so called snakes or balloons) often do produce anatomically consistent segmenta-

2Partial volume e�ects occur when a voxel contains more than one tissue type. For example, the intensity

of a voxel straddling the gray/white matter boundary or gray matter/CSF boundary would have a mean

intensity value di�erent from a voxel containing gray matter exclusively.
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tions [5, 8, 18, 21, 25, 27]. If these membranes are initialized to be topologically equivalent

to a sheet, they are automatically consistent with the topology of the gray matter layer.

Unfortunately, the deformation of these membranes are quite prone to being captured by

local minima. These minima occur when the membrane is required to deform into sulci that

are deep but have narrow entrances. The region of human cortex near the occipital lobe,

for example, is highly convoluted and has many such sulci. As a result, good initialization

of such techniques is often required. On the other hand, these methods have the advantage

that they incorporate smoothness as part of their segmentation criterion and are capable

of producing sub-pixel classi�cation (of the boundary between white and gray matter, for

example). The segmentation method proposed in this paper could, quite straightforwardly,

be used to initialize some of these algorithms.

2 Method

Our method consists of four stages. First, the white matter and CSF regions in the MR

volume are segmented. Second, the desired cortical white matter component is selected by

the user. Third, the consistency of the white matter topology with the actual anatomy is

veri�ed. Finally, gray matter is segmented by growing out from the white matter boundary

while connectivity of the segmented gray matter is computed simultaneously.

2.1 Segmentation of White Matter and CSF

In the �rst stage, voxels containing white matter tissue and cerebral spinal 
uid (CSF)

are segmented. White matter is segmented before gray matter because (a) the variability

of white matter voxels is lesser than the variability of gray matter voxels, and (b) white

matter regions are also much larger in size than gray matter regions. Although only white

matter and CSF are being classi�ed, three classes are considered. The third class roughly

corresponds to gray matter but, as shall be seen later, the segmentation of this class is

poor, and will consequently be rejected in favor of the results of a secondary gray matter

segmentation algorithm. The intensity of a voxel belonging to each class is modeled as an

independent random variable with a normal distribution. Thus, the likelihood of a particular

voxel belonging to a certain class is:

Pr(Vi = vjCi = c) =
1p
2��c

exp

 
�1

2

(v � �c)
2

�2

c

!
(1)
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where i is a spatial index ranging over all voxels in theMR volume and c is one of fwhite; gray;CSFg.
Vi and Ci correspond to the intensity and classi�cation of voxel i respectively. Currently,

the user interactively adjusts the parameters �c and �c until a satisfactory segmentation is

produced. Typically, these parameters remain the same over all MR measurements that were

obtained by a given scanning protocol.

Next, the posterior probabilities of each voxel belonging to each class is computed using

Bayes' Rule and anisotropic smoothing. The posterior probability is computed for each voxel

independently using Bayes' Rule together with a homogeneous prior:

Pr(Ci = cjVi = v) =
1

K
Pr(Vi = vjCi = c) Pr(Ci = c) (2)

where K is a normalizing constant independent of c. Adopting a homogeneous prior implies

that Pr(Ci = c) is the same over all spatial indices i. The prior probability typically re
ects

the relative frequency of each class. For example, since white matter voxels occur more

frequently than gray matter voxels, the prior probability of white matter is larger than that

of gray matter.

In the second step, the posterior volumes are smoothed anisotropically in three dimen-

sions while preserving discontinuities. Figure 2 shows an example of a posterior derived

from a homogeneous prior along with its smoothed counterpart. The anisotropic smooth-

ing technique applied is a 3D extension of the original 2D version proposed by Perona and

Malik [22]. This step involves simulating a discretization of the following partial di�erential

equation for a small number of iterations:

@Pc

@t
= div(g(jjrPcjj)rPc) (3)

where Pc = Pr(C = cjV ) represents the volume of posterior probabilities for class c.

g(jjrPcjj) = exp(�(jjrPcjj=�c)
2) and �c represents the rate of di�usion for class c. The

function g(�) controls the local amount of di�usion such that di�usion across discontinuities

in the volume is suppressed. These parameters typically remain unchanged across di�erent

MR data sets. The intuition for applying anisotropic smoothing on the posterior probabilities

is deferred to the discussion section.

