() Presdred

A Comparison of Five Object Models

Alan Snyder

Software and Systems Laboratory

HPL-91-80
June, 1991

object-oriented
programming;
object model,;
abstract object
model; C++; OSI;
network
management;

HP OpenView;
distributed systems;
Distributed
Application
Architecture;

tool integration
architecture;
software
development
environments; Iris;
object-oriented
database

Internal Accession Date Only

This document describes the object models of five key
Hewlett-Packard object technologies: the C++
programming language, the OSI systems management
standard and its extension to the HP OpenView
architecture, the Distributed Application Architecture
(DAA), the Tickle integration architecture for software
development environments, and the Iris object-oriented
database. The five object models are described by
annotating a description of an abstract object model
developed for this purpose. This document is an
expansion of a companion document (HPL-91-79) that
contains only the description of the abstract object
model.

© Copyright Hewlett-Packard Company 1991






1 Introduction

This document describes a proposed HP object model. The model is based on the ab-
stract object model prepared for the Object Management Group [12], which isitselfan
outgrowth of earlier work undertaken by an internal Hewlett-Packard task force [13].

The description of the model is annotated with descriptions of the object models of five
key Hewlett-Packard object technologies:

¢ The C++ programming language [4, 14].

¢ The OSI systems management standard [15] and its extension to the HP Open-
View architecture [6].

* The Distributed Application Architecture (DAA), as documented in the HP-Sun
submission to the Object Management Group [8, 9, 10]. The description charac-
terizes the properties of the DAA that are common to all possible object managers,
and, where relevant, explicitly identifies characteristics specific to the Distributed
Object Manager.

* The Tickle integration architecture for software development environments, as
documented in [2, 3, 7].

¢ The Iris object-oriented database [5].

The HP object model provides an organized presentation of object concepts and termi-
nology. It defines a partial model of computation that embodies the key characteris-
tics of objects as realized in HP object technologies. Its purpose is to serve as a
common framework for presenting and comparing HP object technologies. It may also
serve as a guide to possible evolution of object technologies towards the hypothetical
future “grand unified object system”.

The HP object model is an abstract object model in that it is not directly realized by
any technology. Any particular object technology will have its own object model,
which we call a concrete object model. A concrete object model is likely to differ from
the abstract object model in several ways. It may elaborate the abstract object model
by making it more specific, for example, by defining the form of request parameters
or the language used to specify types. It may populate the model by introducing spe-
cific instances of entities defined by the model, for example, specific objects, specific
operations, or specific types. It may also restrict the model by eliminating entities or
placing additional restrictions on their use.

An object system is a collection of objects that isolates the requestors of services (cli-
ents) from the providers of services by a well-defined encapsulating interface. In par-
ticular, clients are isolated from the implementations of services as data
representations and executable code.



The object model first describes concepts that are meaningful to clients, including
such concepts as object creation and identity, requests and operations, types and sig-
natures. It then describes concepts related to object implementation, including such
concepts as methods, data structures, implementation templates, and implementa-
tion inheritance.

The object model is most specific and prescriptive in defining concepts meaningful to
clients. The discussion of object implementation is more suggestive, with the intent
of allowing maximal freedom for different object technologies to provide different
ways of implementing objects.

There are other characteristics of object systems that are outside the scope of the ob-
ject model. Some of these concepts are aspects of application architectures, some are
associated with specific domains to which object technology is applied. Such concepts
are more properly dealt with in an architectural reference model. Examples of exclud-
ed concepts are compound objects, attributes and links, copying of objects, change
management, and transactions. Also outside the scope of the object model is the mod-
el of control and execution.

In the object model definition, italics are used to introduce or define new terms. Pa-
renthesized sentences and indented paragraphs are commentary and are not part of
the object model.

1.1 Classical vs. Generalized Object Models

As defined below, the HP object model is a generalized object model. As such, it differs
profoundly from the object models most familiar in current systems. It is intention-
ally a significant generalization of the more familiar object models. Before describing
the HP object model, it is helpful to compare and contrast the two different kinds of
object model. The terms used in this description are defined later, but the intuition
should be clear.

A classical object model, used in most existing object technologies, is one where a cli-
ent sends a message fo an object. Conceptually, the object interprets the message to
decide what service to perform. In the classical model, a message identifies an object
and zero or more actual parameters. In most classical object models, a distinguished
first parameter is required, which identifies the operation to be performed; the inter-
pretation of the message by the object involves selecting a method based on the spec-
ified operation. Operationally, of course, method selection could be performed either
by the object or by the system.

A generalized object model , used for example in the Common Lisp Object System [11]
and the Iris database [5], is one where a client issues a request that identifies an op-
eration and zero or more parameters, any of which may identify an object. In the gen-
eralized object model, method selection may be based on any of the objects identified
in the request, as well as the operation. Because method selection may be based on



multiple objects, it is best viewed as being done by the system, rather than by an ob-
ject. Operationally, of course, method selection could be performed in multiple stages,
with the final stage being carried out by an object.

The classical object model is a special case of the generalized object model. The clas-
sical sending of a message to an object is equivalent to a generalized request where
method selection is based strictly on the operation and the object identified by a dis-
tinguished parameter.

For example, sending the message print a-printer to the object a-spreadsheet in the
classical model is equivalent to issuing the request print a-spreadsheet a-printer in the
generalized model, under the assumption that method selection is based on a-
spreadsheet and not a-printer.

The generalized object model allows an object technology to provide additional func-
tionality. For example, an object technology could support defining a method that is
invoked only when the print operation is requested on a spreadsheet and a particular
kind of printer. This specialized method could take advantage of the unique capabili-
ties of the particular kind of printer.

Distributed systems with classical object models generally assign locations to objects.
With a generalized model, it is also possible to assign locations to operations, which can
affect even zero-parameter invocations. Thus, remote procedure calls are also a special
case of the generalized object model.

2 Acknowledgments

The development of the HP object model was influenced by the participants in the HP
object task force, the Object Management Group technical committee, and the ad hoc
ANSI unified object model group. Bill Kent in particular made many valuable contri-
butions. This version of the object model includes several innovations made in the
context of the ANSI group. Lorenzo Aguilar, Peter Canning, Ian Fuller, Colin Gerety,
Paul Golick, Dmitry Lenkov, Peter Lyngbaek, Joe Sventek, Ian Thomas, and Richard
Webber provided invaluable assistance in understanding and developing models of
specific object systems.



3 Overview

The entities of a computational system include objects, values (including object names
and handles), operations, signatures, and types (including interface types).

4 Object Semantics

An object system provides services to clients. A client of a service is any entity capable
of requesting the service. (A client may be an object, a person, or a computational pro-
cess.)

This section defines the concepts associated with object semantics, i.e., the concepts
relevant to clients. (Figure 1 shows the relationships among several key concepts de-
fined in this section.)

4.1 Objects

An object system includes entities known as objects. An object is anidentifiable entity
that plays a visible role in providing a service that can be requested by a client.

The most common roles played by objects are as parameters specified by clients in re-
quests for service and as results delivered to clients as part of performing a service. En-
tities playing roles not visible to clients, such as methods that are executed to perform
a service, may be objects when viewed at a lower level of abstraction. A computational
object system whose computational model is defined in terms of objects is called a re-
flective object system.

Objects have certain characteristics, which are explained below.

identifies identifies

Figure 1. Primary object semantics concepts



A C++ object of a class type (i.e., a class instance) that is not an unnamed base class
subobject is an object. Note that a C++ object is simply a region of storage.

A C++ object of a non-class type is not modeled as an object, because non-instance ob-
jects cannot support generic operations. Unnamed base class subobjects are created as
components of instances of derived classes. They are not modeled as objects, because
they are not visible to clients as separate entities, except where explicit type coercions
are used in the case of repeated inheritance, where a single derived class object has
maultiple unnamed subobjects of the same base class. We believe this case is too unusu-
al to warrant a more complex model.

An OSI managed object is an object.

A OSlI class, attribute, operation, notification, parameter, behavior, or package is not an
object. Although these entities have global unique identifiers, which are legitimate pa-
rameter values, they have no behavior that is characterized by requests. Note that
they do not have ASN.1 distinguished names, and thus cannot be named as the target
of an operation (OSI is a classical object model). They are not described by class defi-
nitions. They have no associated state.

A DAA object is an object.

A Tickle object is an object. A Tickle object has a unique associated object type, which
implies a maximal potential interface (a set of operations with signatures) to the object,
but does not imply any particular methods for those operations (different methods may
apply in different contexts). Although Tickle does not define data representations for
objects, an object type typically implies a particular data representation for objects of
that type. Each Tickle object may have associated infrastructure objects (such as a
file), which can be used to maintain state associated with the object. The association
between a Tickle object and an infrastructure object is not maintained by Tickle.

An Iris object is an object. Iris objects include surrogates and literals. Surrogates in-

clude functions, types, users, groups, and various transient objects, as well as objects of
user-defined types. Literals include atomic datatypes (such as integers) and aggregates
(such as sets and lists). The null value is not an object; it is not a member of any type.

4.2 Requests

Clients request services by issuing requests. A request is an event, i.e., something
that occurs at a particular time. The information associated with a request consists
of an operation and zero or more (actual) parameters.

A request is to be distinguished from static program text that, when evaluated, causes
a request to be issued. The object model does not define the syntax by which programs
cause requests to be issued. For example, it does not require that the operation appear
first in a request-issuing construct. The object model does not define the evaluation
process by which forms in a program are resolved to particular operations or particular
values.

The intended meaning of a request is that the operation indicates the service to be per-
formed and the parameters specify both the objects that are to participate in providing
the service and any other information needed to specify the result desired by the client.



The object model allows a request to name zero objects or multiple objects, in addition
to the usual case of a single object. The role of the identified objects in providing the
requested service may be arbitrarily large or small.

Note that the object model does not specify that the operation must be statically iden-
tified in client programs. For example, a programming language interface might pro-
vide a construct for issuing a request in which the operation name is a variable. Such
a construct would be similar to the funcall construct in Lisp.

A C++ function invocation is a request, except for an invocation of a virtual member
function named using explicit qualification, which instead is a method invocation.
(Note that only invocations of virtual member functions name generic operations.) Ac-
cess to a public data member by a client is modeled as an implicit request of a service
that returns a reference to the data member.

An OSI systems management request is a request. The parameters of an OSI systems
management request include standard parameters, positional parameters, and named
parameters. Standard parameters are defined for each base operation (create, get, ac-
tion, etc.) and correspond to elements of a CMIP protocol data unit. Positional and
named parameters are defined for specific actions. Positional parameters correspond
to elements of the information syntax datatype defined for a specific action. Named pa-
rameters are defined by parameter templates and are identified in requests by unique
identifiers. A parameter can be required, optional, or defaulted.

The results of an OSI systems management request have a similar form to request pa-
rameters.

