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-Abstract

The report defines the concrete and lexical syntax of the TTP-SL specification language developed at the
UP research laboratories in Bristol. The report provides the syntax in an extended BNF and the syntactic
presentation is supported by some informal commentary.
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Introduction

1 Introduction

The purpose of this document is to present the complete HP-SL concrete syntax and lexical rules. Both of
these are presented in an extended BNF notation which is described in section 2.1

The synta.x other than that relating to identifiers is covered in section 2. The syntax for used and defining
occurrences of identifiers is given in section 3. Lexical rules are given in section 4.

Following these main sections are a set of indices rererencing into the synla-.;:, an index of syntax: clauses in
secl.ion 7, an index of symbols in section 8 and an index of reserved words in section 9.

The index of symbols additionally contains the ASCII form of the mathematical symbols.

Each clause in the syntax is accompanied by a descriptive text. This text is not intended to form a reference
manual, rather it is intended to highlight some pertinent information regarding the clause. This information
varies considerably in detail from clause to clause, but will (where appropriate) refer the user to a more
detailed description in another document.

The report [B} is a rapid overview of RP-SL, and includes an example use of most of the clauses of the
grammar.

2 Concrete Syntax

This section defines the concrete syntax of HP-SL.

2.1 Meta-language

The following table defines the meta-language for describing the concrete syntax of HP-SL.

el 1e2
-(,~

I')·
Ie};
le}+
(e);
N

al1r N

t
Ie}

'el'or'e2'
optional 'e'
zero or more 'e'
zero or more 'e' separated by's'
one or more 'e'
one or more 'e' separated by's'
non-terminal symbol 'n'
lIon-terminal symbol 'n' with attributes 'attr'
terminal symbol 't'
grouping of syntactic components

In addition, all non-terminals are alphabetic, so any symbol sequence not. defined above may be considered
a terminal string. Occasionally, the syntactic description is reduced to English text. When this is done, the
intention is always clear.
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2.2 Modules

1

2

MODULE-DECL

MODULE-EXPR

lllodule MODULE-lD;; MODULE-EXPR

( MODULE-EXPR )

~IODULE-ID

define (DEFINITION)" enddefine
share MODULE-EXPR

local (MODuLE-DEeL)- in MODULE-EXPR (r.IODULE-DECLt endlocal

enl'ich MODULE-EXPR with (DEFINITION)- endenrich
Jl,IODULE-EXPR + MODULE-EXPR

sig (DEFINITION)" for MODULE-EXPR -< fitting (USED-ID _ USED-ID): >- endsig
replace

MODULE-PREFIX by MODULE-EXPR

in MODULE-EXPR

-< fitting (USED-ID ---t USED-ID)+ >-
endreplace '

COlliluentary:

1 A module declaration binds the name of a module (which must be unique) to the module denoted by the
module expression. Circular dependencies are not allowed between (.wo modules. For more details of
the module system in HP-5L sec [7].

2 A lllOdule expression is the way to construct modules; taking appropriate account of issues such as copying
and sharing of types and values.

2.1 The bracketing is to ensure control precedences during parsing and has 110 other semantic effect.

2.2 The module identifier denotes another module.

2.3 The define module expression is basic building-block of module expressions, by defining a module
from a set of definitions not dependent on other modules.

2.4 The share operator allows several modules to share the contents of the module denoted by the
expression which follows. The shared module is not allowed to be anonymous.

2.5 The local syntax provides a scoping mechanism for module identifiers; the modules defined within
the declaration part defines modules which are local to the following module expression.

2.6 Enrichment allows the addition of definitions to a module.

2.7 Summing two modules combines the definitions of the two modules to create a Ilew one.

2.8 Giving a lIew signature to a module allows both renaming and hiding of definitions. The fitt.ing
morphism is from the new signature to the original signature. It must cover every entity in the
new signature, though the language allows the omission of identity mappings.
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2.9 The replacement operator allows users to substitute one module [or another, thus creating a new
module. The fitting morphism is from the original module (all entities whose owner disambiguator
starts with the disambiguator provided) to the replacing module. The fitting morphism must cover
every entity of the original module, though the language allows the omission of identity mappings.
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2.3 Definitions

