
HP-SL Abstract Type Syntax
(Records and Unions)

Patrick Goldsack
Software Engineering Department
HP Laboratories Bristol
HPL·91·69
August 1991

Formal specification

(c) Copyright Hewlett-Packard Company 1991

HEWLETT
PACKARD

Internal Accession Date Only

Abstract

The report outlines the derived syntax provided within the HP-SL specification language to enable the
definition ofrecord and union types. It describes the notation at two levels. First it describes the requirements
for such a not.ation by way of an example the informally defines the derived short-hand notation. Secondly
it provides a det.ailed definition by way of axiom schemas of the translation between the derived notation
and the base HP-SL notation.

Contents

Contents

1 Background 1

2 Abstract Types 2
2.1 A running example 2
2.2 Constructor functions 2
2.3 Projector functions .. 2
2.4 Predicates - 'is' functions. 3
2.5 Updators - 'set' functions 4
2.6 Axioms 4

2.6.1 No Junk. .. 5
2.6.2 Induction 5
2.6.3 Equalities and No Confusion 5

3 Short-hand Description 7
3.1 Constructor short-hand 7
3.2 Projector short-hand .. 7
3.3 Layering projectors. 9
3.4 Pre-conditions for constructors 9

4 Axiom Control 11
4.1 Allowing Junk 11
4.2 Allowing Confusion 11
4.3 Eliminating Constructor Functions 12

5 Expressions 13

6 Pattern Matching 15

7 References 16

A Semantics of Type Declarations 17
A.l Declarations 17
A.2 Axioms IB

A.2.1 'is_' axioms 19
A.2.2 projector/constructor a.~iorns 19
A.2.3 'seL' axioms 20
A.2.4 relating 'is_' functions 21
A.2.5 relating constructor function domain types 21
A.2.6 Induction . 22

B HP-SL Modules and Abstract Types 24

1

Background

1 Background

Early versions of HP-5L had type constructors for records and unions in a similar way to traditional VDM
notations. However, these are strictly not necessary in a language with abstract types as both are easily
codified within this concept:.

As a result, the current version of HP-5L has dropped these to simplify the language semantically. This
paper aims to show how HP-5L now deals with concepts such as record and union types by way of its abstract
types, and Lhe derived syntax that is introduced to make this easier.

2

Abstract Types

2 Abstract Types

HP-SL provides the capability of defining abstract types: types which have no internal structure other than
that implied by the functions operating on that type. It is also able to define type constructors; functions
which generate families of types - one for each type parameter. For further explanation of this aspect of
the language, see [1] and [2].

2.1 A runnIng example

As an example which will be carried forward to the remainder of the paper, consider the family of 'trees'
generated by the type constructor

type aT ~ Tree

In other notations, one might state that a tree is the union of three alternatives; an empty tree, a leaf
containing a \"alue of type cT', or a node containing two sub-trees. In an abstract type language, however,
there is no union construction merely the ability to define functions and values. Thus the representation in
HP-SL would be

val QTO empty Tree T
fn 0TO leaf: T - Tree T
fn aTO node: (Tree T) x (fue T) -+ Tree T

The three types of tree are constructed using two different functions and a value.

2.2 Constructor functions

Every abstract type has a set of values and funetion, known as 'constructors', which construct all possible
values ofthe abstract type. Clearly any function which returns values of the abstract type could be included,
so the choice of a particular set as the constructors is a matter of instinct, taste or even arbitrary decision.
To act as a guide, consider the following examples:

• The tree type has three constructors, 'empty', 'leaf' and 'node'. A function to return the left subtree
of a node would probably not be considered a constructor as that subtree could be expressed in terms
of the other three; yet adding it would not allow the removal of one of the other three constructors".

• For lists, the set of constructors would probably be 'empty' and 'cons'. Again, 'append' would not be
a suitable const.ruetor. An alternative to 'cons' might be an 'add...elemenLto_bacLoLlist' function.