Except for the create operation, all systems management requests include a standard
parameter that identifies a set of target objects within a system. A simple request iden-
tifies a specific object by specifying an explicit base object, a scope of 0, and no filter. A
complex request uses a non-zero scope to identify a set of objects, and may use an ex-
plicit filter to narrow the set based on the values of the objects’ attributes. The request-
ed operation is performed on each identified object. A complex request may also direct
a system to perform the operation with atomic synchronization over the entire set of
objects. An object may be requested to perform an operation on several attributes with
atomic synchronization. The target system is an implicit parameter of all requests. HP
OpenView extends the notion of request to include the identification of target objects
on multiple systems.

We view a complex request as invoking a higher order operator that issues multiple
simple requests, supported by an orthogonal transaction mechanism. See the discus-
sion under operation identity for further details.

(We do not model OSI notifications and confirmations.)

A DAA request is a request. A DAA request includes a distinguished parameter that
identifies the target object. A DAA request can be synchronous or asynchronous.

A Tickle operation invocation is a request. A Tickle request includes a distinguished
parameter that identifies the target object. All other parameters are optional (a de-
fault value is provided). A Tickle request can be synchronous or asynchronous. A client
is a tool activation operating within a dynamic context. The dynamic context deter-
mines which method performs the request. Each tool activation has an associated type



schema that determines which operations can be invoked by that client on any given
type of object. (We do not model Tickle event notifications.)

An Iris function invocation is a request. All Iris requests are synchronous.

A request form is a description or pattern that can be evaluated or performed multiple
times to cause the issuing of requests.

Note the distinction between a request (event) and a request form (description). For
example, a procedure call in a program text is a request form. Each evaluation of the
procedure call results in issuing a distinct request. Similarly, a single user gesture
(such as clicking a mouse button “over” an icon) can be viewed as a request form: the
gesture can be performed multiple times: each performance results in issuing a distinct
request.

Definition: A static request form is a request form that issues requests that all identify
the same operation. A dynamic request form is a request form that issues requests for
different operations. (The term static request form suggests that the identification of
the operation is normally performed prior to execution.)

A C++ function call (expression) is a request form, except for a function call that names
a virtual member function using explicit qualification, which instead is a method invo-
cation form. (A C++ expression that references a public data member is implicitly a
request form.)

In OSI, a CMIP protocol data unit of an appropriate type is a request form. The appro-
priate types correspond to the base operations, and include GetInvoke, SetInvoke, Set-
ConfirmedInvoke, ActionInvoke, ActionConfirmedInvoke, etc. A CMIP protocol data
unit is a value of a specific ASN.1 datatype. (The OSI model permits other protocols
that define other request forms.) The HP OpenView API defines request forms that are
C procedure calls. Other APIs could be defined, such as a C++ API.

DAA request forms are defined by particular language bindings. In the C language
binding, a request form is a C function invocation naming a function created by the
CDL compiler from a CDL interface definition.

The primitive Tickle request form is an invocation form that names the
operation_invoke or operation_invoke_with_wait primitive. Other request forms may
be defined by specific language bindings.

An OSQL function invocation is a request form. All OSQL statements implicitly issue
requests, as they are defined in terms of function invocation.

A value is anything that may be a legitimate (actual) parameter in a request. A value
may identify an object, for the purpose of performing the request. A value that iden-
tifies an object is called an object name. (Figure 2 illustrates the relationships among
several concepts associated with requests.)



There may be values that identify abstract entities other than objects. Such values are
called literals. (The term literal does not imply that these values are necessarily com-
pile-time constants.) For example, in a particular system, integers might be identifi-
able in requests, but they might not have all of the characteristics of objects, as defined
by that system. In other words, the object model permits but does not require that all
entities identifiable by request parameters be objects.

A C++ value of a non-class type is a value. A pointer to a C++ object of a class type is
an object name. C++ also provides reference parameters and reference variables, which
allow the pointer to be implicit. A pointer to an unnamed base class subobject is mod-
eled as an object name identifying the enclosing object.

Pointers and references are specified in a request form by expressions that include
variable names, Although C++ variables and expressions may denote values (and
therefore objects), C++ variables and expressions are not values, and thus are not ob-
ject names.

C++ values of a class type are never passed directly as function arguments; instead, a
reference is created, which becomes the argument to a constructor; the reference is mod-
eled as the request parameter. Thus, the default call-by-value semantics of function
arguments of class type is implicit in the model.

In OS], a value of an ASN. 1 datatype is a value.

An ASN.1 distinguished name is an object name. It is valid only between the time that
an object is created and deleted. OSI requires an object to belong to a specific system.
The object is either the system managed object or is directly or indirectly contained
within the system managed object. As currently defined, a distinguished name is valid
only with respect to the system containing the object. HP OpenView supports global
distinguished names. A distinguished name is a restricted form of ASN. 1 attribute val-
ue assertion.

identifies

specifies

identifies

Figure 2. Request concepts



An ASN.1 attribute value assertion may be an object name (if it names exactly one ob-
ject). The referent of an ASN.1 attribute value assertion may change as object at-
tribute values change (and as objects are created and deleted).

In the DAA, a value is an instance of a CDL datatype. A DAA object reference is an
object name.

In Tickle, a value is an instance of a NIDL datatype. A Tickle object designator is an
object name.

An Iris value is an Iris object or the distinguished value null. All Iris values except null
are object names. The null value is not a member of any Iris type.

A handle is an object name that reliably identifies a particular object. Specifically, a
handle will identify the same object each time the handle is used in a request (subject
to certain pragmatic limits of space and time).

An object technology might provide object names that identify different objects at dif-
ferent times or in different “locations”, for example, a value that denotes the nearest
available printer of a particular kind. These values are object names, but not handles.
While both are useful, the existence of reliable object names (handles) is an essential
characteristic of an object system.

The distinction between object names and handles can be illustrated by analogy with
the Unix! file system. Assume Unix files are objects, and consider three possible ways
of identifying a Unix file: pathnames, file descriptors, and inode numbers. A pathname
is an object name, but not a handle, since the file named by a pathname can change at
any instant as the result of renaming files or directories. (A relative pathname has the
additional ambiguity of being dependent for its interpretation on the file directory
identified as “current” by a given process at a given time.) A file descriptor is a handle,
because within a single process (or process tree, if file descriptors are shared), it will
always identify the same file object (as long as it remains open). Although an inode
number unambiguously identifies a particular file in the context of a single file system,
an inode number is not an object name, because it is not a value (it cannot be used as
a parameter in normal Unix system calls). Having both pathnames and file descriptors
is useful. A major limitation of Unix is the lack of a persistent form of a file descriptor.

The object model allows an object to have multiple handles, in a single context or in dif-
ferent contexts. For example, a handle in the context of a Unix process might be a
pointer into the address space of that process. In different processes, the same object
would be identified by different pointers. Such handles are valid only within the ad-
dress space of the process and only during the lifetime of the process, (The Unix file
system example above illustrates multiple handles for an object in a single context: A
Unix process can have multiple file descriptors that identify the same file. The file de-
scriptors differ in having distinct associated positions into the file.)

In C++, all object names are handles. A C++ object name identifies a unique object
within the dynamic extent of the object. After an object is destroyed, any handles for
that object are considered invalid. (However, almost all implementations of C++ allow

1. “Unix” is a registered trademark of AT&T.



a handle to be used after the object is destroyed, with unpredictable results that may
include accessing some other object.)

In OSI, an ASN.1 distinguished name is a handle. A distinguished name identifies a
unique object within the dynamic extent of the object. After an object is destroyed, any
handles for that object are considered invalid.

The characteristics of a DAA object reference are determined by the object manager that
manages the named object. A Distributed Object Manager object reference is a handle.

A Tickle object designator is a handle.

All Iris object names are handles.

An object is defined to participate in a request if one or more of the actual parameters
of the request identifies the object.

The word participate is not intended to imply any particular degree of involvement by
the object in providing the requested service. At one extreme, the object might actually
perform the requested service. At the other extreme, the service might simply manip-
ulate the object name as a value.

A request causes a service to be performed on behalf of the client. One outcome of per-
forming a service may be that results are returned to the client. The results associ-
ated with a request may include values as well as status information indicating that
exceptional conditions were raised in attempting to perform the requested service.

The object model does not specify how parameters, results, and exceptional conditions
are identified by a client. Possibilities for identifying parameters and results include
by position (ordered parameters) and by name (keyword parameters). These details
would be specified by an elaboration of this model.

C++ requests identify parameters by position. Requests that invoke non-static mem-
ber functions include a distinguished parameter that identifies the target object. The
results of a C++ request consist of a single return value that becomes the value of the
invocation expression. C++ does not provide a way of returning exceptional conditions,
although a proposal to that effect has been accepted by the ANSI C++ committee.

The identification of parameters in an OSI request form depends upon the communi-
cation protocol. In CMIP, standard parameters and positional parameters are identi-
fied by position, as elements in an ASN.1 datatype that defines the transmission
syntax of a protocol data unit. Named parameters are identified as keyword parame-
ters using the ASN.1 identifier assigned to the parameter definition. Result parame-
ters are specified similarly.

DAA request parameters are identified by position. A parameter may be an input pa-
rameter, an output parameter, or an input-output parameter. A DAA request returns
a single result value, as well as the output parameters. In the C language binding, a

10



single output parameter encodes the completion status. (Explicit exception indications
are under consideration.)

Tickle request parameters are identified by position. A parameter may be an input pa-
rameter, an output parameter, or an input-output parameter. A Tickle request returns
a single result value, as well as the output parameters. There is no current provision

for returning exceptional conditions.

Iris request parameters are identified by position as elements of a tuple object. An Iris
request returns a single result value. An Iris operation may generate warnings and er-
rors; warnings and errors are implicitly collected in a queue associated with the client.

4.3 Operations
An operation is an identifiable entity that denotes a service that can be requested.

The purpose of operations is to characterize sets of requests that have in common some
notion of the intended semantics. Such sets are defined by identifying a common oper-
ation. It is expected that these sets of requests are sufficiently useful that most request
forms will issue requests from a single such set.

The object model does not specify whether an operation is an object or whether a value
can name an operation (i.e., whether operations can be parameters).

Several criteria can be applied when identifying operations in a specific object system:
¢ Operations should be chosen so that common request forms issue single operations.

Static request forms should be the common case. A request form that issues multiple
operations should be distinguished by the use of an operation variable, a variable
that is evaluated at each execution of the form to determine the operation to be is-
sued. An operation variable should have the expected properties of a variable: its
value should be determined dynamically, independent of other aspects of the request
form. For example, an overloaded function is not an operation variable, because its
resolution is based on the types of the parameter expressions.

Constructs in procedural programming languages that are analogous to operation
variables are pointers to functions in C and funcall in Lisp: both constructs allow the
invocation of a function that is dynamically identified by a value. Naming operations
using variables provides an additional dimension of genericity.

¢ Operations should be chosen to allow useful signatures.