3

,
••

,
.,
.,

4

DEFINITION

TYPEVARS

val --< TYPEVAI~S >- PATTERN -< ~ EXPR >
£n -< TYPEVIIRS >- FN-SiG (is FN-BODY)"

reIn -< TYPEVARS >- RELN-SIG (is RELN-BODY)

type -< TYPEVARS >- DEFINING-TYPE-ID

-< g, -< overlapping >- (CONSTRUCTOR)r >-
syntype -< TYPEVARS >- DEFINING-TYPE-In ~ TYPE-EXPR

assert -< TYPEVAIlS >- OEFINING-PREFIX-ID ~ EXPR

provable -< TYPEVARS >- DEFINING-pm;PIX-1D ~ EXPR

~ (OEFINING-PREFIX-TID)+ ~

COlumclltary:

3 The definitions clause lists all the t.ypes of definition which may be used at the top level of a flat spec
ification. It includes the declarations of types and values (including functions and relations) as well
as the assertions. In all the declarations, the type variables which occur must be pre-declared in the
'typevars'.

3.1 The 'val' definitions declare the identifiers which occur in the pattern. They are bound to the
appropriate parts of the expression which must be of a compatible type.

3.2 The 'fn' definition provides a derived synta.x for the declaration of functions. The function syntax
is further described in [1] and [2J.

3.3 The 'reln' definition provides a derived syntax for boolean functions for use in relational modelling.
Relations are further described in {I].

3.4 A type definition declares a new type or new type constructor, different from all other existing types
or type constructors. The definition also provides a way of including constructor and projector
functions by supplying a list of 'constructor'. The 'overlapping' keyword indicates that the 'no
confusion' axiom should not be automatically provided. Types are further described in [3J and
[61·

3.5 Syntypes define synonyms for existing types and type constructors. Synonym types are further
described in [6].

3.6 Assertions are statements that the specification relluires to be true. These assertions are used to
define abstract behaviour.

3.7 The predicates given as provable are statements of properties of the specification and the assertion
must be a consequence of the other definitions and assertions.

4 The definitions of type constructors, polymorphic functions, values or assertions may be generically defined
for all types. The type-variable declarations at. the st.art of every definitional form introduces the generic
types for use within the definition. For more details on the polymorphism, see (1].
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2.4 Constructors

5 CONSTRUCTOR

.Z (DEFINING-PREFIX-JD ]

.3 [DEFINING-PREFIX-IO : TYPE-EXPR]

•.01 (DEFINING-PREFIX-lD (I> (PATTERN I •.•))+ ]

Commentary:

5 A const.ructor definit.ion is used within a type definition to give the name, signature and some properties
of functions and values of the type. These functions are the constructor and projector functions; whilst
the properties arc those of 'no junk' and 'no confusion', Associated with each constructor is an 'is_'
function to test whether or not a vallie has been constructed using that constructor. Associated with
each projector is a 'seL' fundion to create a new value w!lich differs only in the value of that projector.

5.1 The t.hree dol.s are used to indicate that other constructors may be present; it eliminates the 'no
junk' a.-dam.

5.2 A simple identifier indicates a constant value of the t.ype.

5.3 A typed identifier indicates a function which takes a value of the type given with the identifier to
the type to whose declaration the constructor contributes.

5.4 The full form of the constructor definition gives both a constructor function and a set of projector
functions - one for each of the pattern variables. If mote than one of the patterns is used, thcn
the constructor may not be used as a function (its type is not known). It may, however, be uscd
in constructor cxpressions. The three dot projector indicates that there are more projectors that
will be defined later.
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2.5 Functions and Relations

6 FN-SIG DEFINING-PREFIX-ID -< : function TYPE-EXPR ~

7 FN-BODY HEAD -< pre EXPR >- -< return PATTERN -< post EXPR >- r-< ~ EXPR >-

8 RELN-SIG DEFINING-PREFlx-m-( : TYPE-EXPR >-

9 RELN-BODY HEAD -< pre EXPR >- -< ~ EXPR >-

10 HEAD DEFINING-PREFiX-In {PARAM-PATTERN}+

.2 PAIlAM-PATTERN DEFINING-INFIX-ID PARAM-PATTERN

_3 OEI~INING-LBRACKET-1D SEQ-PATTERN-BODY DEFTNING-RBRACKET-ID

11 I'ARAM-PATTERN untyped at outer level PATTERN

Commentary:

6 A function signature defines the identifier and the type of the function. The type is optional. If it not
provided it must be possible to deduce it from the body and procedure parameters. The most general
type will be deduced.