2.3 Projector functions

For every constructor function it is possible to define a set offunetions to 'pull apart' the constructed value
- typically to return each of the components of the value injected into the type. Thus, for the tree example,

3

Abstract Types

the constructor function 'leaf' might he associated with a function 'leaf-val' to extract the value injected into
the tree by 'leaf'. Similarly, 'node' might be accompanied by two projectors, one to extract the left subtree
and one to entact the right subtree of a node.

So for this example,

fn aTD leaf_val: Tree T T is
lea/_val t

p,e
3 v:T· leaf v

return v
post

t = leaf v

T)·Tree T, '2: Tree
7lode(t J , 12)

fn aTD left....subtree: Tree T Tree T is
left....5ubtree t

p,e

3 (1 1 '

I
return 11
post

3 (tQ: Tree T)·
t = node(i1 > td

and so on for all functions projecting component vaJues of the tree type.

Generally a projector is defined to be a function which extracts one of the parameters that was used to
construct the value in the first place. This relationship is easy to give directly using an assertion.

assert aT~ constructor_axioms ~
(V v: T· leaf_val(lea/(v)) = v)
A
(V t} and t2: Tree T·

left_subtree(node(t 1 , 12)) = t}

A
righLsubtree(node(t j , (2)) = t2

2.4 Predicates - 'is' functions

Each of t.he projector functions above are defined with a pre-condition to ensure that the value to which it
is applied was built (or could have been built). using the appropriate constructor.

These pre-conditiolls could easily be converted into predicates, such as

fn aTn is~!ea/: Tree T _ Bool is

4

Abstract Types

is_leaf t 6 (3 v:T· t leaf v)

Throughout the remainder of this document functions such as these are termed 'is' functions.

2.5 Updators - 'set' functions

For every projector, one could define a function which changes just the value of that projector when applied
to a value of the type (appropriately constructed), leaving the values of the other projectors unchanged.

For example

fn 0TD seLlefLsubtree: Tree T ---> Tree T _ Tree T is
seL/efl-subtree t 11

pre is_node 11
return if!
post

lefLsubnode i2 :::: t 1\

righLsubnode 12 = righLsubnode i 1

This function takes two trees (curried) and sets the left subtree of the second tree to be equal to the first
tree.

The reason for the currying of the parameters is that one can compose partially applied set functions
to produce a function which 'sets' several projectors simultaneously. This leads to a cleaner and clearer
presentation of multiple 'sets'. For example

(sel-projl new_pI 0 seLproj2 newp2) T

This generalises to as many 'sets' as required.

2.6 Axioms

There are certain common properties of constructor functions that still need to be established. Currently
there is no statement that

• all trees may be constructed using these functions and values

• the constructor functions and values generate different trees, thus it is possible for 'leaf(4) = empl,y'
to be true

These two axioms are now discussed more fully, plus another which IS important when reasoning about
abstract types.

5

Abstract T}'pes

2.6.1 No Junk

When defining an abstract type with a given set of constructor functions, it is necessary to say that the
chosen set is 'complete', that all elements of the type may be finitely constructed with that set of constructor
funct.iollS.

In the case of the 'Tree' type constructor, the constructor functions are 'empty', 'leaf' and 'node'. If these
are the only ones, the following axiom should be added

assert 0TO no_free_junk £>.

(V t: Tree T·
is_empty t V
is_leaf t V
is_node t)

using the 'is_' functions defined as for the 'i.sJeaf' definition in sedion 2.4.

2.6.2 Induction

In addition we should provide the structural induction axiom to capture the notion of 'finitely generated'
and to enable the use of structural induction as a proof technique when reasoning about a type (i.e. case
analysis proofs). Note that the no junk axiom is implied by the induction axiom, which insists in addition
that the values of the abstract type are 'finitely generated'.

assert aTD tree_induction U

(V p:Tree -+ Boo/·
((p ,mpty)

A (V "T· p(I"1 ,»
1\ (\I' 11 and l!!:Tree T· p(11) 1\ pet!!) :::} p(node (ill 1!!»))