An operation has a signature that describes the legitimate values of request param-
eters. Operation signatures should capture the inherent structure in the system.
For example, in a statically typed system, the signatures of operations should cap-
ture static type information. A poor choice of operations (such as the extreme case
of having only one operation) would force the operation signatures to be too permis-
sive (such as accepting all possible values as parameters).

¢ Operations should be chosen to permit generic operations (page 15).

On the other hand, there should be generic operations, and there should be generic
operations whose binding to specific methods can be determined only during execu-
tion. For example, one should not define each method to be a distinct operation.

1"



¢ Operations should be chosen so that request forms and objects can be characterized
by which operations they issue or perform.

Ignoring such detailed dynamic analysis as dataflow analysis, each request form can
be described by the set of requests it can potentially issue. Operations should play
an important role in characterizing this set of requests. For example, there are some
operations that the requests issued by a request form can identify, and some that it
cannot. Similarly, if no single request form can issue requests from two sets, then
the two sets of requests should probably identify distinct operations.

Operations should play an important role in characterizing the requests in which an
object can meaningfully appear. An example of such a characterization is: This ob-
ject is meaningful as the first parameter in requests that identify operations a, b,
and c; this object is meaningful as the second parameter in requests that identify op-
erations d, e, and f; this operation is not meaningful in any request that identifies
operations g, &, and i.

¢ Operations should be chosen to minimize the use of contextual information to select
methods.

If possible, the information needed to select a method to perform a request should be
present in the operation and the parameter values.

Every C++ function definition, except a function definition that overrides a virtual
member function, defines a distinct operation. (An overriding virtual member function
defines a method for an existing operation.) In addition, each declaration of a public
data member implicitly defines a distinct operation (whose behavior is to return a ref-
erence to the data member).

Operation identification in C++ is more complicated than in most object systems. In
C++, an operation is identified by three features: (1) a lexical scope (such as a class def-
inition), (2) the (textual) name of a function (or public data member) declared in that
scope, and (3) the parameter types specified in the function signature (omitted for pub-
lic data members).

The lexical scope is needed to characterize distinct functions with the same name and
argument types defined in different scopes. For example, member functions in unre-
lated classes (neither is a public base class of the other) cannot be invoked from the
same request form, and thus are considered different operations.

The parameter types are needed to handle function overloading. C++ allows functions
with different parameter types to be declared in the same scope with the same name.
An invocation of an overloaded function will select a particular function at compile-
time based on static type information. Overloaded functions are considered different
operations because they are invoked by different request forms. Lexical scoping and
overloading allow a single function name to denote many distinct operations.

(Another reason why overloaded functions are modeled as distinct operations is to sim-
plify the semantics of C++ values. Because overloaded function resolution is based on
static types, modeling overloaded functions as generic operations would require that
values carry both a static type, for overloaded function resolution, and a dynamic type,
for virtual member functions.)

The inclusion of the class definition in the identification of member function operations
accounts for the semantics of C++ non-virtual member functions. Distinct non-virtual
member functions with the same function name and parameter types can be defined in
a base class and a derived class. Only the base class member function can be invoked

12



on an object of the base class, yet both member functions can be invoked on an object
of the derived class; thus, the two member functions are modeled as distinct operations,
Static member functions are like other non-virtual member functions, except that re-
quests for such operations do not identify a target object.

A member function inherited by a derived class is viewed as being defined in the orig-
inal base class. Thus, the base class and the derived class support the same operation.

This choice is made because a single request form can result in the invocation of that

member function on objects of either class.

A virtual member function is a single operation, defined by the original introduction of
the function in a base class. All overriding definitions in derived classes refer to the
same operation. Each definition of the virtual member function that includes a func-
tion body is a method that implements the operation. Binding selects a method based
on the class of the object that is distinguished as the target of the request.

C++ allows the invocation of a specific function definition for a virtual member func-
tion, using a qualified name. Because we model these functions as methods rather
than operations, such invocations are modeled as direct method invocations, rather
than as requests. (An alternative is to model them as requests whose binding depends
upon context.) Direct invocation of these functions outside a class definition is consid-
ered poor style. Modeling each function definition as a separate operation would thus
fail to capture the intent of the language design.

Most C++ classes are defined in the external scope shared by all program units; how-
ever, nested class definitions are permitted. Thus, C++ class names are meaningful
only with respect to a lexical scope. To identify a member function, one must identify
a specific class definition, not just the class name.

An interesting special case arises using C++ multiple inheritance. If a derived class
defines a virtual member function that overrides functions declared in two public base
classes, then the two operations are “linked” in that class (and its derived classes) so
that a single function definition provides a method for both operations.

A C++ operation is a value of type pointer to function or pointer to class member func-
tion. A C+4+ operation is not an object.

The simplest model of OSI systems management operations is to define a fixed set of
operations based on CMIP protocol data units (get, create, action, action-confirmed,
etc.). Note that CMIP distinguishes requests with and without confirmation as distinct
protocol data units.

We prefer a more complex model. We model each action as a distinct operation identi-
fied by its registration identifier. We model each attribute operation (such as get) as a

set of operations, one for each attribute to which the operation is applicable. These op-
erations are identified by a pair consisting of the registration identifier of the attribute

and the operation name. The implication of this latter decision is that we model an at-
tribute operation applied to multiple attributes as a higher order operator, just as we

model complex requests that apply to multiple objects as invoking a higher order oper-
ator. We model get applied to no attributes as a distinct operation get-all-attributes.

The advantage of the more complex model is that it allows much more specific opera-
tion signatures. The only risk is the assumption that the transaction behavior of multi-
object and multi-attribute requests can be modeled as an orthogonal mechanism.

13



A systems management action is a value. A systems management operation is not an
object.

A DAA operation is identified by an operation identifier. A DAA operation is not a val-
ue. Operation identifiers are assigned by the CDL compiler based on developer-provid-
ed information; the assignment process is implementation-specific. (In the C language
binding, operations are named by C functions created by the CDL compiler. However,
pointers to these functions cannot be used as request parameters; therefore, they are
not values.)

A Tickle operation is identified by an operation name (a string) and an operation signa-
ture that specifies the types of the parameters to an invocation of the operation (exclud-
ing the target object parameter). An operation is not a value.

This modeling is the best of several unattractive alternatives. There is no entity in
Tickle with all of the desired properties of operations. The advantage of the chosen
model of operations is that it supports generic operations (the type of the target object
influences the method selected) and overloading. Its disadvantage is that an operation
may have different semantics for different clients, which would be reflected in disjoint
sets of methods for different clients (no request form can invoke a method from multi-
ple method sets). Also, the target parameter type in the operation signature is client-
dependent.

One rejected model is to identify an operation by the operation name alone. The disad-
vantage of this model is that operation signatures are virtually meaningless: the same
operation name can have completely different signatures in different client contexts. It
also fails to handle overloading: a single client can use the same operation name with
multiple signatures.

Another rejected model is to identify an operation by an operation identifier. The ad-
vantage of this model is that an operation identifier has a universal signature, as well
as having an intended semantics and a set of associated methods. The disadvantage of
this model is that, for any particular client, each operation identifier maps to exactly
one method. Thus, this model does not support generic operations. (The Tickle archi-
tecture is likely to change so that operation identifiers support generic operations.)

An Iris function is an operation. An Iris function is either a generic function or a spe-
cific function. Each generic function has a set of associated specific functions. An Iris
function is an object.

Operations can be created.

Operation creation produces an operation that is distinct from all previously existing
operations. Operation creation can be used to avoid accidental overloading of opera-
tions. For two clients to refer to a created operation, the identity of the operation must
have been communicated from a common origin to each client. A developer can there-
fore define a new service (by creating a new operation) with the certainty that the ser-
vice will be distinguishable from all other services.

C++ does not define a way to create a new operation. Any C++ class definition might
collide with an existing class definition.

14



A new OSI operation is defined by registering an action or attribute template with a
registration authority.

The DAA does not define a way to create a new operation. Any CDL interface definition
might collide with an existing definition. The Hewlett-Packard implementation of the
DAA includes a utility that can be used to allocate operation identifiers.

A new Tickle operation can be created indirectly by creating a new object type, as the
identity of an operation includes its signature.

Iris supports operation creation only for specific functions (which are non-generic oper-
ations). Each generic function and its associated specific functions have a function
name, which is chosen by the client. A client can create a new function with a given
function name using the system function CREATEFUN. If no function with that name
exists, a new generic function and an associated specific function will be created. How-
ever, if a function with that name already exists, a new specific function for the existing
generic function is created. (A change to Iris is under consideration that would allow
the creation of generic functions.)

Operations are (potentially) generic, meaning that a single operation can be uniformly
requested on objects with different implementations, resulting in observably different
behavior. In particular, the full range of behavior can be produced using a single re-
quest form.

This is a philosophical principle, intended to characterize the power of a computational
model. A client can uniformly operate on an unlimited number of different kinds of ob-
jects by issuing requests for generic operations. Different code may be executed to per-
form the operation for different kinds of objects.

One would expect the different behaviors for a given operation to share some basic in-
tent, such as the intent to cause something to be printed. This intent must be satisfied
in a correct implementation of a system; however, it may not be enforceable by the sys-
tem.

Generic operations are to be distinguished from the fixed range of behavior that can be
supported using a case statement to select from a predetermined set of possible behav-
iors. In particular, it is possible to introduce new kinds of objects into a system that
provide specialized behavior for existing generic operations.

A non-overriding C++ virtual member function is a generic operation.

A non-virtual overloaded member function is not a generic operation because overload-
ed functions are modeled as distinct operations (see below).

All OSI systems management operations other than create are potentially generic.
Create is not generic because no objects participate in create requests. (An alternative
view is that managed object classes are objects, and the create operation is generic over
its managed object class parameter. Ireject this view because the managed object class
parameter is not sufficient to allow an object to be created. The target system must
possess the independent knowledge of how to implement an instance of the class.
Thus, a managed object class is not characterized by the create operation.)

15



All DAA operations are potentially generic.

All Tickle operations can potentially have multiple implementations that can be uni-
formly requested by clients. However, in general, it is not possible for a given client to
produce the full range of behavior for an operation, as the number of methods available
to the client is limited by the number of types defining the operation in the client’s
working schema. In particular, introducing a new type into a Tickle environment will
not allow an existing client to invoke the methods of the new type. In this sense, Tickle
does not support generic operations. (Extensions to support generic operations are un-
der consideration.)

An Iris generic function is a generic operation.

An operation may be identified in a request form by an operation name.

The concept of operation name does not play a significant role in the object model, and
consequently is not defined rigorously. The term is defined for use in describing the
identification of operations in specific object systems.

This model does not require that an operation have a unique operation name. It is pos-
sible that different clients could use different names to refer to the same operation, or
use the same name to refer to different operations.

Dynamic identification of operations is possible if an operation variable can be used in
a request form.