7 The body of a fundion consists of the head - that part of the definition which defines the formal
parameters - the pre condition (which is optional) and the definitiOll part. This last part may be left
ont or may be given explicitly or implicitly, or indeed both. Several bodies may be given for a function
each with their own formal parameter patterns and pre-conditions. This gives a clausal definition form
for functions.

S The relation signature gives the name and the types of the various parameters to the relation. Unlike a
function, though, the result type (always Bool) must not be given.

9 The body of a relation is constructed in a similar way to that for functions - though the implicit fo.'m is
not provided.
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10 The head of a function or relation is that part of the definition which provides the formal names for the
parameters. They are provided in the fotm of a dummy application of the function or relat.ion with
patterns replacing expressions and hence defining the names required for the rest. of the function.

10.1 For prefix operators, the head takes on the appearance of a (possibly curried) function application.
Thus there is a pattern allowed for each of the curried parameters - though they need not all be
supplied (by leaving out the right-most parameters).

10.2 An infix operator is defined by the infix application oCthe operator between two patterns matching
the two expression to which such an operator will be applied.

10.3 A bracket head consist.s of the left. and the right bracket symbols surrounding a sequence pattern
matching the sequence to which the brackets will be applied.

11 Each formal parameter of a function is given as a pattern. These patterns may not be typed unless both
the pattern and the associated typing are within parentheses.
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2.6 Type Expressions

12.,

.,

TYPE-EXPR let (DEFINITION)' in TYPE-EXPR (DEFINITION)" elldlet
( TYPE-EXPR )

USED-TVPE-ID

[TYPE-EXPR 1
TYPE-EXPR inv PATTERN. EXPR

CONSTRUCTOR-INSTANTIATION

13
.,

CONSTRUCTOR-INSTANTIATION TYPE-EXPR TYPE-EXPR

TYPE-EXPR USED-INFIX-TYrE-1D TYPE;-EXPR

COlumentary:

12 Type expressions are used to denote types. They are 'referentially transparent'; thus two identical
expressions denote the same type if they occur in the same environment.. For more information on
type expressions, see [6].

12.1 A let construction creates a local scope within which new definitions may be given and then used
within the type expression between the 'in' and 'cndlet'.

12.2 Parentheses are used to control the binding and precedence rules. They have no eITect on the
meaning of type expression within the parentheses.

12.3 The identifier must be the identifier of a synonym type, a type variable or a type which is within
scope. If it is a synonym identifier, the semantics may be seen as that of the definition of the
synonym being 'unfolded' at the point of use in an environment identical to that at the point of
definition. Thus names in a synonym refer to their meanings at the time of the definition, not at
the time of use.

12.4 An optional type expression denotes the type of the internal expression extended by the value
'nil', There is such a 'nil' for every type.

12.5 A subtype expression creates a type whose values are members of the parent type, but only those
that satisfy the predicate expression are members of the subtype. The pattern is llsed to provide
names for the components of a typical member of the type for use in the predicate.

12.6 Type constructors are type functions which define types from other types. The instantiation of
such a constructor is the way in which a type constructor is applied to a type (represented by a
type expression).

12.7 The three dot notation may be used to indicate that the type has yet to be written. This is
useful in giving partial specifications and examples.

13 Constructor instantiations are t.he way iu which type constructors are applied to their actual type pa
rameters.
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13.1 Most type constructors, including all user defined constructors, are prefix constructors. These
are applied to their parameters by juxtaposition; by placing the constructor infront of the type
expression. Type constructors wit.h more than one type parameter are curried.

13.2 A few of the predefined construdors are written using an infix notation. The application is
written by placing the constructor between the two type parameter expressions.
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2.7 Patterns

14 PATTERN

.,

.,
A

.,

.,

Comluentary:

DEFINING-PREFIX-ID

PATTERN as PATTERN

TYPED-PATTERN

( PATTERN)

( PATTERN, (PATTERN):- )

[USED-PREFIX-ID {to- PATTERN -< ~ USED-PREFIX-In >-}" ]
« SEQ-PATTERN-BODY ::;;>

14 A pattern is used to name 'typical' members of a type inside a local scope. They are also used to simul
taneously !lame sub-components without the use of projector fUllctions. This enables very compact
and readable definitions. In most cases, patterns closely follow the structure of the expressions thai
build the values. Patterns may be nested to arbitrary depths.