=>
(\I' t: Tree r. p t)

)

2.6.3 Equalities and No Confusion

The final set of axioms which should be considered are those regarding the equalities between two construc
tions - in this case between two trees. The most common equalit.y a.''{iom is that no two terms of the same
t.ype constructed using t.he constructor functions denote the same value (in the models) unless the two terms
were themselves identical. Identical terms must always be equal (assuming that they are fully specified).

assert aTD no_tree_confusion g,
(V t: Tree T·

(is_empty t :::} --.. (is_leaf V is_node t»
A
(ideaf t :::} --.. (is_empty V is_node t»
A

)

6

Abstract Types

(is.nodt t::) ..., (is_empty t V is_leaf i»

,
Short~hand Description

3 Short-hand Description

The examples of section 2 demonstrated that defining the properties of an abstract type requires several
functions and axioms to be written on that type. However two forms of abstract type definition are so
common and their properties so well understood that a syntactical shorthand is provided which allows the
simultaneous definition of such abstract types and their associated functions and axioms.

3.1 Constructor short-hand

HP-SL provides a syntactic mechanism by which this may be done. Consider

type QTO Tree /';

I,mp!y] I
[I"j .. T] I
[node: 'Ihe T X Tree T]

The syntax defines the following

• that there are three constructors, empty, leaf and node; each set of bracketing I] introduces a
constructor, and each of these is seperated by a I.

• empty is a constant value; if no type is defined aft.er the constructor name, the constructor is a const.ant.

• leaf is a constructor function which takes a value of type 'T' into Tree T

if a t.ype is given after t.he name of the constructor, this is the type of the parameters it injects into
the abstract type

• node is a constructor function which takes a pair of fue T into a 1'he T

• the functions is_empty, is_leaf and is_node are defined with the appropriate properties (for details see
section A.2.4)

• the no junk and no confusion axioms are automatically defined when appropriate (for details see section
A.2.6)

This syntax has clearly shrunk a large multi-line specification into a single definition.

3.2 Projector short-hand

There are several projectors that. could be defined (see 2.3)

• 'leaLval' - which delivers the value of type 'T' used to construct the leaf

• 'left..subtree' - which delivers the left subtree used to construct the node

• 'right-subtree' - which delivers the right subtree used to construct the node

8

Short-hand Description

• a whole set of compound projectors, such as one which delivers both subtrees of a node; in this example
such projectors will not be defined

This ma~ easily be accomoclated within the syntactic form outlined above.

type aTD Tree ~
[,mp'Y] I
[leaf I> leaf_val: T] I
[node l>

(left_subtree: fue T,
righLsubtree: Tree T)]

The synta, can be explained as follows

• if there is no type or no 'l>' symbol, the constructor is a constant (e.g. 'empty')

• if the constructor is followed by a type, it is a function as before (ie 'leaf')

• if the constructor is followed by '1>', the constructor is a function which takes values matching the pattern
which immediately follows the '1>'. Thus 'node' is a function of type Tree T x Tree T --t Tree T
, and 'leaf' a function of type T _ 'Tree T

• every identifer in the pattern following a '(>' is a projector function, projecting the appropriate compo
nent from the abstract type, in this case 'Tree T'. Note that the existance of any projector (even an
anonymous one) ensures that different values for the parameter of the constructor produces differ~nt
values of the type. Thus

assert aT D surjective_node ~
(If t1 and 12 and ls and t.. : Tree T·

node(f1 , 1.:d = node(ls , t..)..
t1 = is A i2 = i ..

)

• every constructor function without user-defined projectors (determined by the lack of a l> in the defini
tion), merely have an constructor. There is therefore no axiom relating the projectors and constructors
thus impling that the constructor may 'confuse' two parameters. Thus had the type Tree been written

type aTD Tree ~
[I,,! , T} I

it would have been legal for the function 'leaf' to take two different vlaues of type T to the same
leaf-tree.