Finally, segmentation is carried out by labeling each voxel with the class that yields the

maximum posterior probability estimate. That is,

C�

i
=

arg max

c 2 fwhite; gray; CSFg Pr�(Ci = cjVi = v) (4)
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Figure 2: (Top row) Left: Intensity image of MR data. Middle: Image of posterior probabili-
ties corresponding to white matter class. Right: Image of corresponding MAP classi�cation.
Brighter regions in the posterior image correspond to areas with higher probability. White re-
gions in the classi�cation image correspond to areas classi�ed as white matter; black regions

correspond to areas classi�ed as CSF. (Bottom row) Left: Image of white matter poste-
rior probabilities after being anisotropically smoothed. Right: Image of MAP classi�cation
computed with smoothed posteriors.

where Pr�(Ci = cjVi = v) corresponds to the anisotropically smoothed posterior. Figure 2

shows the MAP segmentation results obtained �rst using a posterior with a homogeneous

prior, and subsequently with its smoothed counterpart.3 As can be seen from the �gure, the

segmentation results for white matter and CSF are quite good after anisotropic smoothing is

applied to the posterior volumes; the gray matter segmentation, on the other hand, remains

fairly poor. As a result, only the white matter and CSF segmentations are retained.

3Since we were using a head coil and working on small areas, we didn't �nd any need to use the technique

described in [33], which can be easily incorporated in our system if necessary.
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2.2 Selection of Cortical White Matter

As gray matter surrounds white matter almost completely, accurate white matter segmen-

tation can be used to obtain accurate gray matter segmentation. Thus, attention is next

focused on the white matter segmentation that was computed in the previous stage. Since the

white matter segmentation is represented on a grid, its digital topology needs to be de�ned.

White matter connectivity is de�ned using 26-neighbor adjacency; that is, two distinct white

matter voxels are adjacent to each other if their spatial coordinates di�er by no more than

one. Two white matter voxels are connected to each other if there is a path of white matter

voxels connecting the two such that all neighboring pairs of white matter voxels along the

path are 26-neighbor adjacent. Gray matter connectivity is also de�ned using 26-neighbor

adjacency. CSF connectivity, on the other hand, is de�ned using 6-neighbor adjacency; that

is, two distinct voxels classi�ed as CSF are adjacent to each other if exactly one of their

spatial coordinates di�er by one. The reason for de�ning the connectivity of CSF di�erently

is to prevent intersections between regions of CSF and white matter (or gray matter) [19].

At this stage, the user selects a voxel in the cortical white matter component, via a

graphical user interface, and a 
ood-�lling algorithm employing 26-neighbor adjacency is

used to extract the corresponding white matter connected component [13]. The 
ood-�lling

algorithm begins by marking the user's selection and then proceeds iteratively, marking all

unmarked voxels adjacent to existing marked voxels until there are no more unmarked voxels

adjacent to marked ones. The purpose of this stage is, primarily, to remove extra-cortical

components like the cerebellum. If the MR volume has been cropped to an appropriate region

of interest within the cortex, the cortical white matter component typically corresponds to

the largest white matter component.

2.3 Veri�cation of White Matter Topology

After the cortical white matter component has been selected, its consistency with cortical

anatomy is veri�ed. Since the gray matter is a sheet with no holes or self-intersections, and

it encases white matter almost completely, it is su�cient to ensure that the selected white

matter component is free of cavities and handles. Cavities are non-white matter regions

in the classi�cation that are completely surrounded by white matter while handles are also

holes but are not completely surrounded by white matter. An everyday example of a cavity

is the inside of a tennis ball; likewise, an example of a handle is the hole of a doughnut.

Figure 3 shows an example of a white matter cavity and a white matter handle. Handles
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Figure 3: Left: example of a white matter cavity. Note that the middle cube is missing.

Right: example of a white matter handle.

and cavities are detected at this stage and brought to the attention of the user who can then

edit the segmentation results to remove them.

Cavities are �rst identi�ed using a 
ood-�lling algorithm. The algorithm identi�es non-

white matter connected components that are connected to the boundary of the bounding

volume containing the cortical white matter component. This is accomplished by repeatedly

initiating the 
ood-�lling algorithm from non-white matter voxels on the boundary. After

that, all non-white matter connected components that have not yet been �lled must be

encased entirely by white matter; i.e., they must be cavities. The user can then choose to

�ll these cavities or to edit the segmentation so as to remove the cavities. In practice, these

cavities are typically small, and are usually �lled.