In C++, there are several ways of naming operations in a request form: (1) by specifying
the textual name of the function, (2) by specifying the textual name of a member func-
tion qualified by the name of the defining class, and (8) by providing a value of a pointer
to function type or a pointer to function member type. The latter form provides dynamic
identification of operations. Note that in the first two cases, the static context is also
used to determine the named operation (to resolve overloaded functions and redefined
non-virtual member functions). (The operations corresponding to public data members
are named by specifying the name of the data member, possibly qualified by the name
of the defining class.)

In the OSI CMIP protocol, an operation name is the ASN.1 datatype of the protocol
data unit, possibly augmented by the ASN.1 identifier of an attribute or an action. Dy-
namic identification may be possible by using a variable to provide the attribute or ac-
tion identifier, depending upon the language binding.

Operation names in the DAA are determined by language bindings. In the C language
binding, operations are named using the names of C external functions defined by the
CDL compiler, and dynamic identification is possible using C pointers to functions.

A Tickle operation is named in a request form by an operation name (a string) and an
operation signature. Dynamic identification of operations is possible using a string
variable to denote the operation. A C++ binding to Tickle might use the names of spe-
cific C++ member functions to name operations,

16



An operation name is specified in Iris using an OSQL function expression. A function
expression can be a function name, a variable of function type, or a function invocation
that returns an object name identifying a function object.

4.4 Behavior and Abstraction

The behavior of a request is the observable effects resulting from performing the re-
quested service. (The effects may be visible to parties other than the requesting cli-
ent.) The behavior of a request includes the results returned to the client (including
both the values returned and the exceptional conditions reported), as well as indirect
effects on the results of future requests (by the same or different client).

In general, the possible behaviors of a request are any arbitrary computation, includ-
ing computations that issue additional requests. (This statement characterizes the
intended power of a computational model.)

The behavior of a C++ request is defined by the function definition that is invoked. The
function may perform an arbitrary computation, including the issuing of additional re-
quests.

The behavior of an OSI simple request is defined by the managed object class of the tar-
get object. The class specifies the direct and indirect effects of the request, and the rel-
evant constraints on attribute values. Direct effects of an attribute operation are the

modification or retrieval of the designated attribute, as defined by the base operation

(e.g.,get). All other effects are indirect, including changes to other attributes, or effects
on other objects. The indirect effects of an operation can be an arbitrary computation,

including the issuing of additional requests. The behavior of a complex request is the

combined effect of the generated simple requests, possibly modified by atomic synchro-
nization.

The behavior of a DAA request is defined by the target object’s object manager. The
behavior of a request whose target object is managed by a Distributed Object Manager
is defined by a procedure. The procedure may perform an arbitrary computation, in-
cluding the issuing of additional requests.

The behavior of a Tickle request is defined by a tool (an executable program). The tool
may perform an arbitrary computation, including the issuing of additional requests.

The behavior of an Iris request is defined by the Iris specific function that is invoked to
perform the request. A specific function is either a stored function, a computed func-
tion, an external function, or a primitive function. A stored function has an explicitly
stored extent that is modified using associated update functions. A computed function
is defined by an OSQL program; it can perform an arbitrary computation, including the
issuing of additional requests. An external function is defined by a dynamically-linked
code module; it cannot issue additional requests. A primitive function is one whose def-
inition is either predefined in Iris or created implicitly by Iris, such as the update func-
tions associated with stored functions. The behavior of an update function is to modify
the extent of its associated stored function.

17



The behavior of a request generally depends both on the request (the identified oper-
ation and the actual parameters) and the state of the computational system. The
state of the computational system is a representation of the history of past requests;
specifically, it represents the effect of past requests on future behavior.2

A behavior can thus be modeled as a function whose parameters include the operation,
the (actual) request parameters, and the state of the system. The results of the behav-
ior function include the results of the request and the new state of the system. (This
modeling technique is called denotational semantics.)

The state of a computational system is physically represented by data that persists be-
tween the execution of requests. This persistent data may include what are effectively
references to objects. The object model does not say anything about the stored form of
such references. Persistent object references are visible to clients only via the values

(object names) that are passed as request parameters and results. For example, a per-
sistent object reference might be revealed to a client as the value that is the result of a

service that returns a particular attribute of an object.

The behavior of a request may depend on contextual information (such as the identity
of the client), as well as the state of other entities interfaced to the system (such as the
state of an attached hardware device) or the effects of direct interactions with users.
These additional influences would be modeled as additional context arguments to the
behavior function.

An object explicitly embodies an abstraction, which is characterized by the behaviors
of certain requests. The abstraction embodied by an object is meaningful toits clients.
An object that is visible to an end user typically models some real-world object that is
familiar to the end user.

These philosophical principles describe the intent to use objects to embody meaningful
abstractions. A client that expects to manipulate spreadsheets should be provided with
objects that perform the services expected of spreadsheets. The fact that a spreadsheet
object behaves as a spreadsheet is inherent in the object and not dependent upon the
client’s knowledge. A contrasting example from Unix may help to clarify. A Unix file
is a low level abstraction of a mutable byte sequence. No additional semantics are at-
tached to a Unix file; instead, the interpretation of a Unix file is left to applications that
manipulate the file. A Unix file might represent a spreadsheet, but the Unix file sys-
tem does not record this intent. Instead, it is up to the client to know to invoke the
spreadsheet application when operating upon this particular Unix file. These state-
ments are not intended to rule out systems that support multiple levels of abstraction.

The behavior of a request may depend upon the identity of the participating objects.
In particular, a component of the state of the computational system may be uniquely
associated with a particular object. In general, such state cannot be modified without
issuing requests that identify specific operations in which the object participates. In
other words, distinct objects may have distinct state that is encapsulated by opera-
tions.

2. In a concurrent system, the history of past requests and results may be insufficient to explain future behavior [1].

18



In a computational system, any parameter can explicitly affect the behavior of a re-
quest as the result of programming (such as a case statement on object names), or in-
directly affect the behavior of a request by participating in requests issued as part of
performing the request. In this statement, we are concerned with the implicit effect of
object identity on behavior that results from the structure of the object system. The
most common such effect results from binding an object name to an underlying data
structure that realizes the state associated with the named object.

The classic example of encapsulated state is a stack object that provides the services
push and pop: the state implicitly associated with a stack object is the sequence of ele-
ments that have been pushed but not yet popped. This state is altered only by push
and pop. It is revealed to clients only by the time-varying behavior of pop. The stack
abstraction is characterized by the behaviors of push and pop.

There may be additional components of the state of the computational system that are
not uniquely associated with individual objects. For example, consider the operations
that define the created and created-by relations over two sets of objects, program source
objects and software developer objects. One could think of the state introduced by
these operations as being associated with pairs of objects, or alternatively with the op-
erations themselves. The notion of associated state is not intended to restrict the form
of the persistent representation of the state.

In C++, an object name serving as a distinguished parameter to a non-static member
function can implicitly affect the behavior of the request by causing the storage of the
object to be made accessible to the method via an implicit parameter. This storage con-
sists of the data members declared or inherited by the class of the object, and it can be
viewed as the part of the system state uniquely associated with the object.

If the data members are declared private or protected, then the state is accessible only
to methods of the class (or related code). Individual objects are not encapsulated, how-
ever: a method can access the state of all instances of its class. Public data members
are not encapsulated: they can be read and written directly by clients, once the client
obtains a reference to the data member.

C++ contains an encapsulation loophole: If a derived class overrides a virtual member
function that is public in a public base class, then there is no way to prevent a client
from invoking the base class function on an instance of the derived class.

The attributes of an OSI managed object are explicit components of the system state
associated with the managed object. A managed object may have additional implicit
associated state that is observable by performing systems management operations.
The state of a managed object is encapsulated: it can be accessed or changed by clients
only by performing systems management operations. (The state of a managed object
can also be viewed via notifications and conceivably can be changed as a consequence
of notification confirmations returned by clients.) Attribute values may change implic-
itly by means not defined by the OSI model (for example, as the result of a state change
in an associated hardware device).

A DAA object may have associated state. The realization of that state is determined
by the object’s object manager. An object managed by a Distributed Object Manager
typically realizes its associated state using a file. The only means provided by the DAA
for a client to access the state associated with an object is via requests for operations
supported by the object.

19



A tool can associate an infrastructure object (such as a file) with a Tickle object (based
on the infrastructure identifier in an object designator) to implement state that is
uniquely associated with the object. The only means provided by Tickle for a client to
access the state associated with an object is via requests for operations supported by
the object.

An Iris object can have associated state defined by stored functions that accept the ob-
ject as a parameter. A stored function effectively has an associated data location for
each possible combination of parameters that satisfy the parameter types declared in
its signature; a single argument stored function defines state associated with individ-
ual objects. The state defined by a stored function is encapsulated: it can be accessed
or modified only by the function and its associated update functions.

Objects are distinguishable by clients only to the extent that they affect the behavior
of requests.

The object model does not require the use of unique object identifiers in a computation-
al system. Furthermore, even if unique identifiers are used, they need not be revealed
to clients.

A system may provide specific services for testing object identity that can be requested
by clients. For example, a service could be provided that compares two values to see if
they identify the same object. The implementation of this service might be more com-
plex than simply comparing the values as bitstrings. For example, the service might
report that two values that previously identified different objects now identify the
same object. This behavior could be useful when objects are used to model an evolving
understanding of the real world, for example, to model the realization that the entities
Joe’s father and Bob’s brother are actually the same person. The service might report
that two values identify the same object, even though they identify distinct objects at
a lower level of abstraction. For example, a system might use multiple objects to rep-
resent a single mathematical abstraction (such as an immutable set whose elements
are the integers 1 and 2). This distinction would be hidden from most clients.

The identity of a C++ object is embodied in its location in storage. Note that the storage
of an object can be reused after the object is deleted. C++ objects are distinguishable
by comparing their object names (pointer values that encode their addresses) for equal-
ity.

An implementation of C++ may use pointers with different address values to identify
the same object in different static contexts. (This situation is most likely to arise in the
case of a pointer to an unnamed base class subobject, which is modeled as an object
name identifying the same object as is identified by a pointer to the enclosing object.)
In normal usage, the use of multiple pointer values is hidden from the programmer by
implicit type conversions.

The identity of an OSI managed object is embodied in its ASN.1 distinguished name.
Note that the distinguished name is valid only until the object is destroyed. OSI man-
aged objects are distinguishable by their distinguished names. A client can compare
distinguished names for equality.

20



The identity of a DAA object is determined by the object’s object manager, which is re-
sponsible for creating object references that identify the object. Clients can invoke a
DOMTF primitive that compares two object references to determine if they identify the
same object. The semantics of this primitive is ultimately determined by object man-
agers.

The identity of a Tickle object is embodied in the infrastructure identifier contained in
an object designator. The infrastructure identifier is determined by the tool creating
the object designator. Object designators need not be unique for each object. The ex-
tent of an object designator is undefined. Currently, there is no restriction on the abil-
ity of a tool to create object designators and consequently no guarantee that
infrastructure identifiers contained in object designators are meaningful. Tickle ob-
jects are distinguished using operations. Comparison of object names is not defined.