14.1 A don't care pattern matches any value, but does not supply a name fOf it. It is most useful
when only one sub-component of a compound value (such as a tuple) is required and it seems
unnecessary to invent names for the other parts.

14.2 An identifier is used to name the whole expression to which it is matched.

14.3 Sometimes it is useful to name components of values in different ways; for example when a name
is required for the whole of a value and for sub-components. This is achieved by layering the
pattern. Both the left and the right pattern are matched to the same value and both sets of name
bindings which occur are visible.

14.4 At all times it is necessary to know the type of the variables within a pattern. This may be
done either by typing the whole of the pattcrn or by allowing types to occur on the component
sub-patterns.

14.5 Parentheses are used to control precedence during parsing and have no effect on thc pattcrn
matching.

14.6 A tuple pattern.'Jas a sub-pattern for each component of the tuple value against which it is
matched. The matching is carried out pairwise - the first pattern matched against the compollellt
of the tuple value and so on. A tuple pattern only matches a tuple value with the same number
of components.

14.7 A constructor pattern may be used to match a value of a type declared using a union ofconstructor
definitions. The pattern will only match values constructed using the constructor mentioned as
the first identifier. Subsequent patterns may be given, and associated with t.he identifier of one of
the pro.iectors for that constructor functioll. The component pat.tern is then mat.ched against. the
value returned by that projector when applied to the whole value to be matched. If no projector is
mentioned, the whole constructed value is matched. If t.he keyword 'overlapping' was used in the
type definition then the pattern matching is not allowed. For more information on type patterns
see [3].
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14.8 A sequence pattern matches both elements from the front of the list and elements from the back
of t.he list. This is explained more with the sequence pattern body clause (clause 16.1).
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Patterns (cont.)

15

.,
A

.,,

16

TYPED-PATTERN

SEQ-PATTERN-BODY

PATTERN: TYPE-EXPR

(PATTERN and (PATTERN):nd)
PATTERN sat EXPR

PATTERN USED-INFIX-ID EXPR

NUMERIC-LITERAL

CHAR-LITERAL

STRING-LITERAL

(PATTERN I <: PhTTE:IlN »)~

COllllnentary:

15 Every pattern must be typed. However, sometimes it is convenient to give a set of 'short forms' for a
simple typing. The following set of clauses are all of this nature - they ail are explained in terms of
a short-hand for a longer typed pattern.

15.1 The simple form of typing has the obvious meaning - the pattern may only be matched against
a member of the type. For this to be valid, the pattern must also be of the right form - for
example a tuple pattern may not he given a sequence type.

15.2 The and form of pattern definition is equivalent to a tuple where every element is of the same
type.

15.3 The 'sat' form of pattern represents a sub-typing. The value t.o which the pattern is matched
must satisfy the predicate e.'I":pression.

15.4 The relational form of patt.ern is a special case of the 'sat' pattern where the predicat.e is the
application of a binary relational operator. In this case the pattern must be in the appropriate
relation to the value denoted by the expression.

15.5,15.6,15.7 It is possible to lise the built in literal forms as patterns. They match only ifequal
to the value to which they are matched. The boolean literals should be treated as members of an
enumerated type.

16 A sequence may be matched against a sequence pattern. A pattern consists of a possibly empty sequence
of patterns matching elements from the front of the sequence value; a sequence of patterns matching
elemellts from the back of the sequence; a pattern inatching the rest of the sequence - itself a sequence.
The synta.x is more generous than is in fact allowed as it appears that any number of such sub-sequence
patterns is allowed. A sequence pattern only matches with sequences that are sufficiently long to match
every element mentioned in the patt.ern - though the 'rest of the sequence' part may be matched
against an empty sequence.
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2.8 Expressions

17 EXPR

.,

.,
A

.,

.,

.,
••.,
.w
.u
.12

."

."

."