Identifying handles is more complicated; in the current implementation, the number of

handles is computed instead. The number of handles is computed from the Euler charac-

teristic � which is equal to the sum of the number of connected components and cavities,

minus the number of handles. Since the number of connected components is one (as a result

of second stage), and the number of cavities is zero (as a result of the previous step), the

number of handles is simply one minus the Euler characteristic. The Euler characteristic

is, in turn, computed as the sum of the local Euler characteristic over all 2 � 2 � 2 voxel

neighborhoods:

�local =
X
i

vi

8
� ei

4
+

fi

2
� oi (5)

where i ranges over all 2 � 2 � 2 voxel neighborhoods and vi; ei; fi; oi represent the number

of vertices, edges, faces and octants in the i-th neighborhood respectively [20]. Since there

are only 256 possible 2� 2� 2 neighborhood con�gurations, the local Euler characteristic of

each possible con�guration is precomputed and stored in a table. The Euler characteristic,
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(a) (b)

Figure 4: (a) (Top row) Left: MRI image with white matter and CSF classi�cation overlaid.
Right: MRI image with gray matter classi�cation overlaid. (Bottom row) Left: white matter
classi�cation. Right: two layers of gray matter classi�cation grown out from white matter
classi�cation. (b) Schematic showing two layers of gray matter grown out from the white

matter boundary. The connectivity of the white matter boundary and the �rst layer of gray
matter is represented by the links between adjacent �lled circles.

and thus, the number of handles, is then computed e�ciently using table lookups.

2.4 Gray Matter Segmentation and Connectivity

After the topology of the cortical white matter component has been veri�ed, gray matter

segmentation is computed by growing layers from the white matter boundary. Since the

white matter component is void of cavities and handles, the gray matter grown out from the

white matter boundary, when correctly computed, is topologically the same as a sheet. The

number of gray matter layers that are grown is determined by the spatial resolution of the

MR data. If the MR data has a spatial resolution of 1 mm along each spatial dimension,

then a maximum of 3 layers are grown since gray matter, in the anatomy, is generally 3 mm

thick (approximately) perpendicular to white matter. Figure 4 shows an example of gray
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(a) (b) (c)

(d) (e)

Figure 5: Green shaded cubes represent gray matter voxels; brown shaded cubes represent

possible white matter voxels from which these gray matter voxels could have been grown.
(Top row) (a)-(c): di�erent con�guration of pairs of gray matter voxels and their white
matter parents. (Bottom row) (d) 2D exception to the connectivity rule; (e) 3D exceptions
to the connectivity rule. See text for details.

matter segmentation produced by growing two layers from the boundary of the white matter

component.

Each additional layer of gray matter is grown out from the previous layer (or from the

boundary of the white matter component for the �rst layer) in the same fashion. The process

of growing a single layer of gray matter voxels is carried out in two steps: �rst, new gray

matter voxels are identi�ed and labeled; second, connectivity of the new gray matter voxels

is determined.

During the �rst step, unclassi�ed voxels (voxels which have not been classi�ed as white

or CSF) that are 6-neighbor adjacent to some gray matter voxel in the previous layer are

classi�ed as gray matter voxels belonging to the current layer. The gray matter voxels in

the previous layer are known as parents of these newly classi�ed voxels. Each new voxel is

classi�ed as gray provided all of its parents are connected (as determined by the previous
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connectivity step). In other words, the algorithm will not grow a new gray voxel if doing so

results in a contention for the new voxel among previous-layer voxels which are unconnected.

For example, it will not grow from two gray matter voxels on opposite sides of a sulcus if they

are separated by only one voxel. For the �rst layer, unclassi�ed voxels that are 6-neighbor

adjacent to some white matter boundary voxel are classi�ed as gray. Each new voxel is also

classi�ed as gray provided all of its parents are connected. Connectivity, in this case, is

determined from the 26-neighbor adjacency of white matter voxel parents.