• e'l.'ery (non anonymous) projector has a 'set' function associated with it, to modify just the one projector
leaving the other untouched. Its name is obtained by adding 'seL' in front of every projector. The
'set' functions are curried; thus 'seUeft..subtree' has type' T -- Tree T --,. Tree T

• 'empty' does not have a projector

9

Short.-hand Description

3.3 Layering projectors

Since a pattern is used after the 'to', laye~ed patterns may be used to provide projectors that extract values
from the abstract type in \'arious ways; thus for the 'Tree' example, one could have written

type QT~ Tree ~
... I
[node t>

whole as
(left_subtree : me T,

righLsubtree: Tree T)]

Here the function 'whole' returns the pair of values from a node-constructed tree. As before, the 'set_whole'
function is also defined, although in this case it is equivalent to the 'node' function itself.

The signatures of the three projector functions are

fn QTD whole: Tree T ---. (Tree T x fue T)
fn QTD left..subtrec: Tree T _ Tree T
fn 0TD nghLsubtree: Tree T _ Tree T

and they satisfy the obvious axiom

assert aT~ layerillg_axiom ""
(V t: fue T·

whole 1= (lefLsubtree I, right..subtree i))

3.4 Pre-conditions for constructors

The syntax for abstract types uses a pattern after the' t> '. These patterns may be sub-typed using any of
'illY', 'sat' or an infix pre~icat.e such as 'E'.

For example

type Limits t::. [limits t> (/ower:Int, upper: Int) sat lower < upper]

lnformally, such t.ypings may be seen as pre-conditions on the constructor function, thus in this example

fn limits: Int x lilt - Limiis is
limits (f,u)

prel<u

Use of pattern typings in this way also has an effect. on the use of set functions. The predicates also generate a
pre-condition on the set. function that the appropriate resultant value is in the type. If not, the set function's
behaviour is unspecified. Thus in this example

10

Shortr-hand Description

fn seLlower: Jilt - Limits -.. Limits is
seUower I limit

pre I < upper(limit)

This limits the use of set function when many projectors are related by invariant. The type declaration
should be grouped and layered to provide simultaneous set functions, or a parent type defined with each
projector independant, then the actual type declared as a sub-type of it. For example,

type Limits_base ~ [limits t> (lower: Int, upper: Int)]

syntype Limits ~ Limits_base inv I· lower I < upper /

It is worth noting the following fact about the limit example. The pattern which defines the projectors
provides idenl.ifiers with two distinct scopes and in these scopes the identifiers have distinct types.

The first scope is that of the pattern itself, including any 'sat' clause that may he attached to the pattern.
Within this scope the identifiers have the type defined in the pattern, hence the example

type Limits ~ i limits to- (Jower:lnt, upp~r: lnt) sat [ower < upper J

compares lower and upper as two integers within the 'sat' clause.

The second scope is that of the externally visible identifiers that are defined for use within the remainder of
the specification. Thus in other definitions the identifiers

fn lower: Lim it
fn upper: Limit

are available.

Jot
---> lilt

11

Axiom Control

4 Axiom Control

4.1 Allowing Junk

At times it is convenient to provide only part of the definition of an abstract type; supplying the remainder
at a later stage. This is enabled by the removal of the 'no junk' axiom mentioned in section 2.6.1.

To do this, the syntax is extended by allowing the sequence of alternative constructors to include ' .. .'. For
example

type Statf h. [stacks: Stack_id ~ Stack] I

The meaning of the ' .. .' is 'and others, not yet specified'.

Note that the no confusion axiom still holds; that the alternatives so far provided are not confused with each
other. No guarantee is given regarding the alternatives not provided.

Thus the following definition of 'Colour' may be given

type Colour g (red] I [green] 1[black) I

and each of the three colours are different. However, the definition can be extended by

type ColouT ~ [rouge] I [vert] I [noir] I ...

These are again different from each other, but not necessarily from the first three colours.