."

let (DEFINITION)- in EXPR (DEFINITION)- elldiet
( EXPR -< : TYPE-EXPR >- )
NUMERIC-LITERAL

CHAR-L1TERAL

STRING-LITERAL

USED-PREF1X-1D

APPLICATION

( (EXPR);' )
CONSTRUCTOR-EXPR

if EXPR then EXPR (elseif EXPR then EXPR)- else EXPR endif
cases EXPR of (case l'ATTERN then EXPR)+ -< else EXPR >- endcases
( V PATTERN. EXI'R -< end", >- )
( 3 PATTERN • ~~xrR -< end3 >- )
( 31 ]'ATTEltN • EXPR -< end3! >- )
( >. PATTERN. EXPR -< end). >- )

Conlluentary:

17 Expressions are used to denote values of particular types. Expressions fall into several classes. The
majority are those which construct values directly, others control scope and parsing, yet more are used
in predicates to give properties of the values thus defining them indirectly. This richness makes for a
large expression language in comparison to programming languages.

17.1 Let expressions are use<! to control scope, with the definitions provided between the 'let' and
'endlet' being only visible within the main expression between 'in' and 'endlet' or a foUowing
definition. The result of the 'let' expression is that of the expression following the 'in'. It is illegal
for this expression to be of a type which is defined within the local definitions.

17.2 Parentheses are used only for controlling parsing and have no other effect upon the values of the
expressions which they contain. To avoid parsing problems with the range of it type expression,
both in terms of the expression it is typillg and with respect to the end of any invariant that
may be involved, typings may only be included within a parenthesised expression. The typing
operates on the whole expression occurring within the parentheses. The result of the parenthesised
expression is the result of the expression within the parentheses.

17.3 - 17.5 Numeric, character and string literals are, along with identifiers, the basic building blocks
of expression

17.6 Identifiers delLote the values to which they were bound in their declaration.

17.7 There are three types of operator whose application needs to be considered. These are described
further in the commentary for clause 18.

17.S Cartesian expressions build values of the tuple types, they are distinguished from the parcnthe~

sised expressions by the occurrence of one or more comma symbols.
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17.9 Constructor expressions are used to define a value of an abstract type indirectly by stating what
the projectors for that type should produce for the value. More detail of the precise syntax is
given in the description for clause 20. See also [3].

17.10 'If' expressions are provided to give the usual conditional control in expressions. An arbitrary
number of 'elseif' clauses may he provided. As the conditional is an expression, an 'else' must
always be present. All of the condition expressions (before a 'then') mnst be boolean. All of the
result expressions (following and 'then' or 'else') must have the same type. The 'if' expression has
the same type as the result expressions, and its value is that of the first alternative with a valid
guard.

17.11 The 'cases' e.xpression provides control ba.'Jed on pattern-matching, particularly useful in con
junction with enumerations, sequences and the like. The variables defined in a particular case
patLern are visible only within the expression following the 'then' of that case. When a value is
matched against the patterns, the resultant case-expression value is that of the case alternative
which matches. In the instance that more than one case matches, the results should be identical
otherwise the specification is ill-formed. Each of the alternatives must have the same type.

17.12 The universal quantifier expression is used to test all values of the pattern variables in the
predicate expression following the '.'. The pattern variables are visible within that predicate which
forms an inner scope. The ending keyword is optional to allow compact one-line quantifications
and yet to allow a greater degree of readability when the quantification runs over several lines.
The parentheses are necessary to limit the extent of the quantified expression.

17.13 The ex..istential quantifier, used to test whether one of the legal pattern variables satisfies the
following predicate expression. In all other respects, the syntax is identical to that for the universal
quantifier, clause 17.12.

17.14 The quantifier which is used to test whether exactly one of the legal pattern variables satisfies
the following predicate expression. In all other respects, the syntax is identical to that for the
universal quantifier, clause 17.12.

17.15 The lambda-expression is used to build values of function type. The pattern immediately
following the lambda represents the formal parameters. These may then be used within the
body of the function, the e,,-pression which follows the '.'. On application of the function, the
pattern is matched against the actual parameter and the pattern variables are bound to the
appropriate values. The resultant value of the applicat.ion is the value of the function body under
the appropriate variable bindings. The parentheses are necessary to limit the extent of the body
of the function and the ending keyword is optional to allow compad one-line expressions and to
aid readability when the function spreads over several lines.

17.16 The undefined expression indicates an expression which ha.'J not yet been completed.
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Expressions (cont.)