During the second step, connectivity of the newly classi�ed gray matter voxels is com-

puted. Connectivity of gray matter voxels is divided into two categories: inter-layer and

intra-layer. Gray matter voxels between di�erent layers are considered connected if they are

6-neighbor adjacent. Ascertaining the connectivity of gray matter voxels within the same

layer is a little more involved as it requires examining the connectivity of the voxels' parents.

Figures 5 (a)-(c) show the parents of pairs of gray matter voxels in all possible con�gurations.

Two gray matter voxels within the same layer are considered connected if they are (1) 26-

neighbor adjacent, and (2) either share a common parent or have parents that are connected

(as computed in the previous connectivity step). In addition, the connectivity so determined

cannot result in intersecting regions. Figures 5 (d) and (e) show di�erent con�gurations of

voxels that result in intersecting regions. In Figure 5 (d), for example, if the green shaded

cubes (gray matter) were labeled as connected, then the digital region formed by these two

cubes would intersect the digital region formed by the two brown shaded cubes (white matter

parents or gray matter parents from the previous layer). Figure 5 (e) shows all the other

remaining cases. For the �rst layer, since connectivity of white matter voxels is determined

using 26-neighbor adjacency, two 26-neighbor adjacent gray matter voxels are considered

connected if they either share a common white matter parent or have white matter parents

that are 26-neighbor adjacent. Despite the complexity of the connectivity algorithm, it can

be e�ciently implemented with tables.

The output of this stage, and thus, of the entire algorithm, is (1) a segmentation of the

gray matter voxels in the MR volume, and (2) a connectivity graph where the vertices of the

graph denote the segmented gray matter voxels and the edges represent the connectivity of

adjacent gray matter voxels. Distances (geodesics) between pairs of segmented gray matter

voxels in the MR volume are then measured by computing the shortest paths between cor-

responding vertices within this connectivity graph [7]. Figure 6 plots the distances of gray

matter voxels from a selected gray matter voxel for di�erent distance measures. In Figure 6

(a), the 2D Euclidean distance is used. In Figure 6 (b), the distance used is the shortest

distance on the connectivity graph restricted to the current slice. Finally, in Figure 6 (c),
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(a) (b) (c)

Figure 6: The colored areas in each of the above images represent the same gray matter

segmentation of a region in the cortex. The intensities of these areas correspond to distances

from the same selected gray matter voxel (at bottom-center) such that bright areas represent

shorter distances and darker areas denote longer distances. Figure (a) plots the Euclidean
distances on the plane; i.e., the distances between two gray matter voxels in the image is the
length of the straight line segment between them. Figure (b) plots distance as the shortest
distance within the gray matter connectivity graph restricted to this plane (1D manifold).
Figure (c) plots distance as the shortest distance within the original gray matter connectivity

graph (2D manifold). Thus, in the latter, the shortest distance between two gray matter
voxels may be a path that is partially outside of the plane. The respective distances are
ordered such that the Euclidean distance is necessarily the shortest, followed by the 2D
manifold distance, and �nally, by the 1D manifold distance which is the longest of the three.

the distance plotted is the shortest distance on the full connectivity graph. The di�erent dis-

tances between two gray matter voxels is shortest when the Euclidean distance is used. Also,

distances measured using the full connectivity graph are no greater than distances measured

using the connectivity graph restricted to the current slice. For the purpose of visualizing

spatial patterns of cortical activity measured using fMRI, the full connectivity graph pro-

vides the appropriate distance relations. Thus, it is important not only to determine the

gray matter segmentation, but also the connectivity between gray matter voxels.

3 Results

The segmentation technique described in this paper has been implemented and is being used

to segment gray matter voxels in MR data. The segmented gray matter voxels and their

connectivity are used together with functional MR data to visualize the spatial pattern of

neural activity within the gray matter layer. The portion of the cortex currently being studied

are the parietal and occipital lobes, which are located at the posterior end of the cortex.

These regions are important for vision, and they are also the most convoluted parts of the
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Figure 7: Example of the windows based interactive system where the algorithms described in
this paper are implemented. The user can interactively perform a large number of operations,
for example combine automatic segmentation and unfolding with manual corrections.

cortex. Manual gray matter segmentation of just the occipital lobe of one hemisphere with

rudimentary segmentation tools requires about 18 hours for an experienced person. Much

of the time is typically spent on visually inspecting connectivity and ensuring topological

correctness. With the present method, the entire procedure takes about half an hour. The

total time required by the segmentation algorithm is about 2 minutes; the rest of the time

is spent manually verifying the segmentation on each slice.