4.2 Allowing Confusion

In addition to allowing junk, at times it might be useful to allow confusion between the various constructors.
Take, for example, sets. Sets have no specific constructor function - perhaps the nearest equivalent is

type 4TD Set ~ [empty] I [singleton: T] I [union: Set T x Set T)

The problem is that 'union' can produce any set including any of the singleton sets and the empty set. This
means that the construction defined above is wrong because the no confusion axiom is present.

(Note that we already have that two different terms containing the 'union' constructor could denot.e the
same set, thus the symmetric nature of 'union' is allowed.)

To enable the removal of the 'no confusion' axiom, the keyword 'overlapping' may be used directly after the
d:>' Thus the correct formulation for the set definition is

type 4TD Set ~ overlapping [empty] I [singleton: T) I [union Set T x Set T]

12

Axiom Control

and the equalities and inequalities have to be added explicitly.

Note that the formulation of the 'is' function is such that

is_singleton(union(empty, singleton 4))

would be true (assuming that the correct definition of equality had been provided) even though the top-level
constructor is not 'singleton'.

4.3 Eliminating Constructor Functions

HP-SL provides the ability to only partially specify the set of projectors associated with a constructor
function or to not specify the form in which they occur in the domain type of that constructor function.

As an example, consider the following

type aT~ TITe ~
[,mpfy) I
[leaf.· T) I
[node

t> lefLsubnode: 1Tee T
t> righLsubnode: Tree T

)

Notice that there are now two projector patterns for the constructor node, one for each of the subnodes.
This form underspecifies the type of the constructor 'node'; the domain type is such that the two projected
values are precisely represented in some simple form (the type is isomorphic to the 2-tuple type), but the
precise type is not known. This in turn means that 'node' may not be used as a function directly - its
type is not known. In fact the constructor function 'node' is not defined at all, only the predicate 'is-1lode'
is defined by such a declaration. This still allows indirect forms of defining values where 'is-node' would be
true.

If in addition one wishes to state that other projectors might exist one of the patterns following a '1>' may
be ' ... '. This indicates that more may be present. For example

type ~ T~ Tree ~

I,mp") I
liea! .. T] I
[node

I> lefLsubnode : Tree T

•
)

states that 'node' may have projectors in addition to the function 'left..subnode'.

13

Expressions

5 Expressions

The values and functions defined in parallel to the abstract type may be used as normal ~ thus the value
'empty' may be used freely in expressions; as may the function 'leaf', 'projectJeaf', isJeaf' 'node', and so
on. Their types are deduced from the type declaration as described above. For example all of the following
are allowed

val a (::. empty

val b 6 leaf 4

val c != if projecLieaf b = 4
then jf is_empty a

then node(emp~y, empty)
else node(empty J node(leaf 5, leaf 6»)

else empty

endif

However, a slightly different style of defining a value of the type is possible. Consider the following

let
val f: Tret. lut sat

is_ll ode t A

left_subtree t = empty A

righLsubtree t = leaf 4

endlet

Note that the constructor is not used directl:)"; it is only known to be the constructor that must have been
used. This makes the style suitable for those cases where the type of the constructor function is not known,
either because the order of parameters was undefined or because an incomplete set was defined. It is also a
suitable way of constructing an underspecified member of the type - possibly leaving one or more projected
values unspecified.

This form of specification is of such utility that a short form is provided in HP-SL. For example

[/lode

to. righLsubtree ~ leaf 4

to. leftJubtrce ~ empty

I

Note that the syntax closely follows that of the type declaration. The syntax is interpreted as follows - the
initial use of the 'node' constructor implies that 'is..node' would be true ·if applied to the expression. Then,
folJowing each of the 't>' symbols is an binding between a projector on the left side and the value which it
should project on the right side.

Any projector associat.ed with the constructor, but which is not bound in the expression, is considered

14

Expressions

underspecified; but tools are free to issue warnings if this occurs.