The identity of an Iris object is an inherent property of the object. The function EQUAL
can be used to determine if two object names identify the same object. Note that
EQUAL returns false when applied to two null values.

4.5 Object Creation

Objects can be created. Clients create objects by issuing requests. The result of object
creation is revealed to the client in the form of a handle that identifies the new object.

Object creation produces an object that is distinet from all previously existing objects.
In other words, objects with similar characteristics (e.g., attribute values) can be dis-
tinct; it is not necessary for the client to explicitly assign unique key attribute values
to create distinct objects.

In C++, objects can be created using the new operator, or implicitly using declarations.
Static objects are created when the program begins execution. Automatic objects are
created when their declarations are executed. These computations are not operations,
and only the new operator can usefully be invoked via a request. The creation of an
object also involves initialization of the object’s storage, which is performed by a con-
structor.

An instance of a specified OSI managed object class is created using the create opera-

tion. A superior object may be identified in the request, or supplied as a default by the

target system. A name binding must be established for the target system that permits
the superior object to contain instances of the specified managed object class. (Objects
may also be created by means local to a system that are not specified by OSI. The sys-
tem managed object is presumably created this way.)

The object is given a distinguished name, constructed by concatenating the distin-
guished name of its superior object with a relative distinguished name. The relative
distinguished name consists of the name and value of the distinguished attribute of the
new object defined by the name binding. No other object with the same superior object
whose lifetime overlaps with the new object can have the same value for that attribute.
A relative distinguished name may be specified in the request, or supplied by the sys-
tem. The create operation normally returns the distinguished name of the new object.
(It can be omitted if fully specified in the request.)

21



OSI does not define how a system knows how to create an instance of a managed object
class. HP OpenView defines a registry that associates managed object classes with im-
plementations.

Object creation in the DAA is a service provided by object managers. Object creation is
typically made available to clients via operations provided by factory objects. The Dis-
tributed Object Manager provides an object creation service that allocates an object ref-
erence, associates a specified implementation class with the new object, and optionally
creates a file to store the object’s persistent state. This service is intended for use only
by factory object methods.

Tickle does not define object creation.

A new instance of an Iris surrogate type can be created by invoking the function
CREATEOBJ, which returns a handle identifying the new object. Optional parame-
ters can be specified for initialization of the new object.

4.6 Object Destruction
It is possible for an object to be destroyed.

C++ objects can be destroyed, either explicitly or implicitly, depending upon the storage
class of the object. The destruction of an object may result in the execution of an oper-
ation called a destructor.

OSI managed objects may be destroyed either explicitly (using the delete operation) or
implicitly (e.g., as a side effect of disconnecting a piece of equipment, or of a crash of
the containing system). Explicit object destruction is possible only if defined by the
name binding used to create the object. The name binding may declare that destruc-
tion is permitted only if the object contains no subordinate objects, or that destruction
will cause the destruction of all subordinate objects. Other constraints on object de-
struction can be specified in the managed object class.

Object destruction in the DAA is a service provided by object managers. A Distributed
Object Manager provides a service for destroying an object that is intended for use by
the object’s methods.

Tickle does not define object destruction.

The Iris function DELETEOBJ can be used to destroy a surrogate object.

4.7 Meaningful Requests

Not all possible requests are meaningful: an object cannot participate in providing all
possible services, and there may be other constraints on the actual parameters in a

Requests could be characterized as meaningful at many levels. This model character-
izes meaningful requests at a structural or syntactic level, which corresponds to the no-
tion of type-correctness in statically typed systems like C++ or Ada. In a dynamically

22



typed system like Smalltalk, a meaningful request is one that does not raise the error
message not understood. While the definition of meaningful request in a system need
not be static, it is usually thought of as relatively static. Another possible term is well-
formed request.

A type system may distinguish an ill-formed request from a well-formed request that
cannot be performed. For example, an attempt to divide an integer by a string is con-
sidered ill-formed by most type systems. An attempt to divide an integer by zero is also
erroneous in a static sense, but is considered well-formed by most type systems. The
difference is that a request form identifying the division operation is ill-formed if the
second parameter expression is a string variable, but is well-formed if the second pa-
rameter expression is an integer variable (even if the value of that variable happens to
be zero.) The distinction between syntactic and semantic errors is usually based on the
declarative power of the type system.

There is no implication that an object system must detect a meaningless request. Is-
suing a meaningless request may or may not result in an exception condition being re-
ported to the client.

A C++ request is meaningful if it is type-correct.

An OSI systems management operation request is meaningful if it satisfies a set of con-
ditions either imposed by the structure of the OSI model itself or declared in a managed
object class or a name binding. Such conditions include missing parameters, invalid
attributes or parameters, invalid operations, and parameter value of wrong type or out
of range. (We exclude dynamic conditions, such as nonexistent object, duplicate object,
access control violations, constraints among multiple attributes, and general failures
to perform an operation.)

A DAA request is meaningful if the designated target object supports the CDL interface
that defines the identified operation and the request parameters are consistent with
the signature of the operation.

A Tickle request is meaningful if: the type of the designated target object is defined in
the working schema of the client tool activation to support the indicated operation, the
request parameters are consistent with the defined operation signature, and the dy-
namic context maps the operation identifier to an entry point. The meaningfulness of
a request is thus client-dependent.

An Iris request is meaningful if the number and types of the actual parameters satisfy
the signature of the specific function that is selected to perform that request. The null
value is a legitimate parameter regardless of the Iris ¢ype in the signature. (A change
is under consideration to allow a signature to disallow the null value.)

Each operation has an associated signature that may restrict the possible (actual) pa-
rameter values that are meaningful in requests identifying that operation. A request
is meaningless if the actual parameters do not satisfy the signature associated with
the operation identified in the request.

A signature also characterizes the possible result values and exceptional conditions
associated with the corresponding requests. This additional information does not af-

23



fect the notion of meaningful request, but may be used by tools that perform static
analysis of programs.

For those readers familiar with typed programming languages, a signature is like a
procedure type or a function type. In the case of generic operations, a signature may
accept arguments of multiple types. For example, the signature of the plus operation
might specify that there are two parameters, the actual arguments can be any combi-
nation of integers or reals, and the result is an integer if the two arguments are both
integers, or a real otherwise.

The object model does not specify the language used to describe signatures. An elabo-
ration of this object model would define a specific formalism for signatures.

The object model does not specify the possible characterizations of results. Typically,
signatures will characterize results in terms of types. Signatures may include addi-
tional information such as formal or informal descriptions of the behavior of the oper-
ation, or information about whether requests are synchronous or asynchronous.

Note that if operation names are values (meaning that operation names can be param-
eters in requests), then signatures can be considered to be types, as defined below. For
example, one might require the value of a parameter to be an operation that accepts
two integer parameters and returns one integer result. It is in this sense that opera-
tions are shown to have types in Figure 1.

The signature of a C++ operation is specified as part of the original definition (or dec-
laration) of the corresponding function. The signature includes C++ types for each for-
mal argument to the function and the C++ type of the result of the function. A formal
argument of a class type is represented in the signature by the corresponding reference
type (see page 8). A non-static member function has an implicit parameter denoting the
target object whose type is reference to class C, where C is the class containing the func-
tion definition.

The types of allowable argument expressions is defined not only by the function signa-
ture, but also by the set of available conversions and (in the case of a formal of class
type) constructors. In the case of reference or pointer parameters, the possible conver-
sions are limited to trivial conversions from a derived class reference or pointer to a
(public) base class reference or pointer, and from any pointer to a void+* pointer. C++
signatures currently do not specify exceptions.

The signature of an OS] systems management operation is effectively formed by com-
bining multiple specifications of the operation in package definitions and (in the case
of create) name bindings that are registered with a registration authority. (Delete is an
exception: it has a fixed signature.)

Multiple specifications allow a subclass to refine the definition of an inherited opera-
tion. Because the definition of an operation may differ in different classes, the effective
signature is a function of a managed object class (the apparent managed object class of
the target object, taking allomorphism into account). The signature can be viewed as
consisting of multiple clauses, one for each managed object class of a possible target ob-
ject. The signature of an operation can change (by extension) as new subclasses are
defined that refine the definition of the operation, or as new classes are defined that
include a package defining the operation.

24



The legitimate parameter values for an attribute operation depend upon the definition
of the attribute in each managed object class. The base type of the attribute value is

defined in the attribute definition. However, each package that defines the attribute
can further restrict the domains (values legal as a parameter to set) and ranges (values
legal as a result of get) of the attribute operations, by refining the sets of required and
permitted values.

The signature of create contains multiple clauses based on the name binding used to
create the object (normally determined by explicit parameters in the request). The sig-
nature clauses include the attributes that may be initialized explicitly via request pa-
rameters, the types of domains of the initial values, and the conditional packages that
may be included.

Action operations are defined only on objects of specific managed object classes, and
only on those objects that include certain optional packages. The signatures of these
operations would constrain the value of the parameter that names the target object.
The signature would include a description of the other parameters that may (or must)
be provided and the types of those parameters, as well as the result parameters that
may (or must) be returned.

The other standard parameters of systems management operations are constrained by
type. Standard exceptions are defined for all signatures; individual signatures may in-
clude specific exceptions as well. Each operation signature includes a behavior, which
informally describes the behavior of the operation.

The signature of a DAA operation is specified as part of its definition in a CDL interface
definition. An operation signature includes a CDL description of the parameters of the
operation and the result value. An operation signature identifies the operation as syn-
chronous or asynchronous. The type of the target object parameter is implicitly the

CDL type pointer to interface I, where I is the CDL interface that defines the operation.

The signature of a Tickle operation is specified in two ways. The type of the target ob-
ject parameter is implicitly determined by the object types to which the operation is de-
fined to be applicable in the client’s working schema. The remainder of the signature
(describing the explicit invocation parameters) is implicit in the operation (which is
identified in part by an operation signature that includes a NIDL description of each
explicit parameter).

The signature of a Tickle operation is client-dependent; it can vary in the type of the
target object parameter. Each tool activation has its own working schema, and an op-
eration may be applicable to different types in different schemas.

An Iris specific function has a signature that defines the number and types of legiti-
mate parameters and the type of the result value. Each specific function takes a fixed
number of parameters. The parameter and result types are defined in terms of an Iris
type; the actual parameter or result type is the union of the Iris fype and the type whose
only member is the null value. The specific functions corresponding to a particular ge-
neric function must have the same result type, but they can accept different numbers
or types of parameters. The parameter part of the signature of a generic function is
thus a combination of the signatures of the corresponding specific functions, and it may
change over time as associated specific functions are defined or removed. When the last
specific function for a generic function is removed, the generic function is deleted.

25



When an operation is created, its signature is specified.

The object model does not specify whether the signature of an operation can change af-
ter it is created.