18

19

APPLICATION

BRACKET-BODY

EXPR EXPR

EXPR USED~INFIX-IDEXPR

USED-LBRACKET-ID BRACKET-BODY USED-RBRACKET-ID

EXPR .. EXPR

{EXPR I -< EXPR >-}- -< (I PATTERN -< It" EXPR >-)+ -< . EXPR >- >-

20 CONSTitUCTOR-EXPR [ USED-PREFIX-lD (t> USED-PREFIX-ID g, EXPll)-]

COlllluentary:

18 Applications come in three flavours, prefix application, infix application and bracket application - this
latter form being further described in the clause 19.

18.1 Prefix application is achieved by juxtaposition of the function and the parameter, function first.
Application hinds to the left, so curried functions may be applied to several parameters by repeated
juxtaposition without parentheses.

18.2 Infix application is achieved by placing the operator between the first and second values of the
pair on which the operators are defined.

18.3 Bracket application is achieved by placing the opening (left) bracket and the closing (right)
bracket around the collection to which they will be applied.

19 A bracket body is the way in which collections of elements are constructed for the bracket operators. The
synta.x allows enumerations, comprehensions, and integer ranges. The syntax is very rich and hence
somewhat complicated.

19.1 This is one of the two main forms for applying the brackets to collections of integers, the integers
ill order between the two integers in the clause. If the first integer value is greater than the second,
then the collection is empty.

19.2 T.he syntax for enumerations and comprehensions is described in [2].

20 These expressions are used to give values of abstract types defined in terms of the constructor/projector
syntax an indired form of definition via the projected values. In this form of the expression, the
constructor name is the first iclentifcr after the opening bracket. It is not called directly with ordered
parameters, but rather each of the subsequent 'Do' symbols is followed by a projector names bound
to the value which it should project. The projectors need not occur in any particular order. It is a
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language feature very like a record syntax, with field selection being achieved by the use of the projector
functions. The value denoted by the expression is one of the values of the associated abstract type,
such that the projectors applied to that value return the values to which they are bound.
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3 Identifiers

There are several kinds of identifier

1. module identifiers

2. type and type constructor identifiers

3. value, function, relat.ion, assertion and provable identifiers, known collectively as prefix identifiers

4. infix operator identifiers

5. infix type constructor identifiers, though"these are all built-in

6. bracket operator identifiers, both left and right bracket identifiers

Each of these has a different lexical form (except for modules and types which share their form). Furthermore,
each (other than the module and right bracket identifiers) come in two flavours, used and defined occurrences.
Syntactically, this difference is reflected in the fact that a module disambiguator is allowed with the used
occurrences. Modules do not have a disambiguator, their names must be unique. Right bracket identifiers
are disambiguated on the use of the matching left bracket identifier.

A further difference between used and defining occurrences, this time including the right bracket identifiers,
is that the HP-SL predefined identifiers are only allowed in the used identifier positions and need never be
disambiguated.

A module disambiguator consists of a sequence of module names referring to the owning module of that
identifier. Each identifier must be unique within that owning module - HP-SL does not support overloading
as overloading conflicts with the parametric polymorphism.

21 MODULE-JD TlD

22 MODULE-PREFIX (TID):'"

23 USED~rREFtX-lD JD -< MODULE-PREFIX >-
.2 I USED-INFIX-JD

.3 I USED-LBRACKET-JD

.4 'predefined prefix operator'

24 DEFININ G-P lllWIX-ID '"
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.2

~

25
.,

26

27

USED-INFIX-IO

DEFINING-INFIX-ID

USEO-TVPE-ID

I DEFINING-INFIX-ID

, DEFINING-LBRACKET*ID

INID -< MODULE-PREFIX >-
, USED-PREFl.X-1O

'predefined infix operator'

INIO

TID -< MODULE-PREFIX >-

28 DEFINING-TVPE--ID TID

.2 'DEFINING-INFIX-TYPE-1D

29 USED-INFIX-TVPE-ID 'pl'e-defilled infix type id'

30 DEFINING-INFIX-TYPE-ID 'pre-defined infix type id'

31 USED-I.BRACKET-ID LBRACKET -< MODULE-PREFIX >-
.2 'pre-defined left bracket id'

32 DEFINING-LBRACKET-ID LBRACI,ET

33 USED-It8RACKET-1D RBRACKET

.2 'pl'c-defined right bracket id'
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34 o EF IN IN G-RB RAe KET-10 RBRACKET

35.,
USED-PREFlX-1D

USED-TYPE-ID
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4 Lexical Rules

In the concrete syntax above, the syntax is described in terms of the mathematical syntax and not the
ASCII syntax. The lexical rules, however, are never applied to input in the mathematical synta'Xj all input
is naturally in the ASCII syntax. It makes sense, therefore, to only give rules for ASCII input.