15

Pattern Matching

6 Pattern Matching

Under certain (syntactically determinable) conditions, HP-SL provides a mechanism for pattern matching
over terms of the abstract types declared using the constructor/projector notation.

Basically the conditions are that no 'confusion' may occur in the patterns, thus if

• the overlapping keyword is used, or

• one of the constructors is defined using the form

[" T I

then pattern matching is not fully provided. In the first case no pattern matching is provided. In the scond
casc, pattern matching is provided for all other constructors (unless they are similarly defined).

For the other cases, the syntax follows that introduced for the types and repeated in the expressions. As an
example consider the following

ClISCS t of
case (empty] then ...
case (leaf t> v] then
case (,lode

t> t s ~ lefLsubnode

t> t2 ~ righLsubnode
t> both_trees] then .,.

endcases

The pat.tern for a constant const.ructor is just that constructor within the brackets.

With a function constructor, one of two situations occurs.

1. If the \\'hole of the construct.or's input value is to be matched, a pattern may be given on its own after
a' t> '. There are two examples above, the first being the 'leaf' case, the second being the matching
of 'both_trees' to the pair of subtrees.

2. If a patte.rn is to be matched with just the result of a single projector, then that the pattern must be
accompanied by' ~ projector-id " The two examples of this are the pattern matching of 't,' and
't2' in t.he 'node' example.

Note that.

• not all projectors need be mentioned.

• pattem matching is only allowed on types that have not been declared as 'overlapping'

• whole input mat.ching is only allowed in cases where a constructor's domain t.ype is known (equivalently,
t.hat the constructor function is defined).

16

References

7 References

[1] Patrick Goldsack. The HP-5L model of polymorphism - an informal description. Technical Report.
HPL-91-71, Hewlett-Packard Laboratories, Bristol, June 1991. .

[2] Patrick Goldsack. The HP-SL type model. Technical Report HPL-91-73, Hewlett-Packard Laboratories,
Bristol, June 1991.

[3] Patrick Goldsack. Module comhinators for specification languages. Technical Report HPL-91-70,
Hewlett-Packard Laboratories, Bristol, 1991. June.

17

Semantics of Type Declarations

A Semantics of Type Declarations

There are two issues to consider when giving a description of the semantics of the abstract type syntax

I. the names that are introduced, and their type

2. the a.xioms that are included by virtue of the way in which the syntax is used.

A.I Declarations

type Tid L:. I constructor; I ...

From this we get the definition of the type

type Tid

and the definitions generated by each of the constructor descriptions.

For constructors, there are several possibilities

• constants

[id I

val id : Tid
val iLid : Tid - Bool

• constructor function only

[id : Texpr]

val id : Texpr _ Tid
val is_id Tid ---> Bool

• single projector pattern

[id l> pattenl]

18

Semantics of Type Declarations

val id : typeoj(pattern) - Tid
val is_td : Tid - Baal

and for every name E lIamesof(paUern)

val name; Tid - typtof(name, pattern)
fn seLname : typeoJ(name, pattern) - Tid -.. Tid is

seLname r t
pre prtdicateof_name(r,t)

where the predicate predicateo/_name is the check of any sub-typing restriction on pattern with r
replacing the n part within the pattern .

• multiple projector patterns

[itl to patternJ ... t> pattern..]

va) i.dd : Tid ---. Baal

and for each i E {I .. II}, for every name E namuo/(patternd

VAl name Tid - typeo/(name, pattern,)
fn set-name .. typeo/(11, pattern,) Tid Tid is

seLname x t
pre predicateo/_name(x, t)

• t> •••

The' ... ' may occur alone or with any number of patterns.

It does not introduce any identifiers, but ensures that the definition of the constructor function does
not appear.

A.2 Axioms

The axioms may be divided up into several classes

1. those relating the is_ functions to the constructors

2. those relating the constructor and the projectors

3. those relating the seL functions to the projectors

4. those relating the complete set of is_ functions

5. those relating the abstract type to the domain typ~ of the constructors

6. induction

19

Semantics of Type Declarations

These axioms are not independant, some of them may be deduced from the others. However, by giving them
explicitly ill this way a better understanding of the semantics is obtained.