The segmentation and visualization schemes have been implemented as part of a user

friendly interactive windows system, which permits the user to select regions of interest,

perform the di�erent algorithms described in this paper, verify and correct the automatic

segmentation, unfold the cortex, etc. Figure 7 shows an example of the windows in the

system.

Figure 8 shows several comparisons between gray matter segmentation results derived

manually and those computed using the proposed method. In this, and in all other com-

parisons shown in this paper, no manual editing of the segmentation was carried out. The

automatic segmentation results are similar to those obtained manually despite the large

number of deep and narrow folds in this region of the cortex. The proposed method has

di�culties when the folds are extremely thin; i.e., when the white matter is about one voxel

thick. This is due to the anisotropic smoothing algorithm; in the algorithm, thin regions

of white matter that have small posterior probabilities tend to be smoothed out in favor of
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larger regions of CSF. An improvement in the anisotropic smoothing technique should ame-

liorate this problem. It is also not clear that manual segmentations provide a gold standard

for assessing the problem as manual segmentations produced by di�erent people are often

di�erent.

Figure 9 shows 
attened representations of a portion of the same occipital lobe of the

cortex. Figure 9 (a) shows the results computed from a manual segmentation of the gray

matter while Figure 9 (b) shows the results computed from gray matter that was auto-

matically segmented. In each case, once the gray matter voxels have been segmented and

connectivity determined, a 
attening algorithm [32] is then applied to compute the best

possible 
attened representation of the gray matter layer such that distances between pairs

of gray matter voxels within the gray matter layer are as similar as possible to their (Eu-

clidean) distances in the 
attened representation. The di�erent intensities in the �gures

represent di�erent Euclidean distances in 3D of the corresponding gray matter voxel from

a �ducial plane; in this case, it is the distance from the leftmost sagittal plane. Brighter

regions indicate larger distances while darker regions indicate shorter distances. Although

the 
attened representation derived from manual segmentation is smoother, both 
attened

representations are qualitatively very similar in shape as well as in size. The two bright

regions in both �gures correspond to the lips of the sulcus around which they border. The

sulcus itself (known as the calcarine sulcus) is represented by the dark region in the middle.

In Figure 10, fMRI measurements from two di�erent experiments are overlaid on the


attened representations. The images in the left and right columns correspond to overlays

on 
attened representations of gray matter that have been segmented manually and au-

tomatically respectively. The top and bottom rows show results obtained using di�erent

visual stimuli. The overlay on each 
attened representation shows the temporal phase of

the neural activity caused by a periodic, moving visual stimulus that induces a traveling

wave within several di�erent cortical regions. The �gure shows that the results obtained

using the automatic segmentation technique is visually similar to that obtained with manual

segmentation. The spatial pattern of these phase maps are used to determine the locations

of several di�erent retinoptically organized visual areas.

4 Discussion

In this section, we �rst discuss the segmentation method proposed in [17] which is closely

related to ours. Following that, we review some of the decisions that motivated the design
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
(i) (j)

Figure 8: The left column of images show manual gray matter segmentation results; the
right column of images show the automatically computed gray matter segmentation. The

�rst three rows show sagittal slices of the occipital lobe. The �gures in the fourth row are

axial and coronal slices of the same region of cortex.
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(a) (b)

Figure 9: The left and right images show 
attened representations of a portion of the same
occipital lobe. On the left is the 
attened representation computed from a manual segmen-
tation of the gray matter; on the right is the 
attened representation computed using the

automatic segmentation technique proposed in this paper. The di�erent intensities represent
di�erent distances in 3D from a �ducial plane; in this case, it is the distance from the left-
most sagittal plane. Brighter regions indicate larger distances while darker regions indicate
shorter distances.

of the various stages in our method and speculate on feasible alternatives and possible

extensions.

