
The HP-SL Type Model

Patrick Goidsack
Software Engineering Department
HP Laboratories Bristol
HPL-91-73
August 1991

Formal specification,
type systems

(c) Copyright Hewlett·Packard Company 1991

HEWLETT
PACKARD

Internal Accession Date Only

Abstract

The report provides a detailed account of the semantics of the type system of HP-SL. It does this in two
ways. The first is informally by example, it provides an outline of the two forms of identifying types and
discusses their meaning. The second way is to show that the types of HP-SL form a term algebra, with every
type mapping to a specific term of that algebra. Every lIP-SL construct to do with types is thcn givcn an
interpretation by means of the mapping to the algebra and thus provides a scmantics for this part of HP-SL.
The notion of type correctness is also explained in terms of the mapping to the algebra.

Contents

Contents

1 Background 1

2 Inforlllal Description 2
2.1 Simple Types 2
2.2 Constructed Types 3
2.3 Naming Types - Synonym Types 4

3 Models and Type Models 6

4 Notation 7
4.1 Type Universe 7
4.2 Environment 8
4.3 Other Notation 8

5 Scope Rules 9

6 Selllantics 9
6.1 Type Expressions . 9
6.2 Type Declarations 10
6.3 Type Synonym Declarations 11

7 Type Compatibility 12

8 References 13

Background

1 Background

The aim of this report is semantic; to describe in some detail the type model used within HP-SL. This should
be sufficient for users of the language to gain an intuitive understanding of the various language constructs,
and in particular the relationship between the two forms of type definition - the 'type' and the 'syntype'
definitions.

It is hoped that the semantic descriptions are given in a way that IS not too theoretical, yet completely
unambiguous.

2

Jnformal Description

2 Informal Description

Every type in HP-SL can be referenced using a type expression. Type expressions have two different forms.

• the name of a type

• the application of a type constructor to one or more type e:Ilprcssions.

Note that subtype expressions are lIot being considered at this point.

To understand the following description of the type model more fully, a few concepts need to be defined

• simple types - the fundamental building blocks of the type model; the simple types are the only ones
llot built by the usc of type constructors

• type constructors - functions which create a type from other types

• type synonyms - an association of names with lypes, not creating new types ill the type model.

2.1 Simple Types

The best way of describing a. 'simple type' in HP-SL is to show holV they are defmed and how they relate
to existing types. The syntax is as follolVs (other more complicated forms available in HP-SL can all be
mapped into this form)

type Iypennme

In thc abovc, the tcrminal 'typc' is a keyword introducing thc simple type. Thc nonterminal 'typename'
represents the name of the type.

This declaration has two consequences. Firstly it introduces a new simple type; that is a type different from
all other types be they pre-dcfincd, dcfined Ilsing a simple type declaration, or created by the application of
a type constructor to any type.

Secondly, it. introduces a name by which this type may be denot.ed; in this case 'typename'. Thus all simple
types <lre Il<lmed <llld this is the only way (bar the introduction of a synonym) by which this type may be
referenced.

Consider the following eX(lmples

type Coloul"

3

Informal Description

Each type is distinct; thus expressions of the form

x:C%ur

arc ill-typed.

y: Words

Note that nothing in the type declarations ensures that the types represent values in the domain implied by
their names. Thus nothing as yet insists that the only values of type 'Colour' are indeed colours. HP-SL
provides an assertional style of specification which enables such constraints to be placed but this is not the
concern of this report.

2.2 Constructed Types

A type constructor is a function which 'creates' or perhaps more accurately 'gives reference to' another type
when applied to one or more type parameters.

Note that every type constructor

• produces types different from all other type constructors and simple types

• produces a different. t.ype for each different set of type parameters,

Thus every type is denoted by exactly one term constructed out of the simple types and the type constructors.

The synta..x for these type constructors is as follows

type 0 typevar, type liar D typellame

The terminal 'type' introduces the type constructor declaration; the difference between the simple type and
the constructor being the 'typevar', these are formal parameter lIames given to the formal type parameters
of the constructor.