A.2.1 'is_' axioms

The axioms relating the is_ functions and constructor functions (or, of course, constructor constants) clearly
only exist if both the functions are declared by the abstract type definition. Thus only the constructor
synta.xes

[c, I
[C2: TcJ
[(3 to- P]

where p is any pattern and Tc any type actually generate the axioms.

For the first case we have

For the second case, the difference is that the is_ function is true for all posible parameters to the constructor

In the third case, the difference is in obtaining the domain type of the constructor function.

(V t: T· is_C3 t «=} (3 tc : typeaf(p)· C3 i c = t))

A.2.2 projector/constructor axioms

These axioms exist only when both the constructor and the projector functions exits. Thus only the case of
a constructor defined by

[, 0 p I

need be considered.

An axiom of the following kind is generated for each JI E namesof(p)

(V v: iypeof(p)·
n (c v) =

let
•valp=v

"

20

Semantics of Type Declarations

endlet)

This axiom relies on the fact that II exists in the pattern p, and so by matching the pattern against the
parameter value of the constructor, the appropriate component part is ob;tained.

A.2.3 'seL' axiOIlls

The seL axioms are defined whenever both projectors and set functions are defined. Thus the following
constructor synta:xes need to he considered

[CJl>p]
[C2 I> PI l> P2]

[C3 l> pl> ...]
/* and greater numbers of patterns */

/* and with greater numbers 0/ patterns */

The axioms are complicated by three factors

1. the patterns may have anonymous components, using the pattern place-holder '_'

2. t,he projectors and setter functions have dependencies provided by the layering of patterns - thus two
pattern identifiers, one on each side of an 'as', may be related in some way

3. not all the projectors are known when the constructor is provided in the third of the syntax forms
given above

The first is handled by considering every _ as a unique identifier and allowing their use in the axioms.

The second is handled by the use of a semantic predicate dependant which, given two pattern variables and
a set. of patterns in which they may occur, is true when the two variables are dependant through layering in
one or more of t.he patterns.

The third is impossible to take account of, so the axioms state the relationship between the setter functions
and projectors defined in the constructor definition. They do not guarantee that these relationships exist
with those projectors and setters yet to be defined. This make use of the bo ••• notation rather dangerous.

The axioms state two things

1. that having set the value, the associated projector delivers that value

2. that all other independant projectors deliver the same values as they did before.

Thus for each name E names(Pl) U ... U names(Pn) we get the a.'i:iom

(V m E names(Pl) U ... U names(Pn)
sat..., dependant(name,m,{pl, . ", Pn»'
('tie: T sat is_c, e·

(\I' x : typeQf(name, {PI, ... , Pn»'
m(seLllame x e) = m e

21

Semantics of Type Declarations

)

)

covering the 'rest. don't change' part, and

(V e: T sat isc e·
('v' x typeof(n E {Pl. "', Pn})'

n(setn x e) = x

)

to deal with the behaviour of the setter on the related projector.

All dependant projectors are indirectly catered for by the above two axioms.

A.2.4 relating 'is_' functions

There are two kinds of axioms related to two pieces of syntax in the 'union' parI. of the language.

The first. of these is the no junk axiom. The following axiom is added

(V t: T· is_co I V is-c j t. V

assuming the set of constructors to be the set {eJ' .. _, en} and assuming that the I... syntax is not used.

The second of the axioms is the no confusion axiom which is included if the overlapping keyword is not
used.

(\I Ie T·
(is_co :} ~ IS_CJ V V Is_en t))
A
(is_c1 :} ~ !S_Cll V V !S_Cn t))
A

)

If the I... syntax is used, the no confusion axiom covers only those constructor functions defined.

A.2.5 relating constructor function domain types

For t.he constructor definitions which do not include t> •• " one can define relations between the type of the
constructor and the abstract t.ype.