4.8 Types

A type is an identifiable entity with an associated predicate (a single-argument math-
ematical function with a boolean result) defined over values. A value satisfies a type
if the predicate is true for that value. A value that satisfies a type is called a member
of the type.

Types are used in signatures to restrict a possible parameter or to characterize a pos-
sible result.

Types are traditionally used both to classify and to constrain. We emphasize the use
of types to constrain.

This definition of type is very general. According to this definition, a type such as in-

teger would be thought of as having an associated predicate that is true for an integer
value and false for any other value. This definition allows unusual types, such as the

type of odd integers. Note that this definition allows a single value to satisfy multiple
types. For example, the value denoting the integer 1 is both an integer and an odd in-
teger.

The object model does not specify what kinds of types may exist in a system. An elab-
oration of this model would define a specific formalism for types. The choice of formal-
ism may restrict the predicates that can be associated with types in a system. Other
types are only conceptual: although not expressible in the system’s formal language,
conceptual types may be useful when informally describing the system.

Because types are defined as predicates over values rather than objects, it is possible
for a type to discriminate among multiple values that identify the same object (or other
abstract entity). For example, a system might provide two forms of object names: a
long form that is globally meaningful and a short form that is valid only within one pro-
cess context. The type mailbox specified via long object name would be satisfied by a
long name for a given object, but would not be satisfied by a short name for the same
object. Such value-dependent types are not required in an object system. If the partic-
ular object model does not allow types to distinguish different values that identify the
same object (or other abstract entities), then one can view type predicates as defined
over objects (and other abstract entities), rather than over values.

Existing object-oriented programming languages provide types that distinguish be-
tween different implementations of objects — called classes. A more general notion of
interface type is defined below that captures the intuition of generic operations.

The object mode] does not specify whether types are objects, or whether type predicates
are invocable as operations. In some systems, type checking is performed at compile
time and types are not represented during execution. The predicate associated with a
type need not be effectively computable.

26



A C++ type is a type. A C++ type distinguishes between value and reference parame-
ters, as well as indicating whether the actual parameter can be modified or used to
modify an object. A C++ type is not a value.

The legitimate values of parameters of OSI systems management operations are de-
fined using ASN.1 datatypes, which includes the type ObjectInstance that is satisfied
by object names. Although not usable in signatures, a managed object class can be con-
sidered to be a type that is satisfied by all of its instances and all instances of its allo-
morphic subclasses. An OSI type is not a value.

In the DAA, a CDL datatype is a type. A DAA type is not a value.

The legitimate values of the explicit parameters of Tickle operations are defined using
NIDL datatypes. A Tickle object type is used in signatures only to describe the legiti-
mate values of the implicit target object parameter. A Tickle type is not a value.

An Iris type is a type. An Iris type is an object.

A type may have different predicates at different times. The extension of a type is the
set of entities that satisfy the type at any particular time.

If types do not distinguish multiple values that identify the same object, then one can
think of the extension of the type as containing the objects identified by those values,
rather than the values themselves.

The extension of a type may change over time, for example, as new objects are created
or existing objects are modified by side-effects.

A relation called subtype is defined over types. A type a is a subtype of a type b if any
value that satisfies type a necessarily satisfies type b.

A particular object model defines the subtype relation, which must be consistent with
logical implication over the type predicates. (For example, if all integers are reals, then
the type integer must be a subtype of the type real.) Subtypes permits a hierarchical
classification of objects, which is one of the traditional uses of inheritance. An example
of subtype is presented in the commentary following the next paragraph.

In C++, the type pd is a subtype of type pb, where pd is pointer to class d, pb is pointer
to class b, and b is an unambiguous direct or indirect public base class of d. A similar
relation is defined for reference types. (This subtype relation is a consequence of not
modeling a derived class instance as containing separate objects for each base class.)

The (conceptual) type implied by an OSI managed object class is a subtype of the type

implied by each allomorphic superclass of the managed object class, in the sense that

an instance of the managed object class may be operated upon by a client as if it were

an instance of the allomorphic superclass. Note that subtyping is not defined for ordi-
nary superclasses, and that allomorphism is not transitive.

27



In the DAA, a CDL interface can be derived from one or more CDL interfaces. A CDL
type pointer to interface I is a subtype of any CDL type pointer to interface J where I is
directly or indirectly derived from J.

Subtyping over Tickle object types is defined by type inheritance (the parent relation).

All Iris types except the type OBJECT are defined to inherit from one or more fypes.
An Iris type is a subtype of any type it directly or indirectly inherits from. All Iris types
are a subtype of the type OBJECT.

An object type is a type whose members are objects (literally, values that identify ob-
jects). In other words, an object type is satisfied only by (values that identify) objects.

An object may satisfy many types. For example, a Lotus 2.2 spreadsheet object might
satisfy the following types (of decreasing specificity): Lotus 2.2 spreadsheet, Lotus
spreadsheet, spreadsheet, printable object. In this example, the types are all related
by subtyping. Some systems might allow an object to satisfy types unrelated by sub-
typing. For example, an object representing a particular individual might satisfy both
the type person and the type shareholder (there can be people who are not shareholders
and shareholders that are not people, e.g., corporations).

A C++ pointer to class type or a C++ reference to class type is an object type. Note that
a plain C++ class type has no values (see page 8).

An OSI managed object class can be considered to be an object type. However, the only
object type that can be used in signatures is the type ObjectInstance, which is satisfied
by any object name.

In the DAA, a CDL pointer to interface type is an object type.

A Tickle object type is an object type. The type object designator is an object type.

An Iris type is an object type. An Iris surrogate object can simultaneously be a member
of multiple surrogate types that are not subtypes of each other. A surrogate object can
be dynamically added to or removed from a surrogate type.

4.9 Interfaces

An interface is a description of a set of possible uses of an object, i.e., its possible ap-
pearances as a parameter in a request. Specifically, an interface describes a set of po-
tential requests in which an object can meaningfully participate. An object satisfies
an interface if it is meaningful in each potential request described by the interface.

In a classical object system, an interface consists of a set of operations. For example,
the interface of printable objects would consist of the single operation print. An object
satisfies a classical interface if it is meaningful as the first parameter in any request
that identifies one of those operations. For example, a printable object is one that sup-
ports the print operation.

A system supporting the generalized object model might support more complex inter-
faces that identify specific formal parameters of operations where an object can mean-

28



ingfully appear. For example, the printable object interface would be satisfied by those
objects that can appear as the first argument to a print request, and the printer object
interface would be satisfied by those objects that can appear as the second argument
to a print request.

Interfaces are in some sense duals of signatures. One can imagine the system contain-
ing a set of constraints that determine the meaningfulness of requests. Signatures are
an operation-centered view of this information, and interfaces are an object-centered
view of this information. '

The object model does not specify how this information originates. An object might be
printable because it defines behavior for the print operation. Alternatively, an object
might be printable because it has been asserted to satisfy the type printable object,
which is the declared type of the first argument of the print operation.

A C++ class whose only members are pure virtual functions is an interface.

An OSI managed object class is an interface.

In the DAA, a CDL interface is an interface.

A Tickle object type is an interface. It defines a set of operations that a client can re-
quest of objects.

Iris does not have interfaces. An Iris type can be viewed as having an associated inter-
face that is determined by the functions defined to take parameters of the type. How-
ever, an Iris type is not itself an interface, because the set of associated functions can
change dynamically.

An interface type is a type that is satisfied by any object (literally, any value that iden-
tifies an object) that satisfies a particular interface.

An interface can both describe what a particular object can do, as well as describe how
a client intends to use an object. For example, an interface type might be used to de-
clare a formal parameter of a procedure, to indicate how the actual parameter object
will be used in the procedure. An interface type captures the client-expected behavior,
not the implementation of that behavior (unlike a class type).

Subtyping over interface types means that any object that can be used as described by
the smaller interface can also be used as described by the larger interface. Subtyping
over interface types is related to set inclusion, at least for simple type systems. The
interface consisting of the print and copy operations is a subtype of to the interface con-
sisting of just the print operation, since any object that can be printed and copied can
(by implication) simply be printed.

A C++ pointer to class type or a C++ reference to class type whose class is an interface
is an interface type.

An OSI managed object class can be viewed as an interface type. However, it cannot
be used in signatures.

In the DAA, a CDL pointer to interface type is an interface type.

29



A Tickle object type can be viewed as an interface type. However, it cannot be used in
signatures.

Iris does not have interface types.

The principal interface of an object describes all requests in which the object is mean-

ingful.

The principal interface of an object is the most general interface that describes an ob-
ject. The principal interface of an object may enlarge or shrink for various reasons,
such as the definition of new operations. The object model permits but does not require
the existence of a service by which a client can determine the principal interface of an
object.

A C++ class defines the maximal set of member functions that can be invoked on its in-
stances. C++ does not define the principal interface of an object, in the sense that an
object can also be a parameter to an unlimited number of ordinary functions.

An OSI managed object class is the principal interface of its instances.

The principal interface of a DAA object is determined by the object’s object manager.

The principal interface of an object managed by a Distributed Object Manager is the

CDL interface used to register methods for the object’s implementation class with the
Distributed Object Manager.

The meaningful uses of a Tickle object from a given tool activation is determined by the
definition of the type of the object in the tool activation’s working schema. Because op-
erations include names that can differ arbitrarily in each schema, there is no universal
principal interface of an object. This property is a consequence of our modeling choice
for operations. Each context can define its own set of operations by choosing arbitrary
operation names.

The principal interface of an Iris object is defined by the specific functions that are de-
fined to take parameters of the object’s type or types.

4.10 Templates

A template is a type that can be instantiated to create a new member of the type. A
member of a template created by instantiating the template is called an instance of
the template.

This definition does not require that a member of a template must have been created
by instantiating the template. A template may or may not be an object.

A template may be defined incrementally from other templates. This process is called
template inheritance.

This definition does not require that a template defined by inheritance be a subtype of
the source template(s).




5 Object Implementation

This section defines the concepts associated with object implementation, i.e., the con-
cepts relevant to realizing the behavior of objects in a computational system. Figure
3 illustrates the relationships among several key object implementation concepts.

The implementation of an object system carries out the computational activities need-
ed to effect the behavior of requested services. These activities may include comput-
ing the result of the request and updating the system state. In the process, additional
requests may be issued.

The most important aspects of object implementation for our purposes are the expres-
sive power of binding (the ability to support generic operations) and the capabilities
provided for the sharing and composing of implementation units (the ability to sup-
port reuse).

These two aspects are captured by the two parts of the implementation model, respec-
tively: the execution model and the construction model. The execution model de-
scribes how services are performed. The construction model describes how services
are defined.

There is no single right way to implement an object system. This model is designed to
capture common characteristics of current object systems.,

5.1 The Execution Model: Performing Services

A requested service is performed in a computational system by executing a program
that operates upon some data. The data represents a component of the state of the
computational system. The program performs the requested service, which may
change the state of the system.

selects

defines

Figure 3. Primary object implementation concepts

31



A program that is executed to perform a service is called a method. A method is an
immutable description of a computation that can be interpreted by an execution en-
gine. A method has an immutable attribute called a method format that defines the
set of execution engines that can interpret the method. An execution engine is an ab-
stract machine (not a program) that can interpret methods of certain formats, causing
the described computations to be performed. An execution engine defines a dynamic
context for the execution of a method. The execution of a method is called a method
activation.