Consider the following examples

type OEICllIc1dO Stack

4

Informal Description

The first is a function from types (e.g. Colour) to the types 'Stack' of that type (e.g. Stack Colour).

Tn a similar way, the second is a function from two types to a type 'AssocJist of' those types. For example

Assoc_Jist Student Grade

which could be a type representing the mapping between students and examination grades.

As with simple types, these constructed t.ypes carry no inherent properties to ensure that the types behave
as OIlC might expect from their names. Nothing in the type declaration ensures that 'Stack Colour' is indeed
a stack of colours. This fact is of no importance to the type model, however, as the model makes no attempt
to capture the values or properties of the values in each type - this being a feature of the mapping between
the type model and the models of the specification.

2.3 Naming Types - Synonym Types

From the above it is clear that some types do not have an identifier; their only representation is via a type
expression. However, there are several reasons why it is useful to have a name for these types

• to give a useful hint as to how the type is being used in a particular specification

• to shorten the repeated use of a complex type expression

This is done via the synonym type declaration. The gencral form of such a declaration is

syntypc sylltypeJiame "" type_expression

The tcrminal 'syntype' introduces the declaration which binds the name 'syntypename' to the type denoted
by 'type_expression '.

Thi". does not introduce a new type to the t.ype model, it merely adds a name for an existing type into an
environment of syntypes (a mapping between syntype names and the types which they denote).

TlP-SL also aIlO\\·s t.he provision of synonym constructors, constructors for whole classes of synonyms. Thus
the class of binary relations could bc defined as

syntypc OA,BD Relation"" Set{A x B)

The 'lpplicat.ioll of the synollym produces a type cquivalcut 1.0 the substitution of the type variables for the
I,ypc parameter;; in the constructor application. Thus

Rt/alion bIt Bool

5

Informal Description

Sd(Int x Bool)

6

Models and Type Models

3 Models and Type Models

Before embarking upon the description of the HP-SL type model, a distinction between the notion of 'model'
and the notion of 'type model' is required to avoid confusion.

Semantic descriptions of languages arc often described in terms of 'models' of a 'syntactic term' of the
language. This is particularly true of specification languages where loose specification allows the possibility
of having many models, whereas typically in programming languages each program denotes a single model.

A specification ill HP-SL is

• a set of types

• a set of functions and constants defined on these types

In outline, the notion of model in HP-SL is

• a set of sets (sometimes called 'domains'), one for each type in a specification,

• a set of functions and constants operating on the appropriate 'domains' denoting the functions or
constants defined in that specification.

There is no restriction within a model on the relationship between the sets representing the types. Thus
the set representing the type 'Int' and the set representing the type 'Char' may be related in some way
perhaps by encoding the characters (eg ASCII or EBCDIC) within the integcrs .

. In a type model, on thc other hand, these two types would be kept completely separate, considered as distind
members of the type model. The type model is a reflection of the type rules of the language - a direcl.
mapping between the terms of the language and the concepts they denote.

The mapping between the syntax and the type model captures the notion of type equivalence and through
this the notion of type correctness (more of this later).

The mapping between the syntax and the type model is described in this report. The next step of defining
the set of models denoted by the specification is left to a definition of the language semantics. Thus the
type model describes the set of types available to a user of the language; those types that a uscr is capahle
of denoting by using valid terms of HP-SL.

Intuitively, an HP-SL type is a collcction of 'termsl> However, these collections must obey certain simple
properties

• every valid term is the member of some type

• -no two types have terms in common.

These two conditions betwcen them state that the universe of values (as reprcsented by valid t.erms) ill
HP-SL is IIfJ.rtiiioned into a set of types. This property makes the HP-SL type model extremcly simple Olild

1'"Qllghly SyIU:u'l.;C eXI)ressioll wit.hill the gramma,· of the notation

7

Notation

makes the notion of type correctness a simple matter. Note that the property of partitioning is lost by the
time the models of HP-SL are concerned; it is only a property of the type model:

A particular feature of HP-SL that makes the type model so simple is the lack of recursive type equations.
A roughly equivalent effect may be obtained by the use of types and functions. For example

type fur
type Node

Cn mLtree: Node x Node -t 1'ree
fn left_node: Tr-ee _ Node
Cn righLnode: Tree _ Node

4 Notation

First the terminology needs to be explained.