For the constant constructor

22

Semantics of Type Declarations

[" J

we have

For the case when there are no projectors

[" ' r, 1

we have

(V t: T sat is_C2 t·

(3 12: T!t" C2 t2 t)
)

For the cases where there are projectors

[c:J t> P]
[c:J to- P1 t> P2]

",

we have (in a form where we assume n patterns)

(3 f: typeof(pl) x ... x typeof(Pn)'
(V t: T sat is_C3 t·

(3 s: typeof(PJ) x ... x typeof(PJl) f s t)
)
A
(V 11 and i2 : tYPeof(Pl) x ... x typeof(Pn)'

f f 1 ::::: f i2 ¢* 11 = i2

)

In the case when there is a single pattern, this axiom may be fe-written with the f replaced by the constructor
function cs. In the case where there is more than one pattern, it in effect states the potential existance of a
construct.or function.

A.2.6 Induction

Structural induction is a vital proof technique for types described in the form above. However, for this to
be valid \\·e need two properties

1. that all constructor functions and constants are known

23

Semantics of Type Declarations

2. that the type is finitely generated, all values of the type are cons,truded from a finite number of
applications of the constructor functions

The former can be characterised by a simple syntactic restriction, the second requires the addition of another
axiom - the induction axiom.

Thus, when the type is defined using only one of the three forms of constructor definition which gIve a
constructor function, and does not use I""j then the induction axiom is provided.

The valid forms of constructor definition are

[, I
[, .. T]
[, • p I

Note that, the lack of the form

[C t> PIt:> P2]

gives a degree of control over whether the induction a.xiom is indeed provided.

The form of the axiom is

('If p: T _ Bool·
(

/* for each constant constructor c; */
p c;

A

/* for each constructor function d;: V --.... T where V does not use T */
(V,.. V· p(d; v»
A

/* for each constructor function e;: V --.... T where V mentions T */
/* (for simplicity in presentation here assume " = T) */
(V v .. V· p(v) => p('; v)

=>

Vt.-T·pl)
)

24

HP-SL Modules and Abstract Types

B HP-SL Modules and Abstract Types

HP-SL modules are defined to he independant of the base language, in that it could be viewed via an
operational semantics on the name space and on the text. Thus it has no effects on the properties of the
underlying flat language.

It was pointed out in [3] that for the '+' module operator to work in merging definitions, a base language
has to have a notion of multiple definition for each kind of entity.

The following subsections breifly examine the effect on the abstract types of HP-SL.

HP-SL allows multiple definition of all its entity kinds, so long as these are compatible. It is up to the tools
to warn of such multiple definitions if appropriate.

Basically, multiple definition is valid if the declarations and axioms introduced by each of the type definitions
do not contradict each other.

However, additional constraints are imposed to ensure that consistent naming of constructors and projectors
is achieved. -

A type definition is 'complete' if the symbol' .. .' does not occur in the sequence of constructors, and is
'partial' otherwise. A constructor is 'fully specified' if at most one 't>' occurs in the constructor definition
and that this does not preceed a' ... '.

Two definitions may only exist if they are compatible, i.e. if the following conditions hold

• two complete type definitions for the same type may only exist if they have the same set of constructors.

• if one of the constructors is not complete, and the other is, then the complete one must have a super-set
of the constructors of the partial one

• if one of the two c~mstructors is fully specified, and the other not, then the fully specified constructor
must contain a super-set of the projectors in the not fully-specified definition.

• axioms implied by one of the definitions, but not the other, t·ake precedence (i.e. the lack of such
axioms does not imply denial)

Thus for example one could write

type 0TD Set t::. (empty] I [singleton: T] I ...
type 0TD Set t::. overlapping [empty] I [singleton: T] I [union Set T X Set T]

implying that the complete set of constructors was 'empty', 'singleton' and 'union', that values constructed
by 'empty' and 'singleton' are always different, but that values constructed by 'union' may be equal to either
a singleton set or an empty set.