The lexical analysis attempts to build the longest possible tokens, reading left to right - lexical analysis
never breaks a token unnecessarily.

The lexical classes are divided into two main groups - the sign characters and the alphanumerics (which
include the I character). Characters of the same class will stick together to form groups.

The '_' character will link groups of characters together. If the characters in both groups arc from the same
class, then the class of the combined group is that of the components. If one of the groups is sign and the
other is alphanumeric, the combined class is that of the first group.

Parenthesis characters never stick to anything unless part of a reserved word.

In addition to the general rules, there are a set of reserved words and pre-defined operator symbols. These
override the standard rules if the standard rules would result in a shorter token.

With these meta-rules in mind, here is an informal set of lexical rules; the formal ones are given III the
following sub-sections.

• reserved words - if a token matches a reserved word, then this takes preference over any other type
of token

• identifiers - any linked set of groups such that the first (or only) group starts with a 100\'er-case
character

For example

,
d4
johnl s_book
xy!
x_**

are all identifiers

• numeric literals - any sequence of characters starting with a numeric character and containing only
numeric and upper-case letters characters and at most a single occurrence of 'b', '.' and 'e' in that
order.

For example

1
2blJOl
1.34334
O.Ole20
16b4F.FeAO
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are all numeric literals

• operators~ there are two possibilities

L infix operators Any linked set of character groups, such that the first (or only) group consists of
sign characters. Bracket characters must be balanced.
For example

++
+_complex

{*}

are all infix operators

2. bracket operators - bracket operators are considered either 'left' or 'right' operators. There is the
concept of matching of a left bracket operator with a right bracket operator; this being defined
at the lexical level to ensure that parsing may continue without the declaration of the operator.
A bracket operator is an infix operator with at least one non-matching bracket character - {, },
[, ] - included in the first (or only) group. All the unmatched bracket symbols must be of the
same directionality (i.e. both left or right symbols in the same token is illegal). The directionality
of the bracket operator is the same as that of the included bracket symbols.
For example

{*
I{

are both left brackets, and

is a right bracket.
To understand left/right mirroring, consider the following examples

{* *}
[-history l_history

These are all mat.ching bracket operators. The rules are as follows:

(a) t.he first group is mirrored, with bracket characters being swapped for their respective match-
Ing palf

(b) t.he remaining groups are left untouched
(c) t.he groups remain in the same order

In addition, the following two tokens Rre considered matching bracket operators

« »

• type ide"lijiers - any linked set of groups such that the first (or only) group st.a.rts with an upper-case
character

For example
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Golour
New.type
Type.lO
T_••

are all t.ype identifiers

4.1 Character classes

39

36

37

38

.,

40

41

LOWER-CASE

UPPER-CASE

DIGIT

CHARACTER

ALPIIANUM

0-9

a-,

A-Z

any printable character except a" 'or \
\ I LOWER-CASE I UPPER-CASE I mGIT]·

(' I LOWER-CASE I UPPER-CASE I DIGIT)+

_nyof '@#S%&'-~+\{}[lI?/><

42 SIGN (SIGN-CHAR)+

43 SIGN-AND-ALPHA _ (brocket-balanced SIGN 1 ALPIIANUM)~
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4.2 Tokens

The following disambiguation rules apply to the tokenisation

• the longest token is taken ill preference

• given two productions which produce tokens of the same length, the earlier production is preferred

44

45

46

NUMERIC-LIT8RAL

CIIAR-LITERAL

STRING-LITERAL

'CHARACTER'

"(CHARACTER)""