A type model is a pair, an environment of declared synonyms (tov) and a type universe (TU).

4.1 Type Universe

A type universe also consists of a pair, a generator set and the set of sorts generated by that set (sort
universe). The term sort is used in the algebraic sense; put simply a sort is a 'place-holder' for a set of values
in a model of a specification.

The symbol 'p' will be used to represent a typical member of the set of type universes; 'Ps' will represent
the associated sort universe and 'pg' the associated generator set.

We define a sort as a finite term of the following grammar.

l <Sort> <Id>
(<Sort> <Sort>)

Where 'Id' is taken from a set of identifiers.

The construction of the type universe is as follows.

The geller,ltor set 'pg' is an indexed set of maps 'Pi, i 2: 0', where each 'Pi' is the set of t.ype construcl.ors
wilh 'i' l.ype pari.\lueters; the special case 'Po' is the map of simple types to their associated sorts.

Thlls

8

Notation

Po = [Complex Complex, Bool Bool, ... J
PI = [Set >. T. (Srl T), Seq 1-+ >. T. (Seq T), ...]
P2 = [Pair .\ T.). S. «Pair T) S), ... -I-

Let 'Un, n ;::: O' be an indexed set of sorts defined by

Vo = rng po
Un = U.. { reduce(... (reduce(p;(c), ttl···),t;) J c E dom Pi, tl, ... , t; E Un_I}

where 'reduce' is the).-calculus .B-reduction.

Thus

Uo = { Complex, Baal, ... }
VI = Vo U { (Srl Complex), (Set Bool), «Pair Complex) Baal), }
U2 = Vt U { (Set (Seq Complex)), (Seq «Pair Baal) Complex»), }
etc.

Let the sort universe 'p/ be defined as

The pair '(Pg, P.)' is the type universe; the indexed set of simple types and type constructors Pg, and the set
of sorts, the sort universe generated by this set of constructors. The operation which converts an indexed
set of constructors to the set of sorls is 'closure'.

P. = closure(pg)

4.2 Environment

An environment is a mapping between

• syntype identifiers and their definition, namely 'Id ..--.. Sort' .

• syntype constructor identifiers and their definition, namely 'Id ..--.. A 'Tid' Sort' (where 'Sort' lllay
contain references to 'Tid').

The set of valid environments is called'En\" a.nd the symbol 'q' will be used to represcnt SllCh (Ill Cllvironmcnt.

4.3 Other Notation

The brackets '[]' denote the 'meaning' of the syntactic term within them. They will ill ways he written as
follows

[sYlltax]other_param = meaning

9

Scope Rules

where 'oiher_param' will typically be an environment, a type universe or both. Note that the syntactic term
will be in italic font to distinguish it from other text in the equation.

5 Scope Rules

UP-5L is a normal block-structured language with constructs which introduce new scopes. For the conve
nience of this paper, it is assumed that the specification has undergone 'o-conversion'; thai all names have
been made unique and all references have been resolved. This simplifies the notion of environment as the
nested scopes need not be modelled using a stack of environments - rather a single Oat environment may
be assumed.

The a-conversion also enables other simplifying assumptions in the sequel. These arc indicated wherever
relevant. The alpha-conversion rules are defined in [1].

6 Semantics

The meaning of various HP-SL syntactic terms can now be analysed. In particular, the following can now
be described in terms of effecLs or dependencies on the type model

L type expressions

2. type declarations

3. syntype declarations

6.1 Type Expressions

The type of the meaning function for type expressions is

Type_expr -t (Env x TU) -t Sort:!

The semantics of type e.'\:pressions are the simple conversion from the II P-SL syntactic terms, to the sort in
the obvious way.