A method might implement multiple operations. The notion of method format is in-
tended to capture heterogeneous systems. The set of method formats understood by an
execution engine might change over time. An execution engine might be concurrent,
multi-threaded, or sequential.

A C++ function definition is a method. A public data member implicitly defines a meth-
od that returns a reference to the data member. C++ typically assumes a single se-
quential execution engine and a single method format.

OSI does not define the concept of a method. An HP OpenView management service
(an “M”) is a method.

The implementation of objects in the DAA is the responsibility of object managers. An
object managed by a Distributed Object Manager is characterized by its implementa-
tion class. (The implementation class is intended to define the principal interface of the
object, the behavior of requests to that object, and the representation of the state asso-
ciated with the object; however, there is no explicit definition of these properties. The
DAA does not define a way to create an implementation class. The Hewlett-Packard
implementation of the DAA includes a utility that can be used to allocate implementa-
tion class identifiers.) An implementation class may be registered in a Distributed Ob-
ject Manager with an associated program containing a set of procedures supporting
specific operations; each procedure is a method. Typically, an operating system process
serves as an execution engine. Typically, there are different methods for an implemen-
tation class for different hardware environments. The notion of method format is not
explicit in the DAA.

A Tickle tool is a method. A tool activation is an execution engine. In Tickle, a request
is performed by invoking an entry point of a tool activation (a running process). The
object designator for the target object is passed to the tool activation; the tool activation
may use the object designator to access persistent data associated with the target ob-
ject. The request parameters may be translated before presenting them to the tool ac-
tivation. Parameters of requests issued by the tool activation may also be translated.
Parameter translation supports tool integration.

An Iris specific function is a method. The signature of a specific function can be defined
prior to giving a complete definition; attempting to execute an incomplete specific func-
tion is an error. Iris assumes a single sequential execution engine and a single method
format.

32



The data operated upon by methods consists of independent units called cells. A cell
is a (potentially) mutable data structure; changes to one cell do not affect other cells.
The contents of a cell might include object names. A cell is defined by its associated
representation. A representation is a concrete datatype: it defines the format of the
data and the primitives used by methods to access or modify the cell. A method can
operate only on cells with certain representations.

An object might have zero, one, or multiple associated cells. The cells associated with
an object might change dynamically. Operating on a cell is a primitive action; it does
not involve issuing a request. The representations understood by a method might
change over time.

A C++data member definition defines a cell; the associated C++ datatype is a represen-
tation. The cells uniquely associated with a C++ object of a class type are the compo-
nents corresponding to the ordinary daia members declared by the class and the
subobjects of each direct base class. A static data member definition defines a unique
cell, like a global variable. A non-static member function is given access to the cells as-
sociated with the target object via lexically scoped variables. Other system state may
be accessed via lexical variables or pointer and reference values.

OSI does not define the concept of a cell. A managed object may have associated data
stored in a management information base. HP OpenView supports the association of
transient or persistent data with an object.

The implementation of objects in the DAA is the responsibility of object managers. The
data associated with a Distributed Object Manager object is implicitly determined by
the methods registered for the object’s implementation class (and the methods of asso-
ciated factory objects). In many cases, a file is used to represent the state associated
with an object, in which case each file is a cell. The Distributed Object Manager does
not define the representation of a file. (It is intended that all registrations of a partic-
ular implementation class use a mutually compatible representation for the state asso-
ciated with an object.) ‘

Tickle does not define cells or representations. A Tickle tool activation may use an ob-
ject designator to access persistent data associated with an object.

An Iris stored function implicitly defines a cell for each combination of possible param-
eters. The result type of the function signature implicitly defines the representation of
the cell.

An object system includes an infrastructure that serves as the mediator between cli-
ents and service providers. (Of course, a service provider can also be a client, by issu-
ing requests of its own.) The infrastructure processes a request by transforming it
into a method invocation; this transformation is called binding. A method invocation
identifies a method to be executed, an execution engine to interpret the method, and
a set of method invocation parameters, which may identify cells that are to be oper-
ated upon by the method. The input to binding includes the request (the operation
and parameters), and may also include a request context.



Method invocation parameters may include entities that are not values, i.e., are not le-
gitimate request parameters. The execution engine might be created during the bind-
ing process. A request context allows the semantics of a request to be client-dependent.

Binding involves the selection of a method to perform a requested service. Binding
can be static, meaning that the selection of the method can be performed prior to the
actual issuing of the request, or dynamic, meaning that the selection is performed af-
ter the request is issued.

Static binding is performed by compilers based on declarations. A request form often
includes variables. The declarations in the program may restrict the possible values
denoted by those variables, allowing the proper method to be identified by the compiler.

C++ virtual member functions require dynamic binding to select a method when the
target object is accessed via a reference or a pointer. Static binding is possible in most
other cases.

All binding in OSI systems management is dynamic.

All binding in DAA is dynamic.

All binding in Tickle is dynamic.

Iris generic functions generally require dynamic binding to select a method.

The method selected to perform a requested service can depend upon several factors,
including the identity of the objects participating in the request.

The selection of a method based on the participating objects is the basis for the descrip-
tion of operations as generic. In a classical object system, the selection of a method de-
pends only upon the operation and the implementation (type) of the object identified by
the distinguished parameter.

The selection of a method may also depend on other factors, such as the “location” of
the object or the “location” of the client. (The object model does not define a concept of
location.) A specific object technology might impose constraints on the process of bind-
ing that provide increased predictability for clients. The object model intentionally
does not impose such constraints.

The method selected for a C++ virtual member function depends upon the class of the
target object.

The method selected to perform an operation on an OSI managed object is determined
by the system containing the object. One would expect the selection to be based on the
managed object class of the object.

The method selected to perform a DAA request is determined by the object manager of
the target object. A Distributed Object Manager selects a method based on the object’s




implementation class. The selected method is the one registered in the Distributed Ob-
Ject Manager as implementing the operation for that implementation class.

The method selected to perform an operation on a Tickle object is determined by the
working schema and the dynamic context of the client tool activation. The client-spec-
ified operation (name and signature) is first mapped to an operation identifier, based
on the type of the target object and the definition of that type in the client’s working
schema. The operation identifier directly determines an entry point of a specific tool,
as defined by the dynamic context. Pattern matching is then performed to identify a
particular activation of that tool (which need not have a unique association with the
target object). A new tool activation may be created. Binding is thus client-dependent.

The Iris specific function selected to perform a request that identifies a generic function
depends upon the types of all of the parameters.

Performing a requested service causes a method to execute that may operate upon
cells. If the persistent form of the method or a cell is not accessible to the execution
engine, it may be necessary to first copy the method or the cell into an executable ad-
dress space. This process is called activation. The reverse process is called
passivation.

All C++ methods are executable at all times.

HP OpenView activates a management service as needed to perform requests.

Activation in DAA is defined by the target object’s object manager. A Distributed Ob-
ject Manager activates an object by creating a process to execute the program that has
been registered with the Distributed Object Manager as containing the methods for the
object’s implementation class. Alternatively, the program may be dynamically loaded
into an existing process, if the object is a member of the same object group as the objects
already activated into that process.

The Tickle dynamic context manager activates a tool to perform a request if no suitable
tool activation already exists.

All Iris methods are executable at all times.

5.2 The Construction Model

5.2.1 Realizing Behavior

A computational object system must provide mechanisms for realizing the behavior
of requests. These mechanisms would include definitions of cells, definitions of meth-
ods, and definitions of how the object infrastructure is to select the methods to execute
and to select the cells to be made accessible to the methods. Mechanisms must also
be provided to describe the concrete actions associated with object creation, such as
the allocation of new cells, and the association of the new object with appropriate
methods.



Anobject implementation—or implementation , for short—is a definition that provides
the information needed to create an object and to allow the object to participate in pro-
viding an appropriate set of services. Animplementation typically includes a descrip-
tion of a cell used to represent the core state associated with an object, as well as
definitions of the methods that operate upon that cell. It also typically includes infor-
mation about the intended type of the object. A cell that is uniquely associated with
an object is called the realization of the object. (Animplementation might also be used
to add new behavior to an existing object.)

A C++ class definition and its associated member function definitions are an implemen-
tation. (A derived class implementation includes the base class definitions.)

OSI does not define object implementations. It requires only that the managed objects
implemented by a system behave as specified in their managed object class definitions.
An HP OpenView management service is an object implementation. A management
service registers itself with the infrastructure as supporting objects of a specific man-
aged object class. The interface (API) presented to the infrastructure by a management
service is called the managed object interface; it consists of a set of defined procedure
calls.

Object implementations are defined by DAA object managers. A program registered
with a Distributed Object Manager can be viewed as an object implementation. The
program defines methods for a set of operations for objects of a given implementation
class; a program could implement operations for multiple implementation classes. A
program may or may not define how to create an object. The association between a pro-
gram and an object data representation is implicit. (It is intended that all object im-
plementations for a given implementation class use a compatible data representation.)

A Tickle tool is an object implementation. A tool defines the implementation of one or
more operations in a given context; it could implement operations on multiple object
types. A tool may or may not define how to create an object. The association between
a tool and an object data representation is implicit.

An Iris type and the specific functions defined to take parameters of that type are an
implementation.

An object system may allow a method to reference the object(s) identified in the re-
quest for the service being performed by the method. This ability, called self-
reference, allows a method to issue additional requests involving the same object(s).
Self-reference is useful when a single method may be executed for different objects.
(Self-reference in Smalltalk is indicated by the keyword self.)

A C++ non-static member function can reference the target object of the request being
performed via the implicit parameter this.

This notion is not defined by OSI.

This notion is not defined by DAA.




The target object designator is a parameter to a Tickle tool entry point.

An Iris specific function can access all request parameters.

5.2.2 Sharing Behavior

An object system typically provides mechanisms that allow objects with the same be-
havior to share implementations.

However, it is also possible for different implementations to support the same behavior.
For example, a system may contain multiple implementations for the same behavior
that operate in different hardware environments. Also, a system may contain a series
of implementations for the same behavior that incorporate performance enhancements
that were introduced over time.

An implementation template is an implementation that can be instantiated to create
multiple objects that have the same initial behavior. The resulting objects are called
instances of the template. Self-reference is useful when methods are shared by mul-
tiple instances of a template.

In many existing object systems, a class defines both an implementation template and
an interface type. Merging these roles in a single entity makes it more difficult for a
system to support multiple implementations of the same behavior.

A C++class definition is an implementation template. The associated member function
definitions are shared by all instances of the class. A C++ class definition is not a value.