47

48

49

ID

TID

INID

first character [ower-case ,\LI'II,\NUM SIGN-A NO-ALPHA

first chamcter upper-case A LPIIANUM SlGN-AND-ALPHA

bracket-balanced SIGN SIGN-AND-ALPHA

50

51

LBRAC!,ET

RBRACii:ET

at least olle left and no right brocket c!/,amclers SIGN SIGN-AND-ALPHA

at [cast, one 1'ight and no left bracket ch.aracteTs SIGN SIGN-ANO-,\LI'IlA

4.3 Comments

The dialect supports comments of the 'C' style, by delimiting the comment text between '/*' and '*/'. It is
required that the comment start token normally be surrounded by white-space characters. Comment start
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tokens which are immediately followed by a character other than white space are reserved for use by the
tools and une.'l:pected behaviour might occur if users do not follow these guidelines. Nesting of conunents is
not supported.
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5 ASCII equivalents

The following table describes the ASCII equivalents 1.0 t.he symbols included in this syntax. ASCII based
tools will be defined to use these equivalents - one of these tools is intended to be a translator from the
ASCII form to JJTEX symbolic for printing within documents.

1 symbol I ASCII

'r/, end'll FORALL, EHDFORALL
3. end3 EXISTS, ENDEXISTS
3! , end3! EXISTS!, ENDEXISTS!
),. end). LAMBDA, ENDLAMBDA
x X

4::,» «~, »
<. > < .• .>
O. D (I. Il
[. I II • ]1
6- ~-

~ >
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6 -Associativity and Precedence

This section describes the relative precedences and associativity of operators within the dialect. It includes
more than just the built-in expression operators such as tbose for arithmetic, it also includes those for types,
patterns and any other feature ,vhose binding one must know.

For simplicity, the associativity of the individual expression operators are bundled into a single level. With
respect to the rest of the language this is sufficient. Howc\"er each has a separate associativity and precedence
and for a full definit.ion of these, see (5).

Tightly binding

I operator I associativity I- len
all unary prefix operators, application and index· len
in!!'
all infIx binary operators ... 5

non
sat iov len
as len
and flattening, len

Weakly binding
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application .
bracket-body
constructor .
constructor-expr
constructor-instantiation
definition
e.''(pr . .
en-body
en-sig .
head
module-decl
module-expr
param-paUern
pattern
rein-body
reln-sig
seq-pattern-body
type-expr
typed-pattern
typevars . . .
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15
15

· 5
15

· 8
· 4

13
8
8
8
2
2
6

10
· 6
· 6

12
· 8

12
· 4
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(
)
0 (I .
I I).
0,. .>

" <.
4: «
>- »
( II .
J J) .
end3 ENDEXIS'I'S
end3! ENDEXIS'I'S!
end..... ENDFORALL
end>, ENDLAMBDA.
3 EXISTS .
3! EXISTS'
V FORALL, LAMBDA, FROM

• I> .
- ->
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. . 2.82.94.114.516.117.819.2
12.517.1217.1317.14 17.15 19.2
...... 6.18.1 5.3 15.1 17.2

2.111.1 12.2 14.517.217.817.1317.1417.15
2.111.1 12.2 14.5 17.2 17.817.1317.1417.15

. . . . . . . . . . . . . . . 4.1

. . . . . . . . . . . . . . . 4.1

I.I 3.1 3.4 3.5 3.6 3.7 7.1 9.114.720.1
. 16.1 19.2
. 16.1 19.2

. . 14.8

. . 14.8
5.25.35.4 14.720.1
5.25.35.4 14.720.1

17.13
17.14
17.12
17.15
17.13
17.14
17.12
17.15

. 19.2
5.4 14.720.1
... 2.82.9
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9 Index Of Reserved Words

=d
as .
ass.,'
by
case .
cases
define
else .
elseif
endcases
enddefine
endenrich
endif
encllet . .
end local .
end replace
endsig
enrich
fitting
fn .
f",
if .
on .
inY

is .
Ict
local
module
of . ..
overlapping
post . .
pre ..
provable
rein
replace
return
sat
share
"g
syntype
then .
type .
val
with.

15.2
14.3
3.6
2.9

11.11
17.11

· 2.3
17.10 17.11

17.10
17.11

· 2.3
· 2.6
17.10

12.1 17.1
2.5
2.9
2.8
2.6

.2.82.9
_ 3.2
_ 2.8

17.10
2.52.912.117.1

· 12.5
. 3.23.3

12.117.1
· 2.5

1.1
17.11

3.4
· 7.1

. 7.1 9.1
3.7
3.3
2.9
7.1

15.3
2.4
2.8
3.5

. 17.1017.11
3.4
3.1
2.6
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