Among the many proposed algorithms for gray matter segmentation, the one proposed

by Joliot and Mazoyer [17] is conceptually the most similar to ours. In common with our

approach, these authors favor white matter segmentation as a preliminary step. Also, gray

matter is de�ned from the boundary of the white matter segmentation. There are also several

di�erences between the two approaches. First, the white matter segmentation used here in-

corporates structural considerations through the novel application of anisotropic smoothing

on the posterior probabilities. Second, anatomical consistency of the gray matter segmenta-

tion is enforced by imposing topological constraints on the white matter. Third, connectivity

information between segmented gray matter voxels is computed. These last two computa-

tions are essential for the visualization of cortical activity from fMRI measurements.

The motivation for using white matter segmentation to guide gray matter segmentation

is quite straightforward. In the cortex, the volume of white matter exceeds that of gray

matter. Gray matter, on the other hand, is con�ned to a thin region on the boundary of the

cortex. In cortical MR data, this implies that regions of gray matter voxels may be as narrow

as one or two pixels. Since gray matter voxels border either on white matter or on CSF, such
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(a) (b)

(c) (d)

Figure 10: The images show 
attened representations of a portion of the same occipital
lobe. In the left column are 
attened representations computed from a manual segmentation

of the gray matter; in the right column are 
attened representations computed using the

automatic segmentation technique proposed in this paper. Overlaid on each of the 
attened
representations are phase measurements computed from fMRI data (displayed with di�erent
colors). These phase measurements represent the temporal phase of neural activity relative

to a temporally periodic visual stimulus. The top and bottom rows show results obtained

using di�erent stimuli.
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narrow regions su�er from partial volume e�ects, which if not explicit modeled will reduce the

accuracy of the segmentation. White matter segmentation is much easier because the large

regions of white matter voxels facilitate the e�ective use of spatial (structural) constraints

to improve segmentation. Since the signal to noise ratio (SNR) of the MR data is relatively

high, only fairly local spatial constraints are required. If the SNR is much lower, e�cient

algorithms that promote more global spatial constraints would probably be required [4].

Using anisotropic di�usion on the posterior probabilities to capture local spatial con-

straints was motivated by the intuition that posteriors with piecewise uniform regions result

in segmentations with piecewise uniform regions. There are several reasons for applying

anisotropic smoothing on the posterior probabilities instead of directly on the MR data.

First, applying anisotropic smoothing on the MR data does not take into consideration that

there are only three classes being segmented. It merely produces a result that is smoother

while preserving the main discontinuities in the original image. Second, and in a more gen-

eral context, anisotropic di�usion applied to the raw data is only applicable when the noise

is additive and class independent. For example, if the class means were identical and the

classes di�ered only in their variances, anisotropic smoothing of the raw data would not be

e�ective. On the other hand, applying anisotropic smoothing on the posterior probabilities

is still feasible even when the classes are described by general probability distribution func-

tions. This novel technique is related to (anisotropic) relaxation labeling [11, 15, 23], which

is further discussed in [26].

The current implementation employs a 3D extension of Perona and Malik's anisotropic

smoothing technique, though other anisotropic smoothing techniques, when applied to the

posterior, are likely to be equally, if not more, e�ective [1, 14]. The method proposed by

Saint-Marc et. al. [24] is also computationally e�cient and a viable alternative.

While the MR data that is currently being acquired and segmented is scalar-valued, the

proposed segmentation method could be readily adapted to segment multispectral vector-

valued measurements [12]. Since the anisotropic smoothing is performed on the posterior

probabilities, scalar anisotropic smoothing techniques, like those mentioned above, can still

be used. The only modi�cation would be in the calculation of class likelihoods.

The sole purpose of segmenting white matter �rst is to detect the white-gray matter

boundary accurately. While the current segmentation technique is often su�ciently accurate,

more accurate results could be obtained by using deformable membranes initialized with the

current segmentation. Likewise, deformable membrane techniques could also be used to

determine the gray matter-CSF boundary. The deformation should, similarly, be subject to
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the anatomical constraint that the distance to the white-gray matter boundary be no greater

than about 3 mm.

Finally, we should note that although the main motivation of the work described in this

paper is visualization of fMRI, a number of techniques and concepts here introduced can be

useful for other image processing applications in general and medical imaging in particular.

In [26] we further study the posterior anisotropic smoothing scheme and use it for other

image segmentation tasks. It will be interesting also to test the segmentation ideas here

described in problems such as 3D registration [2].
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