A C++ class member can be declared private, which prevents access other than by the
class declaration, the associated member function definitions, and a list of explicitly
identified friend classes and functions.

An HP OpenView management service is an implementation template: it can be instan-
tiated to create multiple objects with the same behavior (instances of the same man-
aged object class). An HP OpenView management service is not a value.

The DAA does not define implementation templates. A program registered with a Dis-
tributed Object Manager as implementing objects of one or more implementation class-
es is shared by the objects of those implementation classes managed by that Distributed
Object Manager. However, the program cannot be instantiated.

Tickle does not have implementation templates. A tool can implement operations on
multiple objects. A tool activation performing an operation on an object may have ac-
cess to other operations not generally available (operations declared private in its
working schema), by virtue of the effective type of the object becoming the type where
the operation identifier is defined in the client’s working schema.

An Iris surrogate type and the specific functions defined to take parameters of that type
are an implementation template. The specific functions are shared by all objects of that
immediate type. A stored function shared by multiple objects implies associated cells
that share a representation.

37



An object system typically provides mechanisms that allow objects with similar be-
havior to share parts of their implementations. For example, implementation
inheritance may be provided to allow an implementation to be defined as an incre-
mental refinement of other implementations.

A C++ class can be derived from one or more base classes, inheriting the declarations
of data members and member functions, and the definitions of associated member func-
tions. The derived class can declare additional data members and member functions,
and can define the additional member functions and redefine inherited virtual member
functions.

A C++ class member can be declared protected, which prevents access other than by
classes publicly derived from the base class that declares the member.

Implementation inheritance is not provided by OSI or HP OpenView.

The DAA does not provide implementation inheritance.

Tickle provides static and dynamic means of sharing its implementations (specifically,
methods). Statically, a Tickle tool can be defined as the composition of other tools. Dy-
namically, a composite tool can inherit methods from its parent dynamic context (the
dynamic context of the tool that invoked the composite tool). Tickle does not support
sharing of data definitions.

Iris objects share partial implementations as a result of inheritance. An object of one
Iris type shares all specific functions that accept parameters of a supertype, except
those overridden by another specific function. Additional specific functions can be de-
fined that are applicable to the object but not to other members of a supertype.

An alternative technique for providing sharing of implementations is delegation. Del-
egation is the ability for a method to issue a request in such a way that self-reference

in the method performing the request returns the same object(s) as self-reference in

the method issuing the request.

Delegation can be modeled by making the self-reference context a method invocation
parameter (which determines the meaning of self-reference in the invoked method ac-
tivation) and incorporating the self-reference context of the client method activation in
the request context of a delegated request (which allows the self-reference context of the
client to be used as the method invocation parameter for the new method activation).

C++ does not support delegation.

Delegation is not provided by OSI or HP OpenView.

The DAA does not support delegation.

Tickle does not support delegation.

Iris does not support delegation.




6 Glossary

activation. Copying the persistent form of methods and cells into an executable ad-
dress space to allow execution of the methods on the cells.

behavior (of a request). The observable effects of performing the requested service
(including its results).

binding. The process that transforms a request into a method invocation. Binding
selects a method to perform the requested service, an execution engine to interpret
the method, and may select cells to be operated upon by the method activation. See
also dynamic binding and static binding.

cell. An independent data structure that is operated upon by methods. A cell is po-
tentially mutable; changes to one cell do not affect other cells. A cell is defined by
an associated representation.

client. Any entity capable of requesting services.

delegation. The ability for a method to issue a request in such a way that self-refer-
ence in the method performing the request returns the same object(s) as self-ref-
erence in the method issuing the request. See self-reference.

dynamic binding. Binding where the selection of the method is performed after the
request is issued.

encapsulated. An object is encapsulated if it has associated state that can be direct-
ly accessed or modified only by particular methods.

execution engine. An abstract machine that can interpret methods of certain for-
mats, causing the described computations to be performed.

extension (of a type). The set of values that satisfy the type. See satisfies.

generic operation. An operation that can be uniformly requested of objects with dif-
ferent implementations, resulting in observably different behavior.

handle. A value that reliably identifies an object. See object name.

implementation. A definition that provides the information needed to create an ob-
ject, allowing the object to participate in providing an appropriate set of services.
An implementation typically includes a description of a cell used to represent the
core state associated with an object, as well as definitions of the methods that op-
erate upon that cell. It also typically includes information about the intended type
of the object.

implementation inheritance. The construction of an implementation by incre-
mental refinement of other implementations.

39



implementation template. An implementation that can be instantiated to create
multiple objects with the same initial behavior.

inheritance. The construction of a definition by incremental refinement of other def-
initions. See implementation inheritance.

instance (of a template). An object created by instantiating the template.
instantiation. Creating an object from a template.

interface. A description of a set of possible uses of an object. Specifically, an inter-
face describes a set of potential requests in which an object can meaningfully par-
ticipate. See also principal interface.

interface type. A type that is satisfied by any object (literally, any value that iden-
tifies an object) that satisfies a particular interface. See object type.

literal. A value that identifies an entity that is not an object. See object name.

meaningful request. A request whose actual parameters satisfy the signature of
the identified operation.

member (of a type). A value that satisfies the type.

method. A program (an immutable description of a computation) that can be inter-
preted by an execution engine to perform a requested service. A method has an as-
sociated method format that defines the set of execution engines that can interpret
the method.

method activation. A particular execution of a method, corresponding to a specific
method invocation. A method activation has an associated dynamic context that
includes method invocation parameters.

method format. An immutable description of a method that defines the set of exe-
cution engines that can interpret the method.

method invocation. An identification of a method to be executed, an execution en-
gine to interpret the method, and a set of method invocation parameters. Each re-
quest is transformed by binding into a method invocation.

method invocation parameter. A parameter to a method invocation. A method
invocation parameter may identify a cell that is to be operated upon by the method
activation.

object. An identifiable entity that plays a visible role in providing a service that can
be requested by a client. An object explicitly embodies an abstraction character-
ized by the behavior of certain requests.

40



object creation. An event that causes an object to exist that did not previously exist.

object destruction. An event that causes an object to cease to exist and its associ-
ated resources to become available for reuse.

object implementation. See implementation.
object name. A value that identifies an object. See handle.

object system. A collection of objects that isolates requestors of services (clients)
from the providers of services by a well-defined encapsulating interface.

object type. A type whose members are objects (literally, values that identify ob-
jects). In other words, an object type is satisfied only by (values that identify) ob-
jects. See interface type.

operation. An identifiable entity that denotes a service that can be requested. An
operation has an associated signature, which may restrict which actual parame-
ters are possible in a meaningful request.

operation name. A name used in a request form to identify an operation.

participate. An object participates in a request if and only if one or more of the ac-
tual parameters of the request identifies the object.

passivation. The reverse of activation.

principal interface. The interface that describes all requests in which an object is
meaningful.

realization (of an object). A cell that is uniquely associated with an object.

representation. An immutable description of a cell that defines the format of the
data and the primitives used by methods to access or modify the cell.

request. An event consisting of an operation and zero or more actual parameters. A
client issues a request to cause a service to be performed. Also associated with a
request are the results that may be returned to the client.

request context. The information associated with a request other than the opera-
tion and the parameters that is needed to determine the result of binding. The
request context is used to support client-dependent binding.

request form. A description or pattern that can be evaluated or performed multiple
times to cause the issuing of requests.

41



results (of a request). The information returned to the client, which may include
values as well as status information indicating that exceptional conditions were
raised in attempting to perform the requested service.

satisfies. A value satisfies a type if the predicate associated with the type is true for
that value. See member.

self-reference. The ability of a method to determine the object(s) identified in the
request for the service being performed by the method. (Self-reference in Small-
talk is indicated by the keyword self.) See delegation.

service. A computation or information processing action that may be performed in
response to a request.

signature. A description associated with an operation that may restrict the possible
(actual) parameter values that are meaningful in requests that identify that oper-
ation. A signature also characterizes the possible result values and exceptional
conditions associated with those requests.

state. The information about the history of previous requests needed to determine
the behavior of future requests. ~

static binding. Binding where the method is selected prior to the actual issuing of
the request, based on static properties of the client.

subtype. A relation defined over types such that a type a is a subtype of a type b if
any value that satisfies type a necessarily satisfies type b.

template. A type that can be instantiated to create a new member of the type.

template inheritance. The construction of a template by incremental modification
of other templates.

type. An identifiable entity with an associated predicate (a single-argument mathe-
~ matical function with a boolean result) defined over values. Types are used in sig-
natures to restrict a possible parameter or characterize a possible result.

value. Any entity that can be a legitimate actual parameter in a request. Values that
identify objects are called object names. Values that identify other entities are
called literals.

42



7 References

1.

10.

11.

12

13.

14.

15.

J. D. Brock and W. B. Ackerman. Scenarios: A Model of Non-Determinate Computation.
In Lectures Notes in Computer Science, Springer, 1981, 252-259.

T. Collins, et al. TICKLE: Object-Oriented Description and Composition Services for
Software Engineering Environments. To appear in Proc. 3rd European Software Engl
neering Conference, Milan, October 1991.

T. Collins, et al. Tool Composition and Scopes in TICKLE. Submitted to 1st Conference
on the Software Process, Redondo Beach, October 1991.

M. A. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley,
1990.

D. H. Fishman, et al. Iris: An Object-Oriented Database Management System. ACM
Transactions on Office Information Systems, 5:1 (Jan. 1987).

Hewlett-Packard Company. HP OpenView: Hewlett-Packard Network Management Ar-
chitecture. Internal report, April 1990.

Hewlett-Packard Company. The MIT Documents. Internal report, Software Engineering
Systems Division, June 1990.

Hewlett-Packard Company. Sun Microsystems, Inc. Class Definition Language Specifi-
cation. OMG Document 91.1.4.9, March 1991.

Hewlett-Packard Company. Sun Microsystems, Inc. Distributed Object Management Fa-
cility Core Specification. OMG Document 91.1.4.10, March 1991.

Hewlett-Packard Company. Sun Microsystems, Inc. The Object Management Group Ob-
Ject Request Broker RFP Joint Response. OMG Document 91.1.4.8, March 1991.

S. Keene. Object-Oriented Programming in Common Lisp. Symbolics Press and Addison-
Wesley, 1989.

A. Snyder. An Abstract Object Model for Object-Oriented Systems. Report HPL-90-22,
Hewlett-Packard Laboratories, Palo Alto, California, 1990.

A. Snyder. The Essence of Objects: Common Concepts and Terminology. Report HPL-91-
50, Hewlett-Packard Laboratories, Palo Alto, California, 1991.

A. Snyder. Modeling the C++ Object Model: An Application of an Abstract Object Model.
Report HPL-90-212, Hewlett-Packard Laboratories, Palo Alto, California, 1990. (To be
presented at ECOOP-91.)

A. Snyder. An Overview of the OSI Systems Management Computational Model. Report
HPIL-91-57, Hewlett-Packard Laboratories, Palo Alto, California, 1991.