Dealing first with identifiers,

lid](a,p) ~ a(id)

[id](a,p) = p;(id)

lidl(a,p) = id

ifid E dom (1'.

if id E dom p;

otherwise

2 the notion of Sort used here is extended to include free lloll-undulilled I.'·pe iJelltille,'S t.o rcpreselll. ll"inSlallli"tcd type
variables. This is done to allow the lIleaning fm,ct.ion for type expressions I.. be used on Ihe hod~' of t.ype ';:011.1""';:1.0''''.

10

Semantics

The last case is used to represent the type variables in an expression, these remain for later binding by a
lambda (see also footnote 1).

Next, the semantics of the application of type and synonym constructors must be defined,

[type_fXp1) iype_CxPT2](0", p) = reduce([type_exprd(u, p), [tYPf-/:Xpr2](u, p))

where 'reduce' is the lambda-calculus .a-reduction, with the first argument being the lambda. If reduction is
not possible (i.e. if type_cxpTI does not represent a constructor), the composition of the tll'O type expressions
is not well formed.

Furthermore, a type e."{pression type identifiers not wit.hin the scope of a lambda binding does not represent
a term in the sort term algebra and so does not represent a type. It may safely be assumed that the process
of a~conversion has rejected such illegally scoped specifications.

6.2 Type Declarations

In HP~SL, the notion of type declaration covers all forms of syntax starting with the keyword 'type'
including all those followed by injector and projector definitions. These are merely derived forms of the
simplest case considered here and so are fully defined by the semantics given here.

The type of the meaning function for type declarations is

Type_decl -+ (Env x TV) -+ (Ellv X TU)

There are two cases to consider, simple types and type constructors.

[type id)(u, (p"p,)) =
(u,
(p, t(Po U rid ~ i4]),
closure(pu t(po U (id 1---+ !.d]))

)
)

Itypc (I id , idn I) id l(u,(p"p,») =
(u,
(Pu t(p" U lid 1---+ >'id,>'id".((id idd, .. .ill,,)]) ,
closure(pu t(p" U lid 1---+ >'id, >.id".(...(id id,), ... iel,,)])
)

)

Note that the environment of sylltypcs is not changed, whilst the closure of the valid sorts is reset to take
account of the additional t.ype or type constructor.

Because of Q"-collversioll we Illay ignore issues or s(:ope and I,he existence of the definit.ions of the various
identifiers.

II

Semantics

6.3 Type Synonym Declarations

The type of the meaning function for syntype declarations is

Syntype_decl - (Env x TU) -+ (Env x TU)

There are t.wo cases to consider, synonyms and synonym funct.ious.

[syntype id ~ type_fxpr](u,p) = (ut(id -+ [type_expr](u,p)], p)

[syntype (I id1 , "', idr, I) id ~ type_expri(q,p) = (qt(id -->.\ id l _ >. idn .[typu~rpr](u,p)], p)

The evaluation of the meaning of the type_expr will ensure that the type variables will remain untouched.
The process of a-conversion guarantees that the type variables will all be uniquely named and hence there
is no need to alter the environment and type model to cater for these when using them on the right-hand
side of the equation.

Note also how recursion is effectively barred from syntypes as it is impossible to refer to the newly introduced
syntype in the type expression.

"
l:vpc Compatibility

7 Type Compatibility

Two type expressions are 'compatible' if, and only if, they denote the same sort within the sort universe.

Thus a specification is type correct if, and only if, the expected types (for function parameters and for valne
bindings) and the actual types are compatible.

Note that no mention of sub-types has been made. This is because type expressions with invariants denote
(in the models) sets of values entirely taken from the base type. Thus the 'sort' of these values is the same
as that for the base type.

It might be possible to move to a scheme with ordered sorLs to handle sub-types. However the current way
of defining sub-types through predicates makes the ordering undecidable, so the benefit for type-checking
seems limited - so complicating the type model is unnecessary if the specification is viewed as a. definition
of the decidable type rules.

The notion of type compatibility therefore takes no account of the sub-type orderings.

13

References

8 References

[1] Patrick Goldsack. HP-SL type and scope rules. Technical report, Hewlett-Packard Laborat.ories. In
production